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Abstract. We define a handy new modulus for normed spaces. More precisely, given
any normed space X, we define in a canonical way a function £ : [0,1) — R which
depends only on the two-dimensional subspaces of X. We show that this function is strictly
increasing and convex, and that its behaviour is intimately connected with the geometry
of X. In particular, £ tells us whether or not X is uniformly smooth, uniformly convex,
uniformly non-square or an inner product space.

Introduction. In short, we define a new concept for normed spaces
and prove some basic results concerning it. Why bother? This definition did
not just come out of the blue, but arose naturally from studying Lipschitz
continuous set-valued functions [24], a topic with ramifications in diverse
areas of mathematics. Moreover, this modulus behaves quite well, compared
with the moduli of convexity and smoothness. (For example, the modulus of
convexity need not be convex [21], may well be constant in a neighbourhood
of the origin [easy examples], and its value at a single point does not always
characterize inner product spaces [1].) This motivates our belief that these
ideas are worth pursuing in their own right.

It is high time to recall the modulus defined in [24]. Given a normed
space X, one observes that for any =,y € X with |jy|| <1 < ||z]j, there is a
unique z = z({=z,y) in the line segment [z, y] with ||z|| = 1. We put

_ Nz = 2=, )|
w(m:y) - ”mH -1

and define £ = £x : [0,1) — [1,00] by
£(8) = sup{w(z,y) : [yl £ B <1 <=/}

If £(3) = 1, for some non-zero value of 3, it is easy to show that X must
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be the real line. Henceforth we assume that X has dimension at least two.
Throughout we consider only real scalars; results for complex normed spaces
can be obtained by applying the forgetful functor. In [24] we called £ the
modulus of squareness, because its extreme values characterize uniform non-
squareness. It is easily shown [24, pp. 557-558] that for an inner product

space, £(8) = £2(B) = 1/+/1 — (2, and that for any normed space containing

£(2), €(8) = &(8) = (1 + B)/(1 — ). It is not hard to show that { < &

in any normed space; thus £ always takes finite values. One proof of this

inequality appears in [24, Proposition 2]; three more proofs crop up here.
We state our main results now, in the following omnibus theorem.

THEOREM Q. Let X be any normed space, & its modulus of squareness.
Then

(a) £(8) = sup{€u(8) : M C X, dimM =2},

(b) £ 4s strictly increasing and convex,

(c} £ < & everywhere on (0,1), unless X contains arbitrarily close copies
ofh(D,

(d) & < &) almost everywhere on (0,1), ‘

() ¢ > & everywhere on (0,1), unless X is an inner product space,

(f) X is uniformly convez if and only if limg..1(1 — B)(8) =0,

(g) X is uniformly smooth if and only if £€'(0) =0,

(h) the modulus of squareness of X*, at 8, is 1/¢7(1/4),

(i) #€(8) < 1/(1 - ) for some 3, then X has uniformly normal struc-
ture. :

Statement (a) is fairly obvious. Statemnents (b) and (e) were announced
in [24]. Statements (b) and (d) will be proved in §1, while (¢}, (f), {(g), (h)
and (i) will be proved in §2. The proof of (e) is rather long; it occupies all
of §3. ' '

We note in particular that the behaviour of £ near one is related to
convexity, and that the behaviour of £ near zero is related to smoothness.

1. Essential properties of £. We will need some familiar concepts from
the geometry of normed spaces. For any u,v € X, the one-sided directional
derivatives of the norm (at u in the direction v) are defined by

Ny = i BNy ol o]

By convexity, the quotient in these expressions is a monotonic function of
A, which guarantees that both limits exist, and that N_{u,v) < Ni(u,v).
Furthermore, for fixed u, Ny (u, v) and N_(u,v) are sublinear functions of v.
The collection of support functionals for u is defined as

D) ={feX*:|fll =1, fu)=|u}.
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Easy calculations show that D(u)(v) = {f(v) : f € D(u)} coincides with
the interval [N_(u,v), N1 (u,v)].

We say that v is orthogonal to v (in the sense of Birkhoff) provided
lul| € ]Ju+ Av|| for all real scalars A. This concept was first defined in [6]
and studied later in [16]. We will say that u is B-orthogonal to v, in order
to distinguish this relation from other orthogonality relations which will be
defined later, but we write simply v .| v. We denote by § the unit sphere of
our normed space. The next lemma is elementary but useful.

Lemma 1.1 [16]. For any o € R, the relationship v L v—au is equivalent
to the inequality N_(u,v) < a|lul| £ N1 (u,v).

The following alternative definition of the modulus of squareness will be
used many times in the sequel.

LemMMA 1.2. For any B € [0,1), we have

= _lz—Buwl _ = —Bufl
] 5(6) - ws;lgs 1- ﬁN_(Z,'LU) W,ZES,?\}%_p(z,w)ED 1— 6N._(Z,’w)
an ()= sp —22B0l o =l

w\,2ES 1- 6N+(Z, w) w,z€8, feD(z) 1— ﬁf(w) .
Proof. Given any v, z with ||y|| € 8 and ||z|| = 1, put z) = 24+ Az —y).
A moment’s reflection shows that
Ty —Z
;6) — sup ” A EI .
luli<e, lzl=1, x>0 izall ~ 1
However,

O DR RN = N " I
awolzall =1 Mo llz+ Az -l -zl Ni(zz-y) 1-N-(zy)
This establishes the first equality.

To establish the second, suppose that N_(z,w) < 0, and put y = Bw.
Then there is a unique A > 0 with ||z — Ayl| = ||z|| =1 and so, by convexity,
lz = (X + Ll > llz — 9| and N_(z — A\y,y) > 0> N_(z,¥). Thus

li(z — Ay) — 9l Iz~ wll
1= N_(z=Ay,y) ~ 1-N_(zy)

To deduce the second pair of equalities from the first, it suffices to show
that, given any norm one vectors z,w, we can find = € § arbitrarily close
to z with N_(z,w) 2 Ny(z,w). Put z = |z -+ w||"H{z + sw), where § is
positive, but may be chosen arbitrarily small. For any f € D(z) and any
g € D(z) we have

14+86f(w) > flz+6w) = ||z + bw|| > g(z + bw) = 1 + bg(w).
Thus f(w) > g(w), as required. =




24 C. Benitez et al.

Lemma 1.2 clearly implies that £ < & for any normed space. It also
implies that the modulus of squareness of any finite-dimensional polyhedral
space can be calculated exactly. See Example C at the end of §2.

LEMMA 1.3. For a,b,c,d >0 and 0 < t <1, the inequality

ta+(1—-te  a >
L G g S ¢ QR

oy N G
is equivalent to (be — ad)(b — d)(1 — £) > 0. In particular, i is true if b > d
ond a/b < ¢/d.

TuEoREM 1.4. The modulus of sguarenesss £ of any normed space is
strictly increasing and convex, hence absolutely continuous and differentioble
except perhaps at countably many points.

Proof. Obviously, 0 < 3 < v < 1= £(8) < £(7). Since £ is not constant
in any neighborhood of 0, convexity will imply that £ is strictly increasing.

To prove convexity, write zg = ||z ~ Bw{| ™" (2 — fw). First we show (for
fixed unit vectors z and w) that the function 8 — N.(z,zs) is decreasing.
Given 0 < By < 32, there are A € (0,1) and v > 1 such that 25, = y((1- )20
+ Azg, ). For any functional f € D(z), we have

f(zﬁ1) = '7((1 - )\) -+ )‘f(zﬁz)) Zy(l-A+ )‘)f(zﬁz) 2 f(zﬁz)‘

The inequality Ny (z,28,) = Ni(z,2g,) follows by taking the supremum
over all such f.

