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Added in proof (October 1997}, We learnt in July 1997 that there is some over-
lap between this article and the work of Ioan Serb. In particular, the main result of
§3, the equivalence of (i) and (ii) in Theorem 3.6, was proved independently by him in
A Day-Nordlander theorem for the tangential modulus of a normed space; J. Math. Anal.
Appl. 209 (1997), 381~39L. In Onr the behaviour of the tangentinl modulus of a Banach
space If, Mathematica (Cluj) 38 (61) (1996), 199207, he proved, earlier than we did,
Theorem 2.4(ii).
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On the Djrbashian kernel of a Siegel domain

by
ELISABETTA BARLETTA and SORIN DRAGOMIR (Potenza)

Abstract. We establish an inversion formula for the M. M. Dirbashian & A. H. Kara-
petyan integral transform (cf. [6]) on the Siegel domain 2 = {{ & C* : p(¢) > 0},
o(¢) =Im(¢y) — |¢'[. We build a family of Khler metrics of constant holomorphic curva-
ture whose potentials are the ¢®-Bergman kernels, & > —1, (in the sense of Z. Pasternak-
Winiarski [20]) of {2,. We build an anti-holomorphic embedding of (2, in the complex
projective Hilbert space CP(H2(2,)) and study (in connection with work by A. Oduzi-
jewicz [18]) the corresponding transition probability amplitudes. The Genchev transform
(cf. [9]) is shown to be well defined on L2({f2, g%), for any strip 2 C C, and applied in a
problem of approximation by holomorphic functions. Building on work by T. Mazur {cf.
[15]) we prove the existence of a complete orthonormal system i H2(f2,;) consisting of
eigenfunctions of a certain explicitly defined operator Vi, a € By.

1. Introduction. Let {2 C C* be an open set, 2 # 0. Let W(2) be the
set of all weights on 2 (i.e. v € W(£2) is a Lebesgue measurable function
v: 82 — (0,00)). For each v € W(£2) let L*H(12,7) be the Hilbert space of
all functions f : 2 — C for which |||, = ({, | fi2y dm)*/? < 0o, where dm
is the Lebesgue measure in R*". Let L>H({2,v) be the set of all functions in
L2(02,~) which are holomorphic in £2. A weight v € W(2) is admissible if
for any z € {2 there is a neighbourhood V, of z in {2 and a constant C, > 0
so that ||6,|l, < C. for any w € V. (cf. [19], p. 112). Here 8.(f) = f(2),
fe L?H(£2,v). The set of all admissible weights on {2 is denoted by AW (£2).
If v € AW(R2) then (cf. Proposition 2.1 of [19], p. 113) L2H(£2,) is a
closed subspace of L2(§2,v) and the evaluation functional 8, is continuous on
L?H(02,~) for any z € 2. Hence, by the Riesz representation theorem, there
is a unique function K,(-,z) € L*H(f2,7) (called the 4-Bergman hernel
of ) s0 that : :

F(2) = § FOEL (G 2) dm(Q)

Ie]
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for any f € L?H({2,7) and z € {2. For v = 1 this is the Bergman kernel
K(¢,2) of 2 (cf. [2]-[3]). The main properties of y-Bergman kernels have
been investigated by Z. Pasternak-Winiarski (cf. [19]-[20]). His approach
(as in classical complex analysis, e.g. [10], pp. 365-369) is based on the

representation 2 = Z d’m(C)W

- e
for any complete orthonormal system {¢.,} in L2H(2,). The main incon-
venience of this method is that (even in the simplest cases, e.g. [20], pp. 8-13,
for 2= By = {z € C:|z| < 1} and the admissible weight v(2) = (Im z)?)
complete orthonormal systems are rather difficult to produce.

In the present paper, we look at the family of weights

VQ(C) = (ImC1 - ‘C1|2)U1 a> 1,
on the Siegel domain 2, = {¢ € C* : Im{y > [¢'|*}. These turn out to be
admissible and we write explicitly the v,-Bergman kernel of £2,,. Note that
L2H(y,7.) are precisely the function spaces HZ({2,) introduced in [6].
Qur viewpoint is to make use of the representation theory of holomorphic
functions (rather than of complete orthonormal systems in H2({2,)).

Using a result of S. Saitoh [22], we endow HZ2({2,) with a complex 1~
parameter family (, ) H(Kg): Ref > (a—1)/2, of inner products (in general
not isometric to the L2 (meya) inner product) and prove an inversion for-
mula (cf. Theorem 1) for the Djrbashian-Karapetyan transform (1).

