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A subsequence characterization of sequences spanning
isomorphically polyhedral Banach spaces

by

G. ANDROULAKIS (Columbia, Me.)

Abstract. Let (zn) be a sequence in a Banach space X which does not converge in
norm, and let F be an isomorphically precisely norming set for X such that

(*) > e (@ng1 —wn)| < oo, Vz' € B
ki1

Then there exists a subsequence of (zx ) which spans an isomorphically polyhedral Banach
space. It follows immediately from results of V. Fonf that the converse is also true: If ¥ is a
separable isomorphically polyhedral Banach space then there exists a normalized M-basis
(zn) which spans ¥ and there exists an isomorphically precisely norming set F for ¥ such
that {*) is satisfied. As an application of this subsequence characterization of sequences
spanning isomorphically polyhecdral Banach spaces we obtain a strengthening of a result
of J. Elton, and an Orlicz—Pettis type result.

1. Introduction. In 1958 C. Bessaga and A. Pelcaydski proved tlhie
following : :

TreorEM 1.1 ([BP]). If (z,) is o non-weakly convergent sequence in a
Banach space X such thot

(1) sup_ 3 6% (@mps - B)] < 00
2t €Ba(X*) T

then there exists o subsequence of (xp) which is eqﬁivalent to the summing
basis (sn) of ¢p.

Recall that the sumrming basis (8,) of cg is defined by s, =e1+... T en,
for n € N, where (e,) denotes the unit vector basis of cp. In 1981 J. Elton
was able to eliminate the assumption “non-weakly convergent” and relax
the condition (1) and still show that ¢y embeds in the closed linear span
[2,] of (z,,). The result of J. Elton can be stated as follows:
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THEOREM 1.2 ([E2]). If (z,.) is a seminormalized basic sequence in a
Banach space X such that

@ S e (@) < oo,

(where ext Ba(X*) denotes the set of the extreme points of the dual ball)
then cp embeds in [&n).

Vz* € ext Ba(X")

In order to prove this result, J. Elton first showed that there exists a
polyhedral Banach space which embeds in [z,] (for the definition, examples
and properties of the polybedral Banach spaces see the next section). Then
the resuwlt of Theorem 1.2 follows from the following theorem of V. Fonf:

TusoreM 1.3 ([F3]). Every polyhedral Banach space X contains an iso-
morph of co, and if in addition X is separable, then X* is separable.

We prove a result stronger than Theorem 1.2 by eliminating the condition
of having a basic sequence, by replacing the set of the extreme points in
condition (2) by any isomorphically precisely norming set, and finally by
obtaining the precise way that a polyhedral Banach space exbeds in [z,)].
Our main result can be stated as follows:

THROREM 1.4. If (z,,) is a sequence in a Banach space X which does not
converge in norm, end F is an isomorphically precisely norming set for X
such thot

{3) }: |2"{zns1 — Tp)| <00, Vz*E€E,

n
then there exists a subsequence of (xy, ) which spans an isomorphically polyhe-
dral Bonach space. Conversely, if ¥ is a separable isomorphically polyhedral
Banach space then there exists an M-basis (z,) in Y, with |[zy| =1 for all

n, and an isomorphically precisely norming set E for Y such that [z,] =Y
and (3) holds.

We recall the following terminology:

DerINITION 1.5. Let (X, || - ||) be a Banach space.

A set F ¢ X* is called isomorphically precisely norming for (X, 1)),
(the terminology is due to H. Rosenthal [R]) if there exists ¢' > 1 such that

(a) B C C-Ba(X™),

(b) €™ z|| < sup.ep le(w)| for z € X, and

(c) for each z € X there is eg € E such that |ep(z)| = sup.ep |e(2)].

If I satisfies (a), (b), and (¢) for C = 1 then E is called precisely norming
(or boundary) for (X, || - |]).

A sequence (v;) of vectors in X is called a complete minimal system in
X with dual system (v}) if
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(a) the finite linear combinations of {v;};cy are dense in X, and
(b) 'U;'(’Uj) = &,’,j for all 7,7 € N.
An M-basts for the Banach space X is a complete minimal system (v;);en

for X with dual system (v});en such that whenever v}(z) =0 for all i € N
then = = 0.