Nowfix 0 < By < 2 <1,0<t < 1ande>0. It clearly suffices to show
that (181 + (1 —t)B2) — & < t€(B1) + (1 — £)£(F2). Choose w and z of norm
one so that N_(z,w) > 0 and

llz — (t61 + (1 — £)Ba)w|

§(thy + (1 —t)fz) —e < 7 81 + (L — ) Ba)N-(z,w)’

It is fairly clear that

le=Gwol 1 1 |z B
1-BN_(z,w) Ni(z,25) " Ni(z,23,) 1-—BN.(zw)

and that 1 — BoN_(2,w) <1 — B N_(z,w). Applying Lemima 1.3, we then
have

(it +(1-1)8) —e < i

the — Buwll + (1 — t)|lz - Bauw|
1= N (z,w)) + (1 — #)(1 = FaN-(2,w))
tle =Bl | (1—)lz - B
“1—-H/N_(z,2w) 1-BaN_(z,w)

< téE(Br) + (1 — £)E(52). m
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We recall that the modulus of smoothness of a normed space is easily seen
to be convex, hence absolutely continuous. A surprisingly simple example
(121} or [12, Example 5.8]) shows that the modulus of convexity need not be
a convex function. Nevertheless it is continuous [13]; see also {28, Proposition
3.4] for a generalization of this. Absolute continnity of £ also follows from
the following precise estimate.

THEOREM L.5. The modulus of squareness & of any normed space satisfies

the inequality £{v) — &(B) < &) — £L(B) whenever 0 < 8 <y < 1. Thus
£ < & and, at all points of differentiability, £ < &].

Proof. It clearly suffices to show, for fixed z and y with ||z|| > 1 = ||y,
that the function 5 — w{z, ny) satisfies the same estimate. So let us consider
z=oayy+(l—a)z and 2/ = o'By + (1 — &)z, where ||z|| = ||| = 1 and
a,a’ € (0,1). Then

w(z - w(m = a”m — il ~ilz— 8yl | (e—a)|z— Byl
(W) w(z,vy) —wiz,By) el =1 PR ST

The first item on the right of (#) does not exceed

aly=f) =8
fall =1 " 1—9"
since 1 = ||z|| < (1 — a)flef| + @y € ||z — @ + ay. The second item is a

bit trickier to estimate. Let f € X* be a support functional for z. Then
f(vy) < 1 and therefore f(z) > 1. Since (1 — &) f(z} + af(vy) = 1 and
(1 -} f(2) + o' f(By) < 1, we have

flz) -1

flz)~1
o= =gl and o ¥ ————.
fz) = flw) fl=) — f(By)
This implies that the second term in (&) is negative if f(y) < 0; otherwise
it is dominated by

|z|| + 2 3 (v = B)f(y)
=1V - D EE ) (e 7 @)
F&)+ 800y y—48
= Fa =10 @ D T A GE - )
_ G@+Ba-8) _ 1+80-F)
e B -7~ A-H0 -7

Adding these two estimates completes the proof. m

We remark that in every example we have calculated, ¢ is actually an-
alytic and logarithmically convex. It would be interesting to characterize
those functions £ which can be the modulus of squareness of some (uni-
formly non-square) normed space.
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2. Connections with the geometry of X. For any normed space X,
Theorem 1.5 ensures the existence of a unique 8y for which £(8) = £1(8)
for 8 < o and £(B3) < &(B) for 8 > By. The next two results show that fy
is always equal to zero or one, and provides some justification for the name
“modulus of squareness”: if £(3) = £1(8), even for one non-zero value of f,
then the same equality holds for all values of 3, and X contains subspaces
arbitrarily close to £1{2). Recall that the Banach-Mozur distance between
two normed spaces is the inflmum, over all isomorphisms T between them,
of Tl |72

THEOREM 2.1. Fiz §,8 € (0,1). If£(3) > (1-8B8)£1(f), then X contains
o two-dimensional subspace whose Banach—Mezur distance from £1(2) is less
than 1/(1 — (1 + 8)8).
Proof. Obviously, there exist unit vectors z,w for which
z = fu]| 1+8
L ke | — 88
1- ﬁN'l— (zﬂ 'tU) ( ) /6
Since ||z — fw|| € 1 + B and 1/(1 — BN {z,w)) £ 1/(1 — 3) we see at once
that
1 S 1= 60
1—ANyg(z,w) ™ 1-8"7
w) > 1= §. This further implies

|z = Bw|| = (1-468)(1-+5) and

The latter inequality implies that N (2,
that for all A, > 0, we have

Iz = (/A - 1 >1—6 whence 1-6< Az + ]
7o) A+
The former inequality says that z = (z — fw)/{(1 — 68)(1 + B)) has norm
at least one. Since z is a convex combination of z and —w/(1 — 6 — §6), it
follows that all points between 2 and —w/(1 — 6 — 63) have norm at least
one. Similarly all points between z and z/(1 —~ 63 ~ §3%) have norm at least
one. A glance at a simple diagram implies that for all A, 4 > 0, we have
|rz —
At p
The estimate for the Banach-Mazur distance is now obvious. m

<1

1-6-68< H<1

Recall that a normed space is said to be uniformiy non-square if all of
its two-dimensional subspaces have at least a certain distance from £;(2).
Otherwise, i.e. if a normed space does contain arbitrarily close copies of
£1(2), we will call it neerly square. Theorem 2.1 implies that if a normed
space is uniformly non-square, then £(5) < & (f) for each 8 € (0, 1). We now
show that the converse is true, i.e. if a normed space is close to £1(2) (with
respect to the Banach-Mazur distance), then its modulus of squareness is
close to 1. This is equivalent to saying that, for each 3, the real-valued map
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defined on the Banach-Mazur compactum by X — £x(8) is continuous at
£1(2). In fact, it is continuous everywhere.

To prove this, we need the following very special case of the Bishop-
Phelps Theorem. At the referee’s suggestion, we include a simple preof.
There is no novelty in our argument; it is only a specialization of Hiriart-
Urruty’s proof of Bkeland’s variational principle [15], followed by routine
applications of the separation thecrem.

LEMMA 2.2. Let X be a finite-dimensional normed space, z € X, f € X™*,
e> 0 with ||z]| €1, f(2) > ||fl|—&. Then for any XA > 0, we can find z' € X,
flex* with |2 <1, /() = ||F], iz - 7| < e/rand |f - F <A

Proof. Assume that ||f|| > X; otherwise we could take f' = 0 and
z' = z. By compactness, the function f(z) — Allz — z|| has a maximum on
the unit ball of X, say at some point 2'. Then, whenever ||z| < 1, we have

flz) £ f(2") - /\Hz' —z||+ Az = 2l < f(2) + Mz - 2.

Putting = = z gives us f(#') —Allz' —z|| > f(z) 2 ||f]l —e > f(2'}) — e and
so |2/ — 2| Le/A Wr1t1ng z —y—l—z tells us that

f(w) < Allyll whenever |ly+2'|| <1

The two open convex sets {y : [lz' +y|| < 1} and {y : Mly|, < f{y)} are thus
disjoint, and can be separated by a linear functional g € X*. Since the latter
set is closed under multiplication by positive scalars, we may as well suppose
that g(y) > 0 whenever Al|y|| < f(y) and g(y) < 0 whenever ||z’ +y[| < 1.
The last condition means that g(z) < g(='} for all ¢ with [|z]l < 1, and so
any positive scalar multiple of g attains its norm at z'.

The minimum value of any y € X = X** on the ball B(f, )} is clearly
f(x)=X||y|l. Thus, by the choice of g, there is no y € ¥ which is both strictly
positive on B(f, \) and negative on R* g. Again by the separation theorem,
B(f,A) NR*g is non-empty; any element f' therein will have the required
properties. m

It may seem curious to have applied the separation theorem twice in
this proof. However, this ensures that the proof in the 2-dimensional case
requires only the separation theorem in two dimensions, which is much easier
than the separation theorem in three dimensions. In particular, the following
result does not require anything like the full strength of the Bishop~Phelps
Theorem.