For any bounded domain {2 ¢ C™ there is a natural Kahlerian metric on
§2 of potential K (z,z) (the Bergman metric of 2). Although the arguments
leading to the Bergman metric (cf. Proposition 3.4 of [10], pp. 368-369)
break down for the case of an unbounded domain, we show (by using a
result of T. Mazur [16]) that the v,-Bergman kernel of {2, gives rise to a
Kihlerian metric g, on {2, of constant (negative) holomorphic curvature
—87"{a+1)...(a+n+1)]"" (cf. Theorem 2).

In connection with work by A. Odzijewicz [18], we show that there is an
anti-holomorphic embedding of £2,, into the complex projective Hilbert space
CP(H2((2,)), hence one may introduce the transition probability amplitude
0(C,2) from ¢ to z ((,z € (2,), and establish (9} (cf. SBection 4 for its
interpretation).

The authors are grateful to the referee for several remarks which im-
proved the first version of this paper, and in particular for drawing their
attention to the work by M. Skwarczyfiski [24]-[25]. Indeed, one was able
to show that, for a given strip 2 = {z € C : b < Im=z < ¢}, the Genchev
transform (ef. [9]) is well defined on L2H((2,7,), @ > —1, and furthermore
elements of L2H (£2,7;) which are approximated by holomorphlc functions

in H2(¢2;) may be characterized in terms of the Genchev transform (cf.
Theorem 5).
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Building on work by T. Mazur [15], we prove the existence of a complete
orthonormal system in H2(f2,) consisting of eigenfunctions of a certain ex-
plicitly defined operator Vi, a € By (cf. Theorem 6).

2. A reproducing kernel Hilbert space. If { = ({3,...,¢{,) € C* we
get &' = ((ay..-,¢n)- Let a ER, @ > —1,and 8 € C, Ref > (o —1)/2.
Consider the linear operator T given by

— ¢'12)8
(1) (Tﬂf)('lﬂ) - 2n_1+'80n,ﬁ S f_("C) (I]IL (1 |< | ) dm(g‘)
o, [6(Cy — wy) — 2{w', ()| +1+0
for any f € L2(2y) = L*(2,7.) and w € 2, (cf. (2.15) in [6], p. 98).
Here cnpg = m (@ -+1)...(8+n). By Theorems 2.1 and 3.1 of [6], T is a
continuous linear operator from L2(42,,) onto H2((2,) (referred to hereafter
as the Djrbashian-Karapetyan transform). We shall need the following:

LeMMA 1. For any z,( € {2, set

Gup(lm g — ()P
[i(Z1 — G1) —2(¢7, 2))nrieB

) ha(C) = 27 1+P

Then h, € L2(2,).
Proof. We have

1Rl = [h(OP(Im s~ 1¢1)* dm(Q)
2,
_on—1+4. |2 (Im §y — [¢/|2)Bef-alta
= |2 Cn,ﬁ' (§n h(El _ zl) _ 2<z;,c.r)lz(n+1+Reﬁ)

x exp(2Im(8) arg(i((y — z1) — 2(2, {'})) dm(()
am[im gl (bn ¢ — |¢']%)*Re P> dm({)
oo & ] e -2 e e

By Lemma 2.2 of R. R. Coifman & R. Rochberg (4], if¢t > —1 and ¢ > 0
then an integral of the form

¢'7) dm(Q)

{(Im ¢y —
Jio{z) = e "
t, ( ) r§n ['l(gl _ Zl) _ 2(2’ Cf)]n+1+f+
may be computed as
7 _ const
t,c(Z) - (Imzl _ |Z’F)°

where the constant depends only on n,t and ¢. To end the proof of Lemma. 1,
set t = 2Ref—aand e=n+1+a Thent> -1, ¢>0 and we may
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conclude that
2 const
th ’12@ < (Imzl _ |zt{2)n+1+a <0

for any z € (2,.

S. Saitoh has devised (cf. Theorem 2.1 of [22], p. 75) a fairly general
method for organizing the range of a linear operator (induced by a Hilbert
space valued function) as a Hilbert space with reproducing kernel {in the
sense of [1]}. We briefly recall its essentials and apply it to the Djrbashian—
Karapetyan transform. ‘

Let E 5 0 be a set and F(E) the linear space of all functions f : E — C.
Let (H,{, )») be a Hilbert space. Given a function h : E — H consider
the linear map L : H — F(E) given by (LF)(p) = (F,h(p))n for any
F € and p € E. The range R(L) of L is a Hilbert space with the inner
product (f, g)r(r) = (PF,PG)y for some F € L71(f) and G € L7(g).
Here P: H — H ©N(L) is the natural projection and A (L) the null space
of L. Then ||fllz(z) = mE{| P : F € L™(£)} and K(p, ) = (h(a), h(@))n
is a reproducing kernel for R(L). Also L is an isometry of H onto R(L) iff
{h(p) : p € E} is complete in M. Cf. also [23], p. 51.