Recall that the set of the norm achieving extreme points of the dual ball
of a Banach space X is defined as follows:

next Ba(X™) = {¢* € ext Ba(X*) : dz € Ba(X) |z*(z)| = 1}.

The set next Ba(X*) is an example of a precisely norming set for X.
Theorem 1.4 is a strengthening of the following remark which can be
easily derived from a result of V. Fonf [F4].

Remark 1.6. Under the same hypotheses of Theorem 1.4 there exist a
sequence (en) 6 {:{:1}N and an increasing sequence (Ig) of posmve 1ntegers
such that [(3°%, ei(xi — @3-1))x] is an i.p. space:

We sketch the proof of Remark 1.6 at the end of Section 3. .

The last section is devoted to applications of Theorem 1.4. One applica-
tion is given in C(K) spaces. If K is a compact metric space then DSC(K)
denotes the class of bounded differences of semicontinuous functions on K
(the definition appears in Section 4). An immediate corollary of Theorem 1.4
is the following:

THEOREM 1.7. Let f € DSC(K) \ C(K), where K is o compact metric
space. Then f sirictly governs the class of (sepurable) polyhedral Banach
spaces. '

This theorem was the main motivating result for this research. The def-
initions of the terms “strictly governs” and “governs” appear in Section 4.
This generalizes the following theorem of J. Elton which was also proved by
R. Haydon, E. Odell and H. Rosenthal:

TueoreM 1.8 ([B2], [HOR]). Let f & DSC(K) \ C(K), where K is a
compact metric space. Then f governs {co}

Another application is the following Orlicz~Pettis type result:

THEOREM 1.9. Let (yn) be o sequence in a Banach space X and let E be
an isomorphically precisely norming set for X. If co does not embed isomor-
phically in the closed linear span [yn] of (ya) and

3 e ()| <00, Vo' €,
T

then 3, yn converges unconditionally.
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2. Isomorphically polyhedral Banach spaces. Polyhedral Banach
spaces were introduced by V. Klee [K]. Axn infinite-dimensional Banach space
is called polyhedral if the ball of any of its finite-dimensional subspaces is
a polyhedron, ie. it has finitely many extreme points. ¢y is an example of
a polyhedral Banach space. A Banach space will be called isomorphically
polyhedral (i.p. in short) if it is polyhedral under some equivalent norm.
‘We are interested in isomorphic theory and therefore in i.p. Banach spaces.
Examples of i.p. Banach spaces are: ¢ (the space of convergent sequences),
the ¢4 preduals [F4], the spaces C(c) for any ordinal & (see [F2]), co-sums of
separable 1.p. spaces {easy to prove using Theorem 2.1), finite-dimensional
extensions of i.p. spaces (easy to prove), the Orlicz sequence space hjys where
M is a non-degenerate Orlicz function satisfying linog.o M{Kt)/M{t) = oc
for some K > 1 (see [L]). The following characterization of the separable
i.p. Banach spaces was proved by V. Fonf (note that if (X, |- ||} is a Banach
space, | - | is an equivalent norm and C > 1 then we say that these norms
are C-equivalent it C~||z|) < |z| < C||z| for all z € X):

THEOREM 2.1 ([F3], [F4], [F5]). Let (X, |||} be a separable Banach space.
The following are equivalent:

(1) For every & > O there emists a {1+ &}-equivalent norm |- | on X such
that (X, |- |) is polyhedral.

(2) For every ¢ > O there exists o (1+¢)-equivalent norm ||+ || on X such
that the set next Ba(X, | - [|}* is countable.

The next two lemmata give sufficient conditions for a Banach space to
be an i.p. space. We start with some notation: If X is a Banach space and X
is & subset of the unit dual ball then the space [X, || - || x] is the completion
of the space X in the norm

|zl = sup{{f(z)| : f € K}

for all z € X. Note that if X is separable then w*-cI(K) is a compact metric
space in the weak® topology and [X,| - ||x] is isometric to a subspace of
C(w*-cl(K)) and hence it is separable.