THEOREM 2.3. Let X and Y be two isomorphic normed spaces whose
Banach-Mazur distance is less than 1 -+ 262, where § < 1. Then, for all 3,

2(6 +68%)
|EX(6) 5Y(ﬁ)i< ( ﬁ)z
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Proof. Since the modulus of squareness of any normed space is the
supremuim of the moduli of squareness of its two-dimensional subspaces, we
make the harmless assumption that X and Y are finite-dimensional. Qur
hypothesis implies that we may regard X and ¥ as the same vector space
equipped with two equivalent norms, |- || and |||+ ||| respectively, whose ratio
is between 1+ 62 and 1/(1 + 6%). By Lemma 1.2, we can choose || - ||-unit
vectors z,w and f € D(z) so that ||z~ fw|| /(1 —8f(w)}) is epsilonically close
0 £x (f). Clearly, [l2/(1+8%)[| < 1 and £(2/(1+62) > 18 2 || £ill —26%.
Lemma 2.2 guarantees the existence of 2/ € X and f' € X* with |||2/|l| =1,
1711 = 42, l2' — 2/ (1 +82) | < 26 and If — 1] < 6. Putw’ = w/jju]].
Then

Iz = Buwl| = lll2’ = Bl < (1 +%)lz — fwll| - ll2" — B/l
< iz = Bw = (2 = B )l + 8 (1 + B)(1 + 6)
< [llz = &lil+ Blllw — wl+ 8*(1 + BNL +6%)

, z 1
o rzall (a1
+ BYlllwlll — 1| + 6*(1 + B)(1 + &%)
<25+ 641+ B2 +6%)

and
|f (w) — £/ (w")] <1 (w) =~ fla/flwllD]+ [(f = F){w")
<1 =1/l - 1£G) +II1F = £l - 'l < 62 + 6.
Thus
llz—Buw| _ l|z" - Bw]|
1-Bf(w) 1-Bf(w)
< Jz=Bul _ Jz—puwl - (26+6(1 + B)(2+ )
= 1~ Bf(w) 1—Bf(w)+B8(8%+6)
< B +6)llz — ful| + (26 + 82(1 + B)(2 + ) (1 — 5 (w))
- (1 - Bf(w))?
< BE+8G(0) + (26 + 8 (L+ B2+ 6%)
- 1= Bf(w)
< BABE+6)+ 26+ 62(1+ B)(2+6%))(1 - B)
. (1-0)?
(8NP (= 6B+ (264 6 + 6%)
- (1-8)
max{28 4 262,26 + &2 + 6} 2(6 - 6%)
- (1-p)* -
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It follows that
ll2 =Bl  llz— Bl 2(5+8%)
> > _
B 25w 2 16wy 0By
and hence that &y (8) > £x(8) —2(6 + 6%) /(1 — B)?. A symmetric argument
yields £x(8) = &x(8) ~ 2(6 +6%) /(1 - B)°. u
It follows immediately that £ = & in the non-reflexive case, since uni-
formly non-square Banach spaces (and the completions of uniformly non-
square normed spaces) are reflexive [17]. Similarly, if the girth [26] of a
normed space equals 4, then £ = &5, but of course the converse need not be
true.

We recall [12, Definition 7.3] that the modulus of smoothness of a normed
space is the function p : [0,1] — R defined by

20(8) = sup{||lz + Byl + [z — Byl| - 2 : |lz]| = ||yl = 1}.
A normed space is said to be uniformly smooth [12, Definition 7.2} if and
only if o(8)/8 — 0as 8 — 0.

THEOREM 2.4. Let p be the modulus of smoothness of @ normed space X.
Then

(i) for all B € (0,1),

£B)-1 2
= 0B SI-F

(ii) X is uniformly smooth if and only if £'(0) =0,

(i) X is nearly square if and only if £(0) = 2,

(iv) £'(0) = 2¢'(0).

Proof. (i) Fix § € (0,1). Given two norm one vectors z and w, by
definition we have

|z + Bl + [z — fw|| £ 2+20(8), BN_(z,w) < |lz+ Bw| - |I2].
Adding these two inequalities yields ||z — fw| < 1 — BN_(z,w) + 20(3).
Since N_(z,w) < 1, Lemma 1.2 tells us that £(8) <14 20(8)/(1 - B).

For the other inequality, choose norm one vectors = and y such that
o — Byl < (1 — BN_(2,1))(8) end &+ Byll < (1+ BN—(z,y))E(8)-
Adding these inequalities gives ||z — By|| + ||z + Byl| £ 2£(8) — 2, which
obviously implies o(3) < ¢(8) — 1.

(i) is clear.

(iii) If X is nearly square then & = & and so £'(0) = 2. Conversely,
suppose that X is uniformly non-square. Then there is a § > 0 for which
all two-dimensional subspaces of X have Banach-Mazur distance from £;(2)
at least 1/(1 — 26). By Theorem 2.1, £(8) < (1 — 883)£1(B) for all 3 and so
§(8) < 1+ (2— 8) — O(?), whence £1(0) < 2 — &.
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(iv) It is clear that £'(0) < 20'(0) and that £1{0) = 0 if ¢'(0) = 0. So
assume ¢'(0) > 0 and choose an arbitrary A < ¢'(0). We will show that
£'(0) > 2X. Note that A < 1.

For convenience we first consider the finite-dimensional case. Given an
arbitrary sequence 8, — 0, we have o(8,) > AB, and so there are unit
vectors Tn and yn with [|Zn + Batnll + @ — Butnll > 2 + 208, If fn and
gn are support functionals for @, + Bnyn and zn — B s, Tespectively then
(fn + Qn)(xn) + an(fn - gn)(yn) > 24 2A3,. Since (fn + gn)(mn) < 2, this
implies (fr — gn)(¥n) > 22 and s0 ||fn — gnli > 2). Passing to subsequences
if necessary, we may assume that everything converges. Write z = lima,,
f=1imf, and g = limg,. Then ||z|| = 1, f,g € D(2) and [|f —g|| = 2.
Choose w with ||lw]| = L and (f — g)(w)} > 2X. Then for all 3,

|z — Buw| = f(z — Bw) + (¢ = £)(z — Bw) 2 1 — Bf(w) + 2A8.
Lemma. 1.2 then forces £(8) > 1+ 273 and so £(0) > 2\

Perhaps the easiest way to settle the infinite-dimensional case is to permit
ourselves the use of ultrapowers [12, Chapter 14]. Choose a free ultrafilter
4 over the integers and SeqUENCES Ty, Yn,, fn a01d gn as before. In the ultra-
powers Xy and (X*)y € (Xy)* define z = (zp)u, w = (Un)u [ = (Fnlu
and g = (gn)- Then ||| = 1, f, g € D(z) and (f —g)(w) = 2. The preced-
ing calculations then show that £%, (0) > 2\. Since every finite-dimensional

subspace of Xp; is almost isometric to a finite-dimensional subspace of X
(cf. [12, Theorem 14.2}), we have £x(8) = £x,,(3) forall 5. u

Easy calculations with the examples £1(2) and £5(2) show that the con-
stants 1 and 2 in part (i) cannot be improved. This does not contradict (iv);
it merely exemplifies the fact that differentiation can be a discontinuous
operation. _ :

Now we relate uniform convexity of X with the behaviour of £. Recall
[12, Definitions 5.1 and 5.2] that X is uniformly conves if and only if its
modulus of convezity