Set K3({,2) = (hs,he)2,e (by Lemma 1, K is well defined). Let Py :
LX(92,) — L2(£2,)6N(T5) be the orthogonal projection. Note that Pgh, =
h, for any z € {2,. As (Taf)(C) = (f, h¢)aa for any f € L2(12,) and ¢ €
12,,, it follows that (i) Kz(-,{) € R(Tp) and (ii) F(¢) = (F, Kﬁ( Q)YERE
Then R(Tp) == H2({2,) (thought of as a Hilbert space with the reproducing
kernel Kjg) will be denoted by H(Kg). On the other hand, by a result of
M. M. Djrbashian & A. H. Karapetyan (cf. Proposition 4.3 of [6], p. 107),
N(T,) = L2(02,) © H2(12,), hence H2(2,) is a closed subspace of L2({2,).

PROPOSITION 1. H(Kg) = HZ2(52,), i.e. the identity is an isometry, if
and only if N (Tag) = N (Ta).

Proof Let Qs : LZ(f2,) — N(Tjs) be the orthogonal projection. If
(F,GYaxs = (F, @)z, for any F,G € H2(12,) then QgF = 0 (because,
by Theorem 2.1 of [6], T reproduces the holomorphic functions), hence
H2(2,) C LZ(2,) 8 N(Tg). Conversely, let f € L2(2,) © N(Tps) and set
F =Tgf. Then F € H2(f2,), hence f ~ F € L2((2,) ©N(Tj3). Finally, note
that Ta(f — F)=0. m :

Let F € H3(2y). Then ||Fligx,) < ||fll2,e for any f € L2(£2,) with
Tpf = F. Next (by Theorem 2.1 of [6]), TsF = F. Yet (in view of Proposi-
tion 1) in general F'is not the element of minimum | ||z, norm in the fibre
of T over F.

By Lemma 1 we may define hg : £2, X {2, — C by setting hz(¢, 2) = hz(C)
where h; is given by (2). We refer to hs((, z) as the Djrbashian kernel of £2,.
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We adopt the following notations. Let v > 0 and By ={z € C*:
2| <7} Let 1 Bn — £2; be the Cayley transform, ie.

Atz . 2 .7
fp(zl,...,zn):(z 1 A femalLi

1—211 1—21 1-"21

and set 12, » = @(By ). We now state the following:

TurgoREM L. Let & > ~1 and 8 € C, Re > {a —1)/2. Then H2(£2,,)
is a Hilbert space H(Kg) with the reproducing kernel
(3) Ka(G2) =201 e
o S (Im wy — |wf!2)2Reﬁ—cz dm(w)
A 1@ = C) — 20, ) M TBli(Zs — wn) — 2(u, 2D
Let (rv)n»1 be a sequence of positive numbers so that iy T 1 as N — oc.

Set Dy = £2nry, N 2 1. For any F € H2(12,) the unique f* € L2(£2,) so
that Tgf* = F and HF”H(I(,E}) =

@ Q= pm | FERs(G R Ime 2% dn()
in the sense of LE({2,) convergence.
Proof. Set
dpa(() = (Im¢y — [¢'F)™ dm(()

for simplicity. Note that {Dy}n>1 is an exbaustion of £2, with io-measur-
able sets satisfying (1) D1 € Do C ..., and (i) Uy _; P~ = 2. The unique
f* € L2(2,) in the statement of Theorem 1 is f* = P3F. By a result of
S. Saitoh (cf. Theorem 4.3 of [23], p. 56) to prove (4) one needs fo check
that

() § K5(¢,¢) dal) < 00
Dy
and
(6) | F(2)ha(:, 2)dualz) € Li(020)

Dy
for any N > 1. To prove (5) note that by (3),
. 2 2Reﬁ—ad (w)
ionl—g 9 (Imwy ~ [w'|*) m
Kﬁ(C=C) = |2 Cmﬁ' QS |('£(w1 Cl) _ 2<C:,wr))n+1+ﬁt2

n

1/ [2y2Re 8~
— Izn-i-l—ﬂc ‘2 S Imwl |w’ ) *
= 7,3 \z Cl) — (CI w’ 2(n+1+Reﬁ)