LeMMa 2.2. Let X be a separable Banach space having o boundary K with
K =2, Ki such that for all i we have K; C Kypy and X; = [X, | - |x.]
is an i.p. space. Then X is an i.p. space.
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Proof Take a decreasing sequence (€i)ien of positive numbers, and
using the main result of [DFH] (Theorem 1 and Proposition 1-2) find an
approximating polytope V; for the unit ball Ba(X;) of X; such that

Vi CBa(X:) C (1+&)V;

and V; is a closed absolutely convex body, i.e. there is a (1 -+ &;)-equivalent
orm. || - iy, whose unit ball is the set Vi. Moreover, the unit dual ball
Vi* has a countable boundary {h}}52; with the property that no weak*-
approximation point of {h; };"'j__l attaing its supremum on V;, where the set
of weak”™-approzimation points of a set A is defined as the set of points of
the weak”* closure of A which do not belong to 4:

w*-ap(A4) = w*-cl(4) \ A.
It is clear that for all 4 & N,
1
* S Ba(X}) D ——V*.
I/'; :) a"( 1.) 3 1 _i_EI.V‘:‘.
For i € N consider the natural restriction map T; : X — X, and note that
T*(Ba(X})) D K.
Now put
W* = w*-cleo{(1 + Ei)T,-*h; 14,7 € N}
and for £ € X define
Iz = sup{lf ()i : f € W}

We first show that || - || is an equivalent norm on X, Indeed, for every
¢ € X there exists * € K such that ||z|| = |z*(2)|. There exist i € N and
y* € Ba(X]) such that z* = T}'y*. Thus

lizl} = ly™(Tiz)].
Since y* € V;* and {h}}32; is a boundary for V¥, there exists j € N with
|y (Ziz)| < |RE(Tiz)] < (L+ e)|(T3h5) ()] < =l
Also, since
TP (hy) € (L+ €))7} (Ba(Xy)) C (1 + &) Ba(X"™)
we have
] < (L +e1)?ll=ll,

which proves the equivalence of the norms.
We now claim that for every z € X \ {0},

(@) sup{|(T?R) (@) : 4,5 € N} < sup{(1+ el (TTR)(@)| - 6,5 € N).

Indeed, let = € X \ {0}. Let 2* € K be such that [z = |2*(z)| and let
io € N with z* € Kj;,. Note that
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sup{|(Ty h5) ()| : i > do, § € N}

< sup{(1+e:)|(T7y") ()] 1 i > do, ¥" € Ba(X[)}
< (1 +&ig4) sup{|(T7y"Hw)| 1 i > do, 3" € Ba(X])}
< (1 +6igia) sup{|y*(z)] : ¥ € Ba(X™)} = (1+ £ip41) ||
= (1 +&igr1) sup{ly* ()| 1 y" € Ko} = (L + gig 1)l Tho 2l 2,
< (1+ gigu) sup{ly™(Tigz)| 1 " € Vi)

(1 + €ig+1) sup{ |3} (Tiyz)| : j € N}
< sup{(l+£m)|(T,”;h;“ (z)|: 7 e N}
< sup{(L+ )T ) (e} 4,7 € .

Also for every i € N there exists i’ & N such that

sup{|h}(Tiz)| : § € N} = |h}(Ti).

il

Thus
sup{|{TFhi)(x){: 4 < do, § € N} = max{|(T{h}) () 1 § < dg}
< max{(1 = £)|(Ty ) (@)] 1 < o)
< sup{(L + &) (T hg) ()] + 6,5 € N},
which finishes the proof of (4).
Obvicusly,
ext Ba(X, || - |)* € w*-cl{(1 + &;)T{ R : 4,5 € N}.
We claim that
(5) next Ba(X, |- )" = {(1 +&:)T7hj 14,5 € N},
which will finish the proof of the lémma by Theorem 2.1. In order to prove
(5) it is enough to show that no
z* € wh-ap{(1+e))Ty'ht 14,5 € N}

achieves its supremum on Ba{X, | - [|). Indeed, for such an z* there exists a
sequence

(L €10 Ty Bl Imes
which converges weak® to z*. If there exists an infinite subsequence of
(¢(n))nen which is constant, then the result follows by the choice of (k )mN
for each i € N. Otherwise, we can assume that i(n) -+ co. Since Eifn) — 0
we see that

Ti?n)h;((’;)) — z* wea,k*-, :
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ie.