§(¢) = inf{1— ||3(z + ) : {lll = Iyl = 1, Iz —y] = e}
is strictly positive, for each & > 0. For ||z|| = 1 and 0 < 8 < 1, Kadets [19]
defined the set G(z;8) = {¥ : [y, 2] € B(0,1) \ intB(0, )}, and noted that
X is locally uniformly convex iff diam G(z,3) — 0 as 3 — 1 for every z.
Naturally, X is uniformly convex iff diam G(z,8) — 0 as 8 — 1, uniformly
with respect to ||z|| = 1. ‘

One defines D{z,8) = co({z} U B(0,8)) as the drop of B(0,5) with
respect to the point 2, and R(z,8) = D(z,8)\ B(0,3) as the residue. (A
well-known theorem of Abel, mentioned also in [24] because it uses the
inequality £ < ¢, in the euclidean plane, can then be restated: if a complex
power series has radius of convergence 1, and it converges at one point zp on
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the unit circle, then it converges uniformly on the drop D(zg,3), for each
8 < 1.) Rolewicz [25, Proposition 1] showed that X is uniformly convex iff
diam R(z,3) — 0 as § — 1, uniformly with respect to |z|| = 1. We now
offer a simpler proof of this, incorporating the behaviour of the modulus
of squareness. We note in passing that X is locally uniformly convex iff
diam R(z,8) — 0 as § — 1, for all z with ||2|| = 1.

Recall that the radius of a set A relative to a point z is defined by
rad(z, A) = sup,c4 ||z — a||. One then defines the radius (more precisely,
the self-radius) of A by rad A = infrcarad(z, A). It is easily seen that
rad A < diam 4 < 2rad A.

The number £9(X) = sup{e : §(¢) = 0} is called the characieristic of
convezity of a normed space X (see [12, Definition 5.3]). Obviously, X is
uniformly convex if and only if £0(X} = 0. If is well known [12, Lemma, 5.1
that § is continuous and strictly increasing on [gq, 2), and so the right limit
6~1(04) exists and equals &g.

THEOREM 2.5. For any normed space X, the following are equivalent.

(i) X is uniformly conver, :

(ii) diamG(z,8) — 0 as 8 — 1, uniformly with respeet to ||z|| =1,

(iii) diam R(z,3) — 0 as § — 1, uniformly with respect to [{z|| =1,

(iv) limsupg_; (1 — B8)¢(8) = 0,

(v} liminfg...1(1 — B)&(8) = 0.

Furthermore, limg_,1{1 ~ 8)&(8) = eo(X). Thus X is nearly square if
and only if limg_1 (1 — B)¢(8) = 2.

Proof. We will prove, in the order given, the foilowing four inequalities:
go~1+8<(1-B8)(06) < ls?p diam R(z, 5)
|2[]=1

< sup diamG(z,8) <611 -4).
fl2lj=1

All other statements then follow by letting 5 go to 1.

(1) This is trivial if g = 0, s0 suppose that X is not uniformly convex.
This means that we can find pairs of norm one vectors, a distance at least &g
apart, whose midpoints have norms arbitrarily close to one. A short calcu-
lation then shows that the norm is “almost additive” on the cone generated
by these two vectors. More precisely, we carn, given any v > 0, find zq and yop
of norm one for which [|zo — || > &0 and (1-+%)]| Azo +uyol| = A+ p for all
A i > 0. Now put & = (L+7)zg and y = Fyo, so that [|z—y| = eo—v—(1-5).
Then z({z,y) = (1 — o)z + ay must satisfy

l+y-o(+y=8) . o Y27
1472 T l+y-8

1=z >
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But then

|z —z| _alz-yl  @—-No—v~-Q1-5)
]| = 1 v 1+ 'Y B
Letting 7 go to 0, we see that £(8) > (g0 — 1+ 8)/(1 — 8).

(2) Consider z = az 4+ (1 — a)y as in the definition of £. Replacing y if
necessary by a point on the segment {y, z] with norm 3, we may suppose
that y € R(z,8). Then 1 = ||z]| < a|jz} + (1 — )8, from which it follows
that (1~ a)(1 — ) < a(/|z|| - 1) and

(1-a)(1-Bwlz,y) Sallz — 2 =(1-a)ly—|
< (1 - a)rad(z, R(z, 3)).

Thus (1 — A)&(8) < sup, diam R(z, 3) in any normed space. This clearly
yields the conclusion. We also note that rad(z, R(z,8)) < 1+ 3; this gives
another proof of the nequality £ < &1.

(3) Tt suffices to show that R(z,83) € G(z,8). Given any = € R(z,5),
the function f(a) = (1 — @)z + az|| is convex, and satisfies f(ao) < B for
some ag < 0. Since 4 < f(0), it follows that f is increasing for @ > 0, and
so [z, z] does not meet B(0, 7).

{4) This is routine; let §(-) denote the modulus of convexity of X For any
e > 67 (1 — B), any unit vector z and any = € G(z, 8), we have $(z + 2) €
[z,2] 50 || 5(z+2)|| > B > 1—6(¢) and || —=z|| < &. Thus rad(z, G(z B8)) <e,
independently of z. =

We now see that X is uniformly convex whenever £ is an integrable
function. We suspect that the converse is also true. Let us make a few
remarks about this problem.

LEMMA 2.6. Lety, z, = be (in that order) three colinear points in a normed
space with |\y|| < |jz]| < {l=f. Then

]
llyl

e — 2] < dt.
xsw ( f )

Proof.Fork=0,1,...,nputz, = z—}—%(m—z) and apply [24, Lemma 1]
to the triple ¥, 2k-.1, zx. This leads to the estimate

el 53— snes] < 36 (RAL ) el = B

Taking the limit as n — oo gives the desired inequality. w

Now let us define a(8) = (1 — B8)~!sup, rad(z, G(x, 8)). Fix z,y with
|zl =1 and |ly|| = 8. Taking the limit ag z approaches y in the conclusion
z| < SHZ“ €(lly|l/%) dt, which might of course be

of Lemma 2.6, we get ||y —
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infinite. After the change of variable £ — [3/t, we see that

This provides another proof that integrability of £ implies uniform convexity
of X, and leaves the converse as a tantalizing problem.
Since £ is monotone, Lemma 2.6 is obviously an improvement of the

estimate H H
-2 Il
EREE 5(nzn)

given by [24, Lemma. 1. Replacing € by £; yields the inequality

ll=!] = liyll
lz — 2l < ||zl = |zl + 2lly||log T—r
1< [l = =l + 20wl T=Tsl
For an inner product space, we have
o= 2 < (Jizl® = |2 = (121 = [l

However, these seem too unwieldy to apply, in order to improve any of the
estimates in [24]. Using the linear estimate log(l 4-¢) <t brings us back to
where we started.

Examples A and B below show that the modulus of squareness of a
normed space and that of its dual need not be equal. Nevertheless, there is
a very precise relationship between them.

THEOREM 2.7. For any normed space X and any 3 € (0,1) we have

Ex-(8) = 1/€x(1/B)-

Proof. In the non-reflexive case, £x = {x+« = £1 since X and X* are
nearly square, and the equality is easily verified. So we assume that X is
reflexive. (An alternative to this argument is to deduce from the pr1nc1p1e
of local reflexivity that {x-» = £x.)