2y
x exp(2Im(B) arg(i(@; — {1) — 2{¢',w'))) dm(w)
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(Imw; ~ |w'|?)2 BeF—* dm(w)
o — G ~ 20 e Premest”

< 627r|1m;@|22(n+1—Re,B)Ecn’ﬁlﬂ S
2y,
hence
K3(¢,¢) < constJp c(C)
with t = 2Re 8—a and ¢ = n+1+a. Again by Lemma 2.2 of R. R. Coifman &

R. Rochberg [4], the integral J; (¢} may be explicitly computed (as ¢t > -1,
¢ > 0) so that

t
(M K50 S g _C‘Ef’lz)n —
LEMMA 2.
dm(¢) = 4""m(Bnp,).

o 16 — i)
Proof Set{ = <p(z,) and recall that the complex Jacobian of the Cayley
transform is J,{z) = 20"(1 — 21)~ (",
To end the proof of (5) note that
1— il (O = 4(Im ¢ — |¢')

¢y =2
for any ¢ € £2,. Also,
1 1
E— e TP = =)
for any ¢ € £2,, . Using (7) and Lemma 2 we may perform the estimates

dm(()
ng (¢, C) dpalC) < const- 05 Tt — (P

_— nst - 4n+l dm(C)
=tV e - Ry
const S dm(C)

< (1= r2)ntl f |El - ﬂz(m-l)
— M Br,r)
= const-m < 04.

Next, to prove (6) we perform the estimates

L] § Pkl ) dpate)] duac)

2, Dn

< § [ § IF@Pdua@][ | 1ha(¢, 2 disalz)] duald)

2y, Dy Dy
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<IFBa § [ § 1100 dita()] dualz)

Dy 2n

= Fl3a § 12:lf o dualz)

Dy

dise(z)
< const | F|j3
" DSN (Im 21 — o i+

< const |[FI2 am(Bag)(1 - )~ < co,

3. The v,-Bergman kernel. Recall that H2(12,) is closed in L ({2,).
On the other hand,

6. F| = [(TaF)(2)| = |(F, P2)2,al < | Fllzollballz,a

50 that the evaluation functional &, : H2(£2,) — C is continuous. Thus (by
Theorem 2.2 of [20], p. 4), 7o € AW({2,). In view of

(Tpf)z)= | F(ORp((,2) duall)
n’ﬂ.
and of Theorem 2.1 of [6], p. 101, the y,-Bergman kernel of {2, may be
identified among the Djrbashian kernels hg((, z), Ref > (a — 1)/2, as the
one corresponding to 8 = a. Indeed,

2““14—0‘6”,&

hcx(C: z) = [‘i(-f]_ — Cl) - Z(C’,z’)l""'l“‘“
is holomorphic in ¢ and hence, by the uniqueness statement in the Riesz
representation theorem, hq (¢, #) is the v,-Bergman kernel of £2,,. Also, again
because of Bcha((,z) = 0, and by the reproducing property of Ka((, 2), we
actually have Ko(C,2) = ha{(,2), @ > —1. Indeed, as for 8 = « one has
he € H2(£2,), it follows that

Kol 2) = (hay hedan = (Taha) () = ha () = ha(C,2)-
Let g, be the real (0, 2)-tensor field on (2, given by

9o = Re{Lajx(anxx (2}
where \
La = Z aloag__._._%%—.—w(z,ﬂdzj & d’z’k
1ikan IR |
and X(£2,) is the C°°(£2,)-module of all tangent vector fields on §2,. We
now state the following:

THEOREM 2. Let o > —1 and consider the weights vo € W(2n) given
by 16(C) = (Imy — |¢'[D)%, ¢ € n. Then each Yo is admissible and the
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corresponding vyo-Bergman kernel of £2,, is
(8) K,((,2) =

Also,

gn— l+acn,a

[i(Z ~ G1) — 2(¢, 2] e

(g) 5 = 3% log Ky(2,2)

S PN

defines a family {ga}to>-1 of Kihler metrics of constant (negative) holo-
meorphic sectional curvature ~8/(wepi1,q)-

Proof. The arguments leading to Theorem 1 of [7], p. 151, fail to apply
(because {2, is unbounded). We restate a result of [16], p. 135, as it applies
to our situation:

LeMMa 3. Let o > —1. Assume that (1) for any ( € 2, there is F €
H2(82,) so that F({) # 0, and (ii) for any { € £2, and any Z € TH0(0,),,
Z #0, there is F' € H2(2,) so that F({) = 0 and Z(F) # 0. Then g, is a
Hahlerian metric on {2,.