&* € wh-cl{T/h : 1,7 € N}.
If there exists x € X with [zl = 1 and |z*(z)| = 1 then (4) gives a contra-
diction. m

The following lemma. is just a combination of Lemma 1.5 from [DFH]
and Theorem 2.1.

LeMMA 2.3. Let X be a Banach space having o boundary which may be
covered by a countable union of norm-compact sets. Then X is an i.p. space.

The next lemma gives sufficient conditions for detecting norm-pre-
compact sets.

LEMMA 2.4. Let {v;}§2, be a complete minimal system in a Banach space
X with dual system {v]}52,. If D C Ba(X*) has the property
o0
> wf |l sup [d{wi)] < oo
= deD
then D is || - ||-precompact.

Proof. Take £ > 0 and let n € N be such that

[=]
> o7l sup d(v)] < /4.
P— deD

Without loss of generality we assume that D is weak® compact, so that the
restriction DI[v;], of D to the (closed) linear span [v;]7; (Where D is now
considered as a subset of X**) is norm-compact. Choose {d;}._; C D such
that {d|[vi] iy }w I8 & §-net for Di[v;]f, whered = 3 Le(Yiy ozl Nlusll) 2

We claim. that {dj}lﬂl is a finite e-net for D, whlch finishes the proof.

Indeed, for d € D find § € {1,...,1} such that ||(d — d;)|[v]i=,| < 6. For
every finite linear combination z = Y 10, @ with ||z € 1 we have

|(d — dy){=)] < Z EARICEEAICH

lev“llﬂlwl\"l- Z g2 sup | (i)l <,

de=l i=ntl

which proves that {d;}}_, is an e-net for D since the finite linear combina-
tions of {v;} are dense in X, w

Finally, the last ingredient of the proof is a techmical lemma which makes
repeated use of diagonal arguments.
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LEMMA 2.5. Let K be o set which can be writlen as an incrensing union
K = U K of sets and let (zq)52; be o sequence in £ (K). Suppose
that for each m € N and for each subsequence (yn) of (zn) we have

where |yllx,. = sup [k(y)|
for y € Loo(K). Then there exists o subsequence (2,) of (%n) such that

[}

> nllznia = 2nlli,, < o0

n=1

inf |lyp — Yqllx, = 0;
PFEq

for each m € N,

Proof. We begin with the following claim: For every subsequence (y,)
of (z,), for every m € N, and for every £ > 0 there exists a subsequence
(zn) of (yn) such that

|21 — znllx,, <&, WneN
Indeed, assume that the claim is false. Thus, if we set
I ={neN:|y —yulx, <c},
then I is finite. Set ¢; = max [; + 1. Also, the set
Io={n>i1: lyy —ynlx. <€}
ig finite. Set 73 = max 1y + 1. We continue similarly. Then the subsequence
(yi,,) of (yn) satisfies
ggéfq i, — wig 1 5 >
which is a contradiction. The claim is proved.
Note that if (z,) satisfies the previous claim then

|zp — 24||x,. <2¢ forall p,gelN.

For m = 1, using this remark and a diagonal argument we can choose a
subsequence (z1) of () such that

1
HZ; "”Z;“Iﬁ < an foralln e Nand p,¢ > n.

Take m = 2 and similarly find a subsequence (22) of (2} such that

1

22 - 22l < 5

We continue in the same manner. It is eagy to verify that the diagonal
sequence (z7) satisfies the statement of the lemma. =

for all n € N and p,¢q 2 n.

3. The proof of the main result. Before we present the proof of The-
orem 1.4, we give some more preliminary ingredients. We use the following
subsequence dichotomy for the ¢ basis, due to J. Elton:

icm
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TueoreM 3.1 ([E1]). Bvery seminormalized weakly null sequence which
does not have a serniboundedly complete subsequence, hos a subsequence
equivalent o the unit vector basis of co.