Write £* instead of £x+. It suffices to show that £*(1/£(8}) = 1/8. We
begin by showing that £*(1/£(8)) = 1/5. Fix 7 < 1. Choose unit vectors z, w

with 66(8) = ||z — Bw||/N_(2,z — Bw) for some § € (7,1). Choose f € D(z)
so that f(z — fw) = N.(z,z— Bw), and choose an arbitrary g € D{z — fw).
Then §4(8) = f(z — fw)/g(z — Bw), which implies that

SE(8)f(w) — glw) _ 1
D) 9@ B

But z € D(f) so N_(f, f - Wg) (f - Tlﬁ)-g) (2). Tt follows that

. |7 = syl F(0) — melgpalw) _ 1
UM 2 577 a0y 2 7

- w@els) B
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Letting 7 - 1, we conclude that £*(1/£(8)) > 1/5
By duality, we obtain

1
— ) 2
(wweay) 20
which implies that £*(1/£(3)) < 1/3. This establishes the equality. m

We remark that given any convex, strictly increasing (or even logarith-
mically convex) function £ : [0,1) — [1, oo}, the formula appearing in The-
orem 2.7 defines another function with the same properties. We sketch the
proof of this in the log-convex case.

Recall that the epigraph of a function fis {(z, v} : vy > f(z)}. Given any
log-convex function £ : [0,1) — [1,00), let A denote the set of all strictly
increasing affine functions A : [0,1) — R with A < log & everywhere. By the
separation theorem, the epigraph of log ¢ is the intersection of the epigraphs
of all functions A € A. A short calculation then shows that a point (z,y)
belongs to the epigraph of log&* if and only if it lies in the epigraph of
(~log)e A~ o (—log) for all A € A. Since —log is a convex function, log £”
also has convex epigraph.

It follows easily from Theorem 2.7 that &4.(0) = limg_1(1 — B)éx (B).
This gives new proofs, albeit too complicated, of the duality between uniform
smoothness and uniferm convexity, and of the fact that being uniformly
non-square is a self-dual property.

If Y is a subspace of X, it is obvious that £y (8) < £x(5). The previous
result allows us to draw the same conclusion when Y is a quotient of X. A
direct proof of this does not seem to be possible.

COROLLARY 2.8, If Y is a quotient of X, then £y (B) < £x(3) for all
B(0,1).

Proof. For any continuous strict]y increasing bijection f : [0,1) —
[1,00), let us write f*(8) = 1/f"1{1/8). Y = X/M for some subspace M
in X, then

£y = €y = Eppe < Exv =€,
which means of course that £y < €x. m

Now we present the fruits of some two-dimensional calculations. We use
Lemma 1.2 to obtain the precise value of £ for several spaces. Rather than
including all the tedious details, we simply indicate at which points z,w
the quotient ||z — Aw|/(1 — 8N4+ (2, w)) from Lemma 1.2 is equal to £(5).
(In each of these examples, the corresponding quotient with N_(z,w) in
place of Ny (z,w) does not have a maximum value.) These examples can be
used to settle a number of naive conjectures. For instance, Example C shows
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that, even in two dimensions, the function ¢ does not determine the space
X uniquely.

ExaMpPLE A. Let V' be the two-dimensional space with the ¢ norm in
the second and fourth quadrants and the ¢; norm in the first and third

quadrants. Then
_ VTP
{B) = 5

A maximum is attained when z = (—1,0) and w = (0,1).

ExaMPLE B. Let W be the two-dimensional space with the ¢, norm
in the second and fourth quadrants and the £5 norm in the first and third

quadrants. Then
£(8) = &v-(B) = F+8_1+bv2-F
TR
A maximum is attained when w = 3(\/2 — 82 — 3,/2— 32+ f8) and z =
(-1,1).

ExampLE C. For —1 < a < 1, let X, be the two-dimensional space with
hexagonal unit ball with vertices at (—1,1)}, (e, 1), (1, @) and the opposite
three points. Then

1+ el

6(6) = 2.

For ¢ > 0, a maximum is attained When z = (-1,1) and w = (&, 1). For
o <0, a maximum is attained when z = (&,1) and w = (-1,1).

For a two-dimensional space, we have seen that £(3) = £1(3) for one
value of @ implies that the same equality holds for all values of §. We will
see in the next section that the same holds for £3. However, it is not true in
general that £ is completely determined by its value at a single point 3; one
can easily find a 8 > 0 for which & (8) = {x_(F) whenever |a| < V2-1.
More generally, let X be a uniformly smooth space which is not uniformly
convex, and choose Y uniformly convex but not uniformly smooth. From the
inequalities €l (0) < £(0) and limg_s (1 — Ay (8) < limp—a(L — B)éx (8)
one can easily see that there is a 8 for which £x(8) = &v(5).

Alternatively, denote by £, the modulus of squareness of £,(2). (We con-
fess that we have not been able to calculate this in general, not even for
p = 4.) Using Theorem 2.3, we see that there are values p < 2 and ¢ > 2
for which £,(1/2) = £,(1/2) = 3/2. It is well known that £,(2) and £4(2) are
not isometric; we refer to [7] for several proofs of this.

‘We finish this section with an application to fixed point theory. Recall
that X is said to have wuniformly normal structure [12, Definition 4.3] if
sup{rad A/diam A : A € H(X), A infinite} < 1. This property is famous
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for its applications to fixed point problems {12]. In fact, it is a well-known
easy exercise [12, Theorem 6.1] to show that £y < 1 implies uniformly nor-
mal structure. Thus every uniformly convex space has uniformly normal
structure. (A long-standing conjecture is that the converse is true, after
renorming.) Slightly more difficult is the following result due independently
to Sims [27], Khamsi [20] and Prus [23], drawing on earlier work by Baillon
and Turett [12, Theorem 14.3]: if ¢'(0} < 1/2, then X has uniformly nor-
mal structure. It follows that X has uniformly normal structure whenever
£'(0) < 1. The following result includes all of these cases.

PROPOSITION 2.9. If £x(8) < 1/(1 — B), even for one value of 3, then
X has uniformly normal structure.

Proof. A normed space is said to have weak normal structure if the
radins of every weakly compact subset is strictly less than its diameter.
If X does not have weak normal structure, then by [11, Lemma 2.3] we
can find two-dimensional subspaces M, of X, and symmetric hexagons in
their unit balls, such that for each of them the vertices have norm 1, the
length of each side is within 1/n of 1, and four of the sides are within
distance 1/n of the unit sphere. Passing to a subsequence in the Banach-
Mazur compactum, we find a two-dimensional space M which is lim,, M,
with respect to the Banach-Mazur distance. It is clear that the unit ball
of M contains a regular hexagon four of whose sides lie completely in the
unit sphere. Thus we may identify M with R?, with the £, norm in the
first and third quadrants. Choosing z = (1,1) and w == (0,1) shows that
Ex(B) > 1/(L — B) for all non-zero 3. We do not claim that M is isometric
to a subspace of X. However, an application of Theorem 2.3 tells us that
£x(B) = sup, &, (B) = Em(8) 2 1/(1 - ).

If £tx(B8) < 1/(1 — 3), the remark after Theorem 2.3 tells us that X is
reflexive, and thus (by the preceding paragraph) has normal structure. As
remarked at the end of the proof of Theorem 2.4, £x,,(3) = £x(f) for every
ultrapower X3, of X. Thus every ultrapower of X has normal structure,
whence X has uniformly normal structure. m

3. A characterization of inner product spaces. Dvoretzky’s The-
orem [22] together with Theorem 2.3 shows that {x > & for any infinite-
dimengional normed space X. Here we give a two-dimensional proof of this,
necessarily independent of Dvoretzky’s Theorem. In fact, we show that the
equality £(8) = £2(8), even for one non-zero value of 3, characterizes inner
product spaces.

From now on, we fix 8 € (0,1) and assume that X has dimension two.
If z and y are linearly independent vectors, we will write z < ¥ to indicate
that = precedes y in some pre-ordained orientation of the plane. We make a
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fuss of the next definition because it will be used so much later.
DEFINITION 3.1. We say that (y, 2) is a S-pair if
Iyl =8, llzl=1, 2=y and zly-p
Here L denotes of course Birkhoff orthogonality.