Cf. also S. Kobayashi [12], p. 271, and M. Skwarczyfiski [24], p. 18. Here
Th0(12,) is the holomorphic tangent bundle over {2, (i.e. the span of /8%,
1<j7<n).

To check that (i}-(ii) of Lemma 3 do hold in our case, we state:

LEMMA 4. Let {5 € {2, and 25 = ™Y (). Fiz w € C* - {0} and
consider the holomorphic function f : B, — C, f(2) = {2z — zo,w), # € B,.
Let g{¢) = fle™H (ONG + 9~ H+), (€ 2, Then g € H2(12)-

Proof. Clearly 8g = 0. Moreover,
V17@PE -2 dmiz) < | 12— 2ol lwl(L ~ 2/%)® dm(2)
B, By
< 4wl | (1= 2°)* dm(z)

v

B

1

dw?{do | (1- 2% dS
0 Izl =0

= 4w2n|w|2§ A1 - o?)* dp
0
where wyy, is the measure of §27~1 < C*. As @ > —1 the last integral is con-
vergent, hence {5 |f(2)[*(1 —|2[%)® dm(2) < oo. Thus (by 2) of Lemma 1.2
in [6], p. 95), g € L2((2).
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The function g € H2(£2,) furnished by Lemma 4 satisfies g{Ca) = 0.
Given Z € T2y, Z = E;, =1 Aj(8/02;)¢,, we have to choose w &
¢ — {0} so that Z(g) 5 0. Since ¢~ : 2, — B, is given by

B (G- 20 2n
4 (€1 0n) = (gl+z"C1+'£""’41+i)

we have
21 2

Z(g) = W[i% — (GO, w")] + WQ(A'TW')-

At this point we choose w’ = N and wy = i({p, — )y +4(N, () so that
2
z 2
‘ (g) (C +7.)'”’+1+°‘| E )
hence Z # 0 yields Z(g) # 0 and (ii) of Lemma 3 is checked.
Finally, (i} follows from
LEMMA 5. Let (o € (2, and zg = ™ (o). Fiz w € C* — {0} and set

_ x4+ 2,200 if20#0,
@={f ol il es,

A Ca(9))
g9(g) = (¢ + iyntita’

Then g € H2({2,) and g(¢o) # 0.

The proof is similar to that of Lemma 4 and thus omitted. P. F. Klembeck
[11] has computed the curvature of the Bergman metric of a bounded domain
near its boundary, by using Fefferman’s asymptotic formula for the Bergman
kernel. While this is not available for 2, and K, we may (due to the explicit
expression (8) of K,) perform a direct calculation of the curvature tensor
(Ra) Fim of the Kéhler metric (9a),7- 1t is given by

1

”E(Ra)jk'z‘fﬁ = (.‘Jm)ﬁc‘(gcz)ﬂm + (ga)jﬁi(ga)ﬁ

- KJZ{Ka(Ka)jEm - (Ka)jl(Ka)'Em}

+ K (9e)P{ Ka(Ka)gip — (Ko)it(Ke)p}

X { Kol Kadpmy — (Ka)pm(Ka)a)
where K, is short for K, (2, z) (we adopt the conventions of [12], p. 275). Yet

by (8)) we have —82 (log 0)/0%;0%k = 4lca,a(n+1+a)] 7 8% (log Ko) /02,07,

Where o(z) = Imz; — |2'|>. Hence the curvature of (ga);z will be ¢ aln+
1+ a})/2 times the tensor

R g = hyghim -+ hymhyg — 0™ {007 — 010K}
+ 0™ 1P pojip — ejiept{ 0CFmg — Gem e}
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with h;; = 9%(log 0)/02;0%x. Therefore

(B i = ——
@)iim = Tt 11 @)

hence g, is a Kihler metric of constant holomorphic curvature —8/[cp, o (n+
14 o). In particular, g, is Kahler—Einstein. OQur Theorem 2 is proved.

{(9a) % (9a)m — (9a)3m{9a)iz}s

4. Transition probability amplitudes. A. Odzijewicz [18], while
studying the quantization of a mechanical system whose phase space is a
complex manifold M, pointed out a deep interrelation between the theory of
reproducing kernel Hilbert spaces, the complex Monge-Ampére equations,
and the calculation of transition probability amplitudes from one coherent
state to another. Cf. also [19], pp. 110-111. To fix the notation and termi-
nology, we briefly recall the essentials of {18].

Let E — M be a holomorphic line bundle over a complex n-dimensional
manifold M. Let H be a Hermitian metric on F whose Chern connection
V has a nonsingular curvature form w = icurv(V). Let A™%(M) be the
canonical bundle of M (n € A™9(M) is a complex form of type {r, 0) on M).