Recall that a sequence () is called semiboundedly complete if for every
sequence (An) C R we have

m
sup H ?;1 Anln

ki

< oo = A, — 0.

Our main result will follow from

THEOREM 3.2. If (m,) is o basic sequence in a Banach space X with
infy ||z, > 0, and E is an isomorphically precisely norming set for X such
that

> | (@npa— o) <00, Va" € E,
T

then there exists a subsequence of (x,) which spans an isomorphically poly-
hedral Banach space.

We postpone the proof of Theorem 3.2 for the moment. We first give a
proof of Theorem 1.4 using the result of Theorem 3.2.

DEFINITION 3.8. Let (X, |+ ||) be a Banach space and ¥ be a linear (not
necessarily closed) subspace of X*. Then Y is a norming subspace if there
exists C' > 0 such that '

sup |y(z)| £ Cllz|} for every z € X.

1
=lz|| <
C yey, [lyf=1

The following criterion for extracting basic sequences will be used:

CRrITERION ([KP], see also [M]). Let (X, || - |I) be o Banach space, Y be
a norming subspace of X*, and (x,) be a sequence in X such that inf, |Zr
> 0. In each of the following cases () has o basic subsequence.

(a) y(wy) =+ 0 for ally €Y, _ ‘
(1) (y(n)) is o Gauchy sequence for ally € Y yet there is no x in X
with y(2y, ~2) — 0 for ally €Y.

Proof of Theorem 14. Let (z,) be a sequence in a Banach space
X which does not converge in norm, and let E be an isomorphically precisely
norming st for X such that (3) holds. We define the (not necessarily closed)
subspace ¥ = span(E) of X*, Then ¥ is norming. If (b) of the above
criterion applies then (z,,) has a basic subsequence, and the result follows
from Theorem 3.2. If (b) does not apply then there exists  in X ’such
that y(z, — ) — 0. Since (z,) does not converge in norm, there exists a
subsequence (zn,) of (2,) with inf |lzq, — @[ > 0. Thus (a) of the above
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criterion gives that there exists a subsequence (#n, ) of (zn,) such that
(Tn,, — ) is a basic sequence. Since

w0 .
3 2" [(Bary,, — 3) — (g, — D] < o0,
i=1

Theorem 3.2 gives the existence of a subsequence () of () such that
[(y¥n ~ x)n] is isomorphically polyhedral. Thus the 1-dimensional extension
[(yn — z)n] + [z] is an 1.p. space, and therefore so is its subspace [y,].

Conversely, consider a separable isomorphically polyhedral Banach space
Y. By Theorem 2.1 there exists a countable isomorphically precisely norm-
ing set B = {f1, fa,...} of non-zero functionals which are finitely linearly
independent, i.e. dim|f;]7.; = n for all n. Using [M] find an M-basis (z,) of
X with dual system (z},) such that [#}]7, = [fiZ,, and [Jz,] = 1 for all
n. It is trivial that (3) holds. w

Proof of Theorem 3.2. We can assume without loss of generality
that X is separable (e.g. by considering X = [z,]). For every =z € X we
define

el = sup (o).

This defines an equivalent norm on X and F is a precisely norming set for
(X, || -)- Also, the weak* topology is metrizable on Ba(X*), and let d(.,-)
denote the mduced metric. For m € N we define (set zg = 0)

K= {&" € Bax, - "= 3o

n=1

Then K, is a weak™ closed subset of Ba(X™) for every m € N, Ky C K, C
~yand K o= {0 K., D E. Define f: K — R by

fk) = limh(z,), Vke€ K.

Zn = oney)| <m ).

We ‘separate the following cases:

CasE 1: Assume that there exists m € N such that the restriction FlEm

is not continuous (K, will always be equipped with the weak* topology of
X, for every n € N).