Imagine two infinitesimal ants, ¥ and 2, crawling around the spheres
with radii # and 1, in unison, so that at each instant (y, z) is a B-pair. It is
possible that y could turn around and march backwards, with z remaining
fixed, but only when z is at a non-smooth point of the unit sphere. It is also
possible that z could have the option of marching forwards or backwards,
with y remaining fixed, but only when z is in the interior of some line
segment in the unit sphere. Since an interior point of such a segment is
obviously a smooth point of the unit sphere (in two dimensions), these two
possibilities cannot arise simultaneously. Now fix the initial positions #p
and zp of ¥y and 2z; we will write y = y\ and 2z = z, to indicate that y
makes an angle of A with yp and that z makes an angle of u with z;. This
argument shows that for each 6 € [0, 4n), there exists a unique A € [0, 27)
and a unique p € [0,27) so that (ya,2,) is a S-pair and A + x4 = #. Now
write ' = {(A, ) € [0,27) x [0,27%) : (¥a,2,) is a B-pair}. Since our ants
can move around their spheres without changing direction, and without any
jumps, we see that the function (A, ) — A+ g is a homeomorphism between
T and [0, 47).

Our immediate task is to calculate the area enclosed by the curve traced
out by ¥ — 8%z. We need the following simple result, which is implicit in [18]
but perhaps not completely obvious. The hypothesis || f(t)|| = 1 is stronger
than necessary but convenient for our purposes.

As usual, we write u A v for the signed area of the parallelogram de-
termined by two vectors u and v. That is, u A v = u3vs — ugw1, which is
invariant under rotations of the coordinate system.

LemMma 3.2. Let f,g : [a,b] — X be two rectifiable curves such that
£} = 1 and f(t) L g(t) for all t € [a,b]. Then

(i) there is a t € [a,b] for which g(t) and f(b) — fla) have the same
direction (i.e. lic in the same one-dimensional subspace),

(i) {9 A df = 0. |

Proof. (i) This is essentially a non-smooth version of Rolle’s Theorem.
Assume f(a) # f(b), as the conclusion is obvious otherwise. It is clear that
I'={t€la,b]: f(t) L f(b)— f(a)} is non-empty. If the norm of X is smooth
at f(t) for some t € I, then clearly g(t) is a scalar multiple of f(b) - f{a). In
the non-smooth case, continuity of g and the Intermediate Value Theorem
ensure the existence of some ¢ for which g(t) is a scalar multiple of f(b)— f{a).
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(ii) Part (i) implies that for any partition a = fp <1y < ... <ty =
of [a,b], we can find points s; € [ti—1, %] with g(si)bf\ (F(tic) — FE) = 0.
Taking the limit over finer partitions, we see that { g(¢) A df(t) = 0.

LEMMA 3.3. Both I's = {y — 8%z : (y, %) is a B-pair} and Ag = {z —y:
(y,z) is a G-pair} are simple closed rectifiable curves, and the areas they
enclose are A(I'g) = 82(1 — %) A(S) and A(Ag) = (1 — B*)A(S).

Proof ThemapT — X : (A, u) vy — B2, s injective and continuous
by the argument above. Since its components (with respect to any basis of
X) are piecewise monotonic, it is also of bounded variation. This establishes
that I'g is rectifiable; a similar argument takes care of Ag. Obviously both
curves are closed.

It is fairly clear from the definition of S-pair that I's is a simple curve.
Establishing simplicity of Ag means proving that if (y1,21) and (y2, 22) are
[B-pairs with y1 — 21 = y2 — 22, then y; = y2 and 2, = z3.

First consider the strictly convex case. We will show that if |jy1f] =
lwall = 8, |lz1ll = ||22]] = 1 and 3 — 21 = ya — 22, then either y1 < 2z or
Yo < z3. Assume without loss of generality that y; < yo. Strict convexity
implies that, given y; and ¥z, there are only two possibilities for z; and zo:
both are interior points either of the (minor) arc of S joining 571y to S ys
or of the arc joining —3~*y2 to ~B " y;. In the first case y1 < #1 and in the
second case 92 ~ zz. In neither case is (ys,2) a S-pair.

In the nouv-strictly convex case, we must also consider the possibility
that the intervals [y;,y2] and [z;,22] are contained in parallel segments of
their respective spheres. If 91 — 21 = ya = 22, then ||z1 — || = |ly1 — w2l
and so the length of 21, 23] is strictly less than the length of the segment
of § containing it. Without loss of generality we may assume that z is an
interior point of this segment, and so there is, a unique f € D(z1). Then
N(z1,31) = f(y1) = £06 and Lemma 1.1 tells us that (1, 21) is not a S-pair.

To calculate the areas, note firgt that the orthogonality requirement im-
plies that for any S-pair (y, 2), every point in the interval {$2z, y) has norm
at least 52. Thus as (A, ) moves around 7T, the segment {32z, yx] sweeps
out the annulus B(0, ) \ B(0, %), touching almost every point only once.
Hence A(Ip) = (8% — B4)A(S).

Unfortunately, no such argument is valid for Ag. Taking y = (6%,8)
and z = (1,~1) in £, (2) shows that the segment [y, z] may well contain
points with norm strictly less than 3. We therefore need more explicit cal-
culations to determine A(Ag). Except possibly for a sign change due to the
orientation, the area enclosed by Ag is §§ (2. — ya) A d(2u —ya)-

Out of sympathy for the printer, we omit the subscripts » and , in
the following calculation, which includes an integration by parts and an
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application of Lemma 3.2. Since z —y = (1 ~ 8%)z - (y — #%2), we have
24(As) = §(z —y) nd(z ~y)

=§((1 - B2z~ ly - B22)) A d((1 - Bz~ [y — 5%2))

= (1= 842 ndz +{(y - p%) Adly - 5%)
— (1 =8z nd(y ~ 5%2) — (1 - 5§ (y — %) A dz
2(1 - B%)2A(S) + 2A(T5) - 21 - 83§ (y - B%2) A d=
2(1— B*)2A(S) +28°(1 — BHA(S) ~ 0
2(1 ~ A1A(S),

i

Il

as claimed. w

A similar calculation also shows that A(Is) = (6% — %) A(S), but the
argument given was considerably easier.

PROPOSITION 3.4. Suppose that £(8) < &(B). Then
(i) for any B-pair (y,2), lly — 2| = /1~ 52 and No(z,y) = 5,

(ii) the norm on X is smooth and strictly conver,
(i) for fized 2 € § and y with ||y|| = B, the following are equivalent:

(&) yLz—y.

Proof. (i) For any B-pair (y, z), Lemma 1.2 together with our hypothesis
tells us that ||z — y||/(1 - Nx(z,9)) £ 1/4/1 — %, and Lemma 1.1 that
N_(z,y) < 8% < Ny(z,y). Thus, ||z —y|| < +/1 ~ 2. But we have just seen
that A(Ag) = (1—52)A(S). It follows that for every S-pair (y,z), |y —zlj =
/1= B2, This inaplies that 1 — Ny (z,9) > 1— 8%, whence Ny(z,y) = 5°.

{il) Suppose that the norm is not smooth at some z € 3, and choose y so
that (y, 2) is a F-pair. Then N_(z,y) < Ni(z,y) = 8. Let v be the unique
point of norm 3 on the ray {#%z + u(y — N_z) : & > 0}. Then (v,2) is a
B-pair. In fact, N_(z,v) = 8%+ N_(z, p(y — N-2)) = 5% and Ny(z,v) =
8%+ Np(z, uly — N_z)) > 2. The last inequality clearly contradicts (i). So
X is smooth, :

The inequality £x« (/1 — 82) < &2 (/1 - B2} now follows from Theorem
2.7 and our hypothesis. The preceding argument implies that X™ is smooth,
hence that X is strictly convex. '
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(iti) Since the norm is smooth, we may write N instead of N, and N_,
Since reversing the orientation of the plane does not affect our hypotheses,
Lemma 1.1 tells us that (a) is equivalent to (¢), and that (d) is equivalent

o (e). Now fix z € §, and consider the function N(z,z ~y)/||z — || as y
varies in 8S.