The space of quanium states is the complex Hilbert space A of all 5 €
HY(M,O(E ® A™S(MY)) with (s, s} < oo, where the inner product is given
by (s,t) =" S H*(s,t), for any E-valued holomorphic n-forms s,¢ on M.
Cf. also [8]. Here H* is the metric induced by H on E ® A™°(M), hence
H*(s,t) is an (n,n)-form on M.

The quantization of classical states is an embedding K : M — CP(M)
of M (the classical phase space of the system) into the complex projective
Hilbert space CP(M). If z € M then K(z) is a coherent state. Identifying
a classical state z € M with the coherent state X{z) € CP(M) one defines
the transition probability emplitude from { to z by a((, z) = (K(C), K(z)}).
Next, the transition probability amplitude from 2 to w with simultanecus
transition through ¢ € M is by definition a({, w)a(z, ().

Now a natural question is whether averaging a(¢,w)a(z,¢) over ( € M
one retrieves the transition probability amplitude from z to w. In other
words, as the natural measure on the phasge space M is the Liouville measure
dur = (—4)" detlwzlda AL A dCa A dCy A ... AdC,, one asks whether

(9) J a(¢whalz, ) dps(() = alzw),

M
possibly with duz multiplied by some constant ¢ > 0. Here w,z, is the (local
manifestation of the) curvature 2-form of (E, H) with respect to a local
trivialization of £ and a local coordinate system (¢1,...,(,) on M.
- Our result in this section is that (9) holds when M = f2,. Precisely,
" thinking of {2, as the classical phase space of some mechanical system, let
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E = {2, x C be the trivial line bundle over (2,, with the Hermitian metric

H, glven by Ha(s% s%) = 0%, 0(¢) = Im(1 — |¢’|?, where the holomorphic
frame 50 : 12, — E is given by s°(¢) = (¢, 1). We establish the following;:

THEOREM 3. Let o > ~1. Then H2(12,) is the space of quantum states
of 2. There is an anti-holomorphic embedding Ko of (2, into CP(H2(12,)).
Assume that (n, o) satisfies one of the following conditions:

i) n= My, a e (-1,0)U(0,00),

(i) n=Ms+1, a € (0,0),

(iii) n = My +3, a € (—1,0),

where My = 4k for some k € N. Then the corresponding transition proba-
bility amplitude aqo (¢, 2) = (Kal(), Kal2)), ¢, 2 € 12, satisfies the rule

§ aa(¢ w)aalz, Qedps(() = aa(z,w)

2n
for some constant ¢ > 0 (depending only onn and a).

In H2(£2,) — {0} one may consider the equivalence relation f ~ g if
g = Af for some A € C — {0}. The quotient space

CP(Hq (24)) = (HE(12) ~ {0})/~
is a complete metric space with the distance
iaf e g
o) R [ il el

(cf. e.g. [24], p. 20). We organize the proof of Theorem 3 in several steps, as
follows.

STeP 1. Let Ko(C,2) be the yo-Bergman kernel of .. The map Ko
2, — CP(H2(2,)), Kalz) = [Ko(-,2)], 2 € 2, 15 an anti-holomorphic
embedding.

If Cuo(2) = Ky(w) then (by (8))

i(-gl. - Cl) - 2(4’: z,>
i@y — 1) — 2(¢w')
with respect to ¢ € £2,. Differentiate this with respect to (1 to get

n
Wy — 22@,@]— =0
§=2

= const

where w = z —w. Next, differentiation with respect to (;, j > 2, gives w = 0.
Thus K, is injective. The quadratic form (2.16) in [18], p. 582, and our
Kahler metric g, actually coincide. Therefore, we may apply Propositions 2
and 3 of [18], pp. 582-583, to end the proof of Step 1.
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STEP 2. The identity
(1) ao (2, w) = S aa{¢, w)aa({, 2)Kal(, () 1al() dm(C)
e
holds for any z,w € 12,
Note first that
_ K.(¢,2)
T Ko(2,2)Y2Ka(¢,0)M?