We claim that for every m’ > m there exists a sequence (27 ), satisfying:
o (27 )n is a subsequence of (®a).
o (g™ “H)n is a subsequence of (™ ),,.

o (27| Km)n] is an i.p. Banach space (where (27| Kymi)n] denotes the
completlon of the normed space span(z™ | Ko )n ).
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Indeed, for m’ = m we have

sup { > & (@n = wn-1)l i 2" € Ba{[(zn Kom)nl, | - HC(Km))*} <m
kil

and (Tn!Km)n is non-weakly convergent in C'(Ky,). Thus by Theorem 1.1
there exists a subsequence (@), of (2,) such that (z™|K., )y, is equivalent
to the sumnming basis, Thus [(2!7'| K )x] is an i.p. Banach space. The proof of
the inductive step i8 a repetition of the same argument, since the hypothesis
that f| Ky is not continuous gives that f|K, is not countinuous for every
m' > m. The proof of the claim is complete. '

Set y, = zt for every n > m. Then (yu)n>m 18 a subsequence of (z,)
and satisties the assumptions of Lemma 2.2, therefore [yn| is an i.p. space.

CASE 2: Assume that f|K,, is continuous for every m e N. We separate
two cases:

SUBCASE 2.1: Assume that there exists a subsequence (yn) of (zn) and
there exists m € N such that

inf || (yn f)le!lc(xm> >0
and therefore for every m’ > m we have

inf {[(yn — ) Emlc@,n > 0

Thus for every m/ = m, (4 — F)|Em )n is a weakly null seminormalized
sequence (by the definition of Kp/, note that vl K lore,.y < m' for all
n & N).

For every subsequence (2,) of (yn) and for every m' =m,m +1,... we
find that ((2, — )| Km/ )n is not semiboundedly complete.

Indeed, for every n € N we have
(21 = f) = (22 = )+ .o (1) (o = O Em o,
< filey = 22 4 oA (=1 2 Ko o, + 1 1B me o

There exists k € IG, such that

Wz = 2o+ ("’"'1)TM|"]'31L]|KW e
T ()]
< (e = 22) (k)| + (2 — 2)(R) + .+
< Z “17 - wz-— +m < 2m’.
Thus
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suplif(z1 — f) = (22 = )+ + (=1)" (oo = O] | Ko lloxc,)

<2m -+ ||| Kol -

‘Therefore, the sequence ({2, — f)|Kp)n is not semiboundedly complete
since the sequence ((~1)"*1},, does not converge to zero. ,
We claim that for every m’ > m there exists a sequence (y27*'),, satisfying:

* (y') is a subsequence of (). /
e (y7" 1), is a subsequence of (37 )n.
o (2" [Kmdnls |- lloex,,)) is an i.p. Banach space,

Indeed, for m' = m, {(yn — f)|Km)n is a weakly null seminormalized
sequence which does not have any semiboundedly complete subsequence
(by Claim B). By Theorem 3.1 there exists a subsequence W n of (yn)
such that ({7 — f)[Km)r is equivalent to the unit vector basis of ¢p.
Thus ([((y3* — PIEKmdnls || - leex.,y) i an ip. Banach space. Hence
(7 = F)Km)n] + [f/Kom] is an ip. Banach space, and therefore so i
its subspace [(y;*|&m)}n]. The proof of the inductive step is a repetition of
the same argument. The proof of Claim C is complete and the proof of
Subcase 2.1 finishes identically as in Case 1.

SUBCASE 2.2: Assume that for every subsequence (yn) of (zn), and for
every m € N, we have
0t |y = )1 Kmllo(x) = 0.
It is clear that in this case for every subsequence (y,) of {zn), and for every
m € N, we have
inf ”(yn - yn’){Km”C‘(Km) =0.

nEnt
Using Lemma 2.5 find a subsequence (z,) of (z,,) such that
o0
> nfl(zns — 2Kl o,y <o, m=1,2,...
n==]

Since (zn) is a basic sequence with inf, |z, > 0, the sequence of the
biorthogonal functionals is bounded:
sup |z, || = C < oo,
ks
Define

T
Un =Zngt =z, ¥ o=[unlily, oh==30RY, n=1,2,...
f=1

Then (v,,) is a complete minimal system for ¥ with dual gystem (v}). We
have '

loal €Cn, n=1,2,...
It is-clear that for each m € N,
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D hl - sl Emlle g, < oo

and therefore by Lemma 2.4 each K, is || - ||-precompact (actually, || - |-
compact}. Using Lemma 2.3 we conclude that Y is an i.p. space, as well as
f2n)21 = Y + [21]. The proof of Theorem 3.2 is complete. w

Using Theorem 1 of [F4] we can give an easy proof of the following result
weaker than Theorem 1.4.