Lemma 1.2 and our hypothesis tell us that N (2, z~y)/|[z—y|| = /1 - 52
for all such y. The latter value is the minimum value of the function, being
attained whenever (y, 2) is a S-pair. Moreover, it is geometrically obvious
that, for any y which attains the minimum, the ray from the origin passing
through 2 — ¥ must be a tangent to Bz, J). This means of course that
y L z—y. Thus (a) implies (e) (equivalently, (c} implies (d)).

Part (i) tells us that (¢} (equivalently (a)) implies (b). Note that, since
the norm is regular, there are precisely two points y satisfying (b), two points
satisfying (c) and two points y satisfying (d). Thus (b), (¢) and (d) are all
equivalent. w

The following result is obviously weaker than Theorem 3.6; we menticn
it separately because its proof is so much simpler. We emphasize again that
our proof does not use Dvoretzky’s Theorem.

COROLLARY 3.5. Let X be any normed space. Then

(1) £x(8) = Ez( ) for all 3 €0, 1),
(ii) if €x(B) = &(B) for all B € [0,1), X must be an inner product space.

Proof. (i) This is immediate from Proposition 3.4(i) and Lemima 1.2.

(if) It follows from Proposition 3.4(ili) that, for any unit vectors & and
w, we have N (z, Sw) = #? if and only if N{Bw,z) = 3. This being true for
all 3, it follows that N (x,w) = N(w,z) for all unit vectors. Thus (a,b) =
la]| N (e, b) defines an inner product compatible with the norm. m

We intend to show that if X is a normed space whose modulus of square-
ness satisfies £{8) < 1/+/1— 32 for some &, then X is an inner product
space. The proof of this breaks naturally into two cases, depending on
whether or not 3 is the sine of a rational multiple of 7. To understand
why this is necessary, consider a 2-dimensional space endowed with a norm
whose unit ball is a regular 4n-gon. Straightforward calculations show that
the values of the modulus of smoothness, the modulus of convexity and sev-
eral other known moduli [2] coincide at certain points with the corresponding
moduli for an inner product space. For the modulus of squareness, there is
no such problem, but the proof of this case requires special treatment.

If | Az + yl|? = A%||fi? + ||y||%, we will say that & is AP-orthogonal to
y (cf. [1]). In an inner product space, this is obviously equivalent to B-
orthogonality. In general, like B-orthogonality, it need not be a symmetric
relation. (We remark that the proof of the main part of Theorem 3.6 is
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similar to that used in [1] to show, when X is not the tangent of a rational
multiple of m, that if AP-orthogonality implies AI-orthogonality (i.e. Az + ¥
and Az — y have the same norm), or conversely, then X is an inner product
space. This is false when X is the tangent of a rational multiple of =, a
counterexample being again any 2-dimensional space whose unit ball is a
regular 4n~gon.)

THEOREM 3.6. For any normed space X, the following are equivalent:
(i) X is an inner product space,

(i) £x(B) < £a(B) for some 8 € (0,1),
(ili) for some A, B-orthogonality implies AP -orthogonality.

Proof. (i)=>(ii) is straightforward; see [24, Proposition 2] or do a simple
calculation using Lemma 1.2.

(ii)=>(iil). Put A = B/4/1 — 82. Proposition 3.4(iii) tells us that the set
{Bu++/1—PB*:u,v €S, u<vand vl v} contains S. Arguments which
are by now standard show that this set is a closed rectifiable curve. Hence
it coincides with 5. It follows easily from this that, for any pair of vectors
in §, B-orthogonality implies AP-orthogonality.

(ili)=(1). First we prove that X is smooth and strictly convex. (We know
already thaft this follows from (ii), so a proof that (ii)=(i} could omit this
paragraph.) It is well known that strict convexity of the norm of a normed
space is equivalent to left uniqueness of B-orthogonality, i.e. the property
that 23 L y and xg L y for y #% 0 implies that z; and x; are colinear
[3, p. 33]. Failure of this property would imply that z L y for all z in
some nondegenerate segment in 5 and for some y € 5. But it would clearly
be impossible for all such # to satisfy |Az + py|? = A? + p?. Thus our
normed space is strictly convex. Similar reasoning, using right uniqueness
of B-orthogonality, shows that the space is smooth.

When X is strictly convex, it is easy to see that, for any € 5, there
are precisely two points y € S for which x is AP-orthogonal to y. Given
this regularity of the unit sphere, we now see that & can be AP-crthogonal
to v only when it is B-orthogonal. In particular, this implies that if o is
AP-orthogonal to y, then it is also AP-orthogonal to —y.

We can always find unit vectors u, v which are B-orthogonal to each other
[8]. {This is the same as saying that {u,v} is an Auerbach basis for X.) It
follows that u and v are AP-orthogonal to each other. Thus ||Au =+ v||* =
1+ dwjl? = A% + 1. It follows that

A 0) +uF Aol = (¥ + Dl = VA2 2 o2+ [u F Ml

ie. that Au = v is AP-orthogonal to w = Av. Similarly, we can show that
u+ \v is AP-orthogenal to —Mu % v, and hence also to Au F v. Of course,
this implies B-orthogonality.
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Let C denote the circuomference of a euclidean unit ball for which v and v
form an orthogonal basis. Then the twelve points £u, £, (1 +/\2)“1/ 2(:I:ui
Av) and {1+ 2%)~Y2(+ u +0) all lie in SN C. The same argument applied
toup = (14 A)~Y2(M —v) and v = (1 -+ A)7?(u + M) shows that
(14 X~ 12(tu; + dvg) and (1 + A?)"V2(£hug + v1) are also in SN C.
Continuing this process with tiny: = (1 4+ 3320w, — v,) and vp4y =
(1 + 2~ (u, + dv,), we obtain a set {w,v,u1,v;,us,v,...} which is
contained in SN C.

If ) is not the tangent of a rational multiple of 7, the above set is dense
in C, and it follows that S = C.

Now we consider the rational case: let A = tan(kw/2n), where k and n
are relatively prime and 1 €k < n.

It is proved implicitly in [9] and explicitly in {5, Lemma 2.4] that there
exist mutually B-orthogonal unit vectors w and v so that u A v has minimal
absolute value, amongst all pairs with « B-orthogonal to v.

In this case the set {u,v,u1,v1, U2, V2, ..} coincides with a regular 4n-
gon, so more work is needed to conclude that S = C. Put o = 7/(2n) and let
A; be the area of the sector of the unit ball determined by two consecutive
radii of this 4n-gon, ucos(j — 1)a -+ vsin{j — 1)a and ucos jo +vsin jo. To
avoid confusion with the numbering, note that A; = Aj,2,. To calculate
these areas, let ®(#) be the unique point of § at an angle of € with u,
and let y(9) be the unique point of § which is B-orthogonal to, and comes
after, z(&). Since S is smooth and strictly convex, it is easy to see that the
mapping 8 — Az(#) + y(8) is a Jordan rectifiable curve. (We remark that
this is also true even when S is not smooth or strictly convex [18].) Note
that as 8 moves from (j — 1) to ja, (1-+A2)"Y2(Az(f) +y(8)) traverses the
boundary of the (f + k)th sector. For simplicity, we omit the dependence of
all functions on the variable of integration 8. We have

o

2N+ DA = | Qa+y)AdDa+y)
{G-1a
Ja Jo Jo Jo
=3 | sade+ | yady+r | znady+a | yade
(=L (-Ler (~1)a (=1
Ja je Je
=2 | zads+ | yndy+r | dzay)+0
(j-1)a (1) (i-L)er
Jou Jeu
= A2 S z A dx + S yAdy+0=2A; + Ajin,
(1) G-
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using integration by parts, and the facts that x{#} L ¢(6) for all  and that
z(ja) Ay(je) is independent of j. A simple adjustment of the indices shows
that we also have

()\2 “+ l)Aj+k+n = /\zAj+n + Aj:.

