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Remark 4.3. It can be proved that if ||-|| is a Gateaux differentiable and
locally uniformly convex norm on ¢y, and B is an isomorphically precisely
norming set for (cg, || - |) then for any A C ¢ with {b(a) : a € A} bounded
for every b & B, the set A is bounded.
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The Abel equation and total
golvability of linear functional equations

by

G. BELITSKTI (Beer-Sheva) and Yu. LYUBICH (Haifa)

Abstract. We investigate the solvability in continuous functions of the Abel equation
w(Fz) — p(w) = L where F is a given continuous mapping of a topological space X. This
property depends on the dynamics generated by F. The solvability of all linear equations
Ple){ Fz) + Q(r)d{x) = v(x) follows fram solvability of the Abel equation in case F'is a
homeomorphism. If F' is noninvertible but X is locally compact then such a total solvability
is determined Dy the same property of the cohomological equation o(Fzx) — ) = v(a).
The smooth situation can algo be considered in this way.

1. Introduction. Results and applications. The