Remark 1.6. Under the same hypotheses of Theorem 1.4 there exist a
sequence (£,) € {1}" and an increasing sequence (Ij,) of positive integers
such that [( i‘;l gi(z; — zi—1))k] is an i.p. space.

Indeed, the proof of Theorem 1 in [F4] shows the following:

Let (X, ||-||) be a Banach space, Ky C K; C ... be subsets of Ba{X*) and
let (wy) be a sequence in X. If {w,) is basic, inf,, |wa]l > 0, 3, [lwn|Kxl|| <
oo and |J,, K» is an isomorphically precisely norming set, then [w,] is an
i.p. Banach space.

Now, the procf of the assertion of the remark can be sketched as follows:
If there is no subsequence of (z,) equivalent to the summing basis, then
there exists a sequence (£,) € {1} such that

(iei(d’?i - 5131‘+1)) is not bounded.
T
dx=1

Therefore there exists an increasing sequence (ng) of integers such that
Tk
”Za‘i(mimwi_l)” 22kk, Yk e N
i=]

Set 2x = ity £4(®; — zi—1) for every k € N. Since (z;) does not converge in
norm, and (y(z)) is Cauchy for every y € span F, we deduce (as in t1.1e proof
of Theorem 1.4) that there exists z € X (z can also be zero) and an increas-
ing sequence (my) of integers such that (zm, — z) is a basic sequence. Set

Ky == {EL'* = Ba(X*) : Z ‘w*(mn - $n~1)| < m}! Ym &N

n=1
(where zg = 0). We easily see that
M Kk < o0,
| e, — 21
Thus, by the above mentioned Theorem 1 of [F4] we conclude that

'ﬂmk

[( > eilwi- ﬂ3«;~1)) J is an i.p. space.

il
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4. Applications. As a first application we strengthen a corollary of
Theorem 1.2 which was also proved in a different way by R. Haydon, E. Odell
and H. Rosenthal [HOR]. First we need some definitions. Let K be a compact
metric space. By (K) denotes the class of bounded Baire-1 functions on K ,
Le. pointwise limits of uniformly bounded sequences of continuous functions
on K. DSC(K) denotes the space of bounded Differences of SemiContinuous
functions on K, i.e.

DSC(K) = { f: K — R there exists a uniformly bounded sequence
(frlney € C(K} such that lim f.(k) = f(k) and

i [fra ()~ falk)| < o0 for all k& K ).

n==1

Let f be a non-continuous fanction on Bi(K) and C be a non-empty
class of Bahach spaces. Using the terminology introduced by R. Haydon,
E. Odell and H. Rosenthal [HOR), we say that f governs C if for every uni-
formly bounded sequence (f,) of continuous functions on K which COLVerges
pointwise to f on K, there exists X € ¢ which embeds isomorphically in
the closed linear span [f,] of (f,) equipped with the supremurn norm. We
say that f strictly governs C if for every uniformly bounded sequence {f,)
of continuous functions on K which converges pointwise to f on K there
exists a convex block sequence (g,,) of ( Jn) such that the closed linear span
[gn] of (gn) is isomorphic to some X & €. A, corollary of Theorem 1.2 which
was proved in a different way by R. Haydon, E. Odell and H. 'Rosenthal can
be stated as follows:

TueoreMm 1.8 ([E2], [HOR]). Let f € DSC(K) \ O(K), where K is a
compact metric space. Then f governs {¢g).

A generalization of this result is the following;:

THEOREM 1.7. Let fe DSC(K) \ C(K), where K is o compact metric

space. Then f strictly governs the class of (separable) polyhedral Banach
spaces,

To deduce Theorem 1.7 from Theorem 1.4 we need the next well known
remark. We first fix some terminology: If A is a subset of a Banach space X
then A denotes the weak® closure of 4 in X**. Also if A, B are non-empty
subsets of (X, [|- (|} then the minimum distance hetween A4 and B is defined by

md(4,B) =inf{]la—b|:ac 4, be B}.