Given A; and Aj4, one can calculate immediately Ajy, and A;4nir. I 4;
were different from A1y, then A;y and A; ,r would lie strictly between
A; and Ajyn. Applying this argument (at most) 2n times, we see that if Ay
were different from A,,, then both Ay and 4, would lie strictly between 4y
and A,. This absurdity forces 4g = A,, from which it quickly follows that
A1:A2=...=A4n. )

Tt is eagily shown [4, Lemma 1 or 2] that B-orthogonality is symmetric
if (and only if) |z A y| is constant for all z,y € 5 for which z L y. By a
simple compactness argument we may choose u', v’ € § with ' < 2/, and
© A v’ maximal with respect to all such pairs. A routine argument using [4,
Lemma 1] then shows that v’ is B-orthogonal to «’. _

This leads us to a new 4n-gon whose radii divide the unit ball into 4n

sectors of equal areas, Al,...,A},, each of which (when suitably indexed)
divides the jth sector of the previous 4n-gon into two sectors with areas B;
and C;. Then By -+ C; =4, = A_'; = O + Bjy1, and 50 By = ... = By,
and 0y = ... = Cuap. If z{ja — §) is a vertex of the new 4n-gon, for some
§€(0,a), then
1 Ju—8 .
VB 4 Bin= (¥ +1)Bis=7 | Qoty)Addo+y)
(i—-1)a
1 jo—8§ 1 ja—8 1 jo—§ S
=2X | enderg [ wady+3 | deny)
(i—-1)a {F-De (f-Le
= XB; + Bjin

+ IM(z(o — 8) Ayl — &) = a((f — Vo) Au((i = Dt)

and so z(ja ~ &) Ay(jo - 8) = z((j — D) A y{(§ ~ 1)@). From our choice
of u' and v’ it follows that {x Ay: 2,y € 5, z <y, ¢ Ly} is a singleton.

As noted before, this means that B-orthogonality is symmetric. In di-
mension three or more, this would imply that our space is an inner product
space [6]. (For another proof of this, not assuming smoothness, we could
refer to [9] or [16].) This is not true in two dimensions ([3, p. 77, or [9]), so
we slog on with the proof. '

We have now shown that for any 4, v € § with v < v and u L v, we
can construct a regular 4n-gon as above. This, together with the preceding
arguments, implies that if w/,v’ is another such pair, then the area of the
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segment of the unit ball determined by » and u' is the same as the area of
the segment of the unit ball determined by v and v'. The arguments of [10,
§3] show, without any modification whatsoever, that this property, together
with the symmetry of B-orthogonality, implies that S is an ellipse.

Tinally, we emphasize that (i)<(iii) gives a new characterization of inner
product spaces, which makes no mention of the modulus of squareness. We
prefer to restate this in the following symmetric form: if there exist non-zero
A and g for which

z,y€8, Ly = |he+py|® =K +4%

then X is an inner product space.

The special case A = y was first proved in [4, Proposition 2]. Of course,
the cagse when A/u ig not the tangent of a rational multiple of 7 is somewhat
eagier.

4. Open problems. We collect here a number of open problems concern-
ing the content of this paper, some of which have been mentioned already.

ProBLEM 4.1. Characterize those functions which are the modulus of
squareness of some normed space.

ProBLEM 4.2. If a function is the modulus of squareness of some normed
space, need it be the modulus of squareness of a finite-dimensional (in par-
ticular, two-dimensional) normed space?

From now on, £ is the modulus of squareness of a normed space X.
PROBLEM 4.3. Is £ always an analytic function?

ProBLEM 4.4. Is log £ always a convex function?

ProBLEM 4.5. If X is uniformly convex, must £ be integrable?

ProBLEM 4.6. Do the techniques of §3 lead to other characterizations of
inner product spaces?

ProBLEM 4.7. Calculate exactly the modulus of squareness of £,(2).

ProeLeEM 4.8, Is there a sensible localization of the modulus of square-
ness? We mean: in a sense similar to that in which Fréchet smoothness
localizes uniform smoothness and local uniform convexity localizes uniform
convexity.

PrOBLEM 4.9. Is the modulus of squareness related to the notions of
girth, inner perimeter and flatness, as defined in [14] and [26]7

ProOBLEM 4.10. Find a lower bound for ¢. In particular, is & > &
always?
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Added in proof (October 1997}, We learnt in July 1997 that there is some over-
lap between this article and the work of Ioan Serb. In particular, the main result of
§3, the equivalence of (i) and (ii) in Theorem 3.6, was proved independently by him in
A Day-Nordlander theorem for the tangential modulus of a normed space; J. Math. Anal.
Appl. 209 (1997), 381~39L. In Onr the behaviour of the tangentinl modulus of a Banach
space If, Mathematica (Cluj) 38 (61) (1996), 199207, he proved, earlier than we did,
Theorem 2.4(ii).

icm

STUDIA MATHEMATICA 127 (1) (1998)

On the Djrbashian kernel of a Siegel domain

by
ELISABETTA BARLETTA and SORIN DRAGOMIR (Potenza)

Abstract. We establish an inversion formula for the M. M. Dirbashian & A. H. Kara-
petyan integral transform (cf. [6]) on the Siegel domain 2 = {{ & C* : p(¢) > 0},
o(¢) =Im(¢y) — |¢'[. We build a family of Khler metrics of constant holomorphic curva-
ture whose potentials are the ¢®-Bergman kernels, & > —1, (in the sense of Z. Pasternak-
Winiarski [20]) of {2,. We build an anti-holomorphic embedding of (2, in the complex
projective Hilbert space CP(H2(2,)) and study (in connection with work by A. Oduzi-
jewicz [18]) the corresponding transition probability amplitudes. The Genchev transform
(cf. [9]) is shown to be well defined on L2({f2, g%), for any strip 2 C C, and applied in a
problem of approximation by holomorphic functions. Building on work by T. Mazur {cf.
[15]) we prove the existence of a complete orthonormal system i H2(f2,;) consisting of
eigenfunctions of a certain explicitly defined operator Vi, a € By.

1. Introduction. Let {2 C C* be an open set, 2 # 0. Let W(2) be the
set of all weights on 2 (i.e. v € W(£2) is a Lebesgue measurable function
v: 82 — (0,00)). For each v € W(£2) let L*H(12,7) be the Hilbert space of
all functions f : 2 — C for which |||, = ({, | fi2y dm)*/? < 0o, where dm
is the Lebesgue measure in R*". Let L>H({2,v) be the set of all functions in
L2(02,~) which are holomorphic in £2. A weight v € W(2) is admissible if
for any z € {2 there is a neighbourhood V, of z in {2 and a constant C, > 0
so that ||6,|l, < C. for any w € V. (cf. [19], p. 112). Here 8.(f) = f(2),
fe L?H(£2,v). The set of all admissible weights on {2 is denoted by AW (£2).
If v € AW(R2) then (cf. Proposition 2.1 of [19], p. 113) L2H(£2,) is a
closed subspace of L2(§2,v) and the evaluation functional 8, is continuous on
L?H(02,~) for any z € 2. Hence, by the Riesz representation theorem, there
is a unique function K,(-,z) € L*H(f2,7) (called the 4-Bergman hernel
of ) s0 that : :

F(2) = § FOEL (G 2) dm(Q)
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