50 that a,{{,() = 1 and a.{¢,2) = aa(2,¢). Then (11) follows from the
reproducing property of K, (¢, z).

aa{C, %)

StEP 3. Let (n, o) satisfy one of the assumptions (i)~(iii) of Theorem 3.
There is a constant C' > 0 {depending only onn and o} so that the weight
Yal(¢) = (Im {1 — [¢'|2)* satisfies the complex Monge—Ampére equation

2
der | 2200 = (a6 S0, 6,0
where K., is the ~y-Bergman kernel.
Indeed, a calculation shows that
o [PL87200] e
R do(¢)m
hence (by taking into account (8)) one obtains
nlan™
(e+1)...(a+n)
and Step 3 is proved. Note that n = Ay + 2 vields C < 0. Finally, by a
result of A. Odzijewicz ([18], p. 584) and by Step 3 one has
dpur($) = CKal(C, O)7a(C)dm(C),

hence (11) is equivalent to (9) with dur, replaced by C~'duy and Theorem 3
is proved.

C = (_1)n(n—l)/2

We end this section with the following remark., For each o > —1, let
dp,,« be the pullback of (10) by Ky : £2, — CP(H2(2,)). Then dg, .« is a
family of distances on (2, given by

dﬂma(crz) = \/i(l - la‘m(gv z)[)1/2:
ot ) = 2+/0(¢)e(2) e
o(6i2) = L:(zl — 1) —2(¢,7)

By analogy with [24], pp. 22-27, one may ask whether (2,,dp, &) is com-
plete. ‘ C
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5. The Genchev transform. Let J C R be an interval (possibly un-
bounded) and 12 = {2 € C.Imz € J}. We shall need the following:

LEMMA 6. Let f € LPH(12,v,) and y € J. Set g,(2) = f(z+iy),z € R.
Then gy, € L*(R). '

For c = 0 this is Lemma 1 of [25], p. 121. Cf. also [5] and [9]. Fix z € R.
Set h{w+v) = flu~-z--iv). Giveny € J let & > 0 so that {y—e,y+e) C J.
Then h is holomorphic on a domain D containing {{u,v) : |u| < &, |v — ]
< e}, hence |h|" is subbarmonic in D, for any s > 0 (e.g. [13], p. 75). Let
¢ > 0and set p= (1L + @)/, g=1+ a. Then (see e.g. [13], p. 71)

(o) *'*

1 o/
SW S |h('f.¢.+’£’i))|2/ du dv

B{iy,e}
< —lg S |F(u+ 2 4 00) | Py(u + 2 4 i) Py(u -+ @ + iv) P dudy
& Biv.e)
1 12 . 1/p
S | flutari) Ytz +iv) dudo)

Biy.e)

* ( S ylu+ 2+ iy)—(l/‘p dudru)l/q,
B(iy.e)

hence

(12) | f(o+dg)?

< (@)L | [flute+a)Prurotiv)dude
|u|<e, |u—y|<e
where

Daw) = | alwt+st+iv)dud

[u]<e, [u—y|<e
for any -y € W(£2). When v = 7, one has It q(y) < oo and Tt o(y) does not
depend on . If this is the case (va(¢) = (Im()*, a > —1) then integration
of (12} with respect to x gives

I 9gl-2p "U“*‘E oo e
[ loy(@)?do < o na@¥e § (1§ G+ de )™ dv
—ea Yore  —O0
261—2}0 1/a 2
—<—‘ g Fa,u(y) - ||f Ez,a

and Lemma 6 is proved.
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Let F be the Fourier transform. If f € L2H ({2, v,) then e~2t¥ ¥ {gy){t)
does not depend upon the choice of y € J simply because (by following the
idea in [25], p. 121) we may represent it by a complex line integral (of a
holomorphic function):

e_zﬂy}-(gy)(t) — S ezvr-itzf(z) dz
Im z=y
and apply the Cauchy theorem. Hence we may define the Genchev transform
Ga(f) of f € L*H(12,7,) by setting

Ga(f)(t) = 2™ F(g)(t), teR
This was originally defined on L?H(f2) (cf. T. Genchev [9] for the case
a = 0). We now state

THEOREM 4. Let o > —1. The Genchev transform G, defines a unitary
isomorphism of L*H (2, 7o) onto L*(R, wy,q) wherewy o (t) = §, y*e'™ dy.

This generalizes a result of [5], [9] (cf. also Theorem 1 of {25], p. 122).
To prove Theorem 4, let J = (b,c¢) and f € L2H(12,v,). Then (by the
Plancherel theorem)

c

¢
§1f(z + i) Py dm dy = {lgylI32 v dy = {1 F (gy)|3e v dy

2 b b
=y | G, (Nl dtdy = | 1Galf)(t)Pwsalt) dt.
b —-0a 00

Finally, the image of G, contains a dense subset of L?(IR, wy,, ) because for
any bounded ¢ € L*(R,ws ) which vanishes off a compact subset of R one
has Ga(f) = ¢, where f(2) = ™ e 27it%(t) dt.