Remark 4.1. If A, B are convex subsets of a Banach space, then
md(4, B) = md(4, B).
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Thus, if f € DSC(K)\ C(K) and (f,) is a bounded sequence of contin-
uous functions which converges pointwise to f on K, then by Remark 4.1
there exists a convex block sequence (g,) of (f,) such that

oo

D lgne1(k) = ga(k) <00, VEEK,

n=1
Since f & C(K), we can also assume (by considering an appropriate sub-
sequence) that (g,) is a seminormalized basic sequence. Thus Theorem 1.4
gives that some subsequence of (g, ) spans an i.p. Banach space, which proves
Thecrem. 1.7.

As a second application we obtain an Orlicz—Pettis type result:
THEOREM 1.9. Let (yn) be o sequence in a Banach space X and let

B be an isomorphically precisely norming set for X. If ¢y does not embed
isomorphically in the closed linear span [y,] of (yn) and

D ls"(n) <00, Va" € B,
n

then Y yn converges unconditionally.
Proof. For (n) € {£1}V define the sequence () by

1
Ly == Z'm;y.,;, Yn € N
Aol

We see that the sequence (x,) satisfies (3). Since ¢g does noja embed iso-
morphically in {y,] = |2, the conclusion of Theorem 1.4 faals: '_I‘hus the
sequence (@n,) converges in norm. Hence 3 ¥, converges unconditionally. w

As a final application of Theorem 1.4 we prove the following immediate
corollary which has been proved previously by V. Fonf [F4].

COROLLARY 4.2. Let X be a Benach space which does not contm'?z an
isomorph of co. Let A be a subsel of X, and let B be an isomorphzcall-y
precisely norming subset of X*. If for cvery b € B the set {b(a) : @ € A} is
bounded, then A is bounded.

Proof. If 4 is not bounded, we can find a sequence (a,) C A such that
[Gn|| > 2" for all n € N, Set

.
Z €y
o |a11“ 1

i=1

3 (s~ an) <00, Wb EB.

Since X does not contain an isomorph of ¢g, bg{ Theorem 1.4 we deduce that
(o) converges in normn, which is a contradiction. =

Thus
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Remark 4.3. It can be proved that if ||-|| is a Gateaux differentiable and
locally uniformly convex norm on ¢y, and B is an isomorphically precisely
norming set for (cg, || - |) then for any A C ¢ with {b(a) : a € A} bounded
for every b & B, the set A is bounded.
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The Abel equation and total
golvability of linear functional equations

by

G. BELITSKTI (Beer-Sheva) and Yu. LYUBICH (Haifa)

Abstract. We investigate the solvability in continuous functions of the Abel equation
w(Fz) — p(w) = L where F is a given continuous mapping of a topological space X. This
property depends on the dynamics generated by F. The solvability of all linear equations
Ple){ Fz) + Q(r)d{x) = v(x) follows fram solvability of the Abel equation in case F'is a
homeomorphism. If F' is noninvertible but X is locally compact then such a total solvability
is determined Dy the same property of the cohomological equation o(Fzx) — ) = v(a).
The smooth situation can algo be considered in this way.

1. Introduction. Results and applications. The Abel equation (A.e.)
is a special kind of functional equation, namely,

(L1 p(Fa) = p(z)=1 (z€X)

where F : X — X is a given continuous mapping of a given arbitrary
topological space X, and ¢ : X — C is an unknown function. N. H. Abel [1]
(pp. 36-39) considered this equation on an interval [0,a) C R.

We say that (L.1) is solvable if this equation has a continuous solution
. Note that if the A.e. has a solution ¢ then the real part of ¢ is also a
solution which is continuous since ¢ is. Therefore the solvability of the A.e.
over C is equivalent to its solvability over R.

Being written in the form
p(Fz)=p(z)+1

equation (1.1) means that we have the commutative diagram
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