Let ¢ € (0,00) and 2 = {2 € C: 0 < Imz < ¢}. For any f € H2(2)
one has flo € LPH(£2, 7). Also vap € AW(R2). Indeed, there is a > 0
so that v;* € L{,.(12), hence one may apply Corollary 3.1 of [20], p. 6.
Therefore L*F(£2,,) is closed in L?(12, v,), hence we may define the sub-
space L3 H(42,7,) of LAH (0, ~v,) consisting of all £ : 2 — C which are the
L?(£2,Ya) limits of sequences fi, € H2({21), k = 1. We now state

THEOREM 5. Let f € LRH(£2,%z). Then f € L2H(2,) if and only if
its Genchev transform vanishes a.e. in (0, c0),

A calculation shows that 1) if J = (b, ¢) then w2 (t) = (4mt) "1 {e?™Qy(c)
~e*™Q,(b)}, 2) if J = (b, 00) then wyz(t) = —(dmt)~Let™Q,(b) for t < 0
and wya(t) = co fort > 0, and 3) if J = (—o0,c) then wy(t) = oo for t < 0
and wya(t) = (4mt)"1e*™*Q,(c) for t > 0, where Qu(y) = y* — y/(2x1) +
1/(8x%2).

icm

Dirbashian kernel of a Siegel domain 61

To prove Theorem 5, let f € L2 H(£2,v;) and fe & HZ(f) so that f, —
f as k — oo. Then G(fx) = 0 on (0,00). If g € H3(f2) then Glgn)t) =
G(g)(t). As (by Theorem 4) G(fi) ~ G(f) as k — oo (LA(R, w(o,c),2) con-
vergence) one obtains |G(f)[?w(0,q),2 = 0 a.e. in (0, 00), hence G(f) = 0 a.e.
in (0,00) (88 w(p,r),2 has at most two zeros). '

‘We end this section with the following remark. By a result of M. Skwar-
czyitiski [25], p. 124, if 2 = {¢ € C: [Im(| < 7} then the Bergman kernel K
of {2 is given by

| 2 1 - 1
(13) K¢, 2) = kgl Kol z + (k= D) + ; Ko(C, 2 — dikm)

where Ky is obtained from (8) for n = 1 and « == 0. It i3 an open question
whether the vy,-Bergman kernel K., (', 2) € L2H(£2,7,) is related to the
Djrbashian kernel of the half-plane 2, (i.e. we ask for a weighted analogue
of (13)).

6. Canonical isometries. Let a € B, and ¢, € Aut((2,) be given by
$o = 0 ¢y 09~ " where p : B, — 2, is the Cayley map and
_a— Pz~ 5,Q,2

Gul2) = 1—{z,a)

for any z € B, (cf. notations and conventions in [21], p. 25). We establish
the following:

THEOREM 6. Let & > —1 and a1 = u+iv € By. Let V, : H2(12,) —
H2(2,) be given by

LA = |

1o
u-—l)—v}

F¢a(C))

where a = (a3,0) and s, = (1~ |a*)Y/%. Then H2(12,) admits a complete
orthonormal system consisting of eigenfunctions of V,.

The main ingredient in the proof of Theorem 6 is a result of T. Mazur
[15]. C£. also [17] for its unweighted version. Note that p, is absolutely con-
tinuous and has a strictly positive Radon—Nikodym derivative with respect
to m {the Lebesgue measure). Let G(uq) T Aut{f2,) be the subgroup of all
automorphisms leaving i, invariant modulo a holomerphic change of gauge
(cf. the terrainology in [15], p. 304). We shall need:

LEMMA 7. If a = (a1, 0) with ay € By, then ¢o € G(ia)-
Proof. We have to find a holomorphic function %, : {2, ~ C so that

(14) o (#a(2)) = | ol dpi
2
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for any domain {2 C §2,,. A calculation shows that

_ Gutu+l e )
#a() = (Cl(u 1) -v Glu-1)-v
for any ¢ € 12,,. Alsc,

2

SG
o(¢a(0)) = m@(o,

g 141
_ a1 a .
o) = ()
Next, (14) may be written as

[176. (O Po(62(0)® = [a(Q)1*0(0)* dm{¢) =0,

n
hence we may take ¥, to be

14
S )M"

0= (5=
Clearly 14, is holomorphic and satisfles (14). m

Finally, note that ¢, has (exactly) one fixed point. Hence, we may use
our Lemma 7 together with Theorem 2 of [15], p. 304, to end the proof of
Theorem 6.

The authors hope that the present paper may contribute to a better
understanding of the function spaces HZ2(2,).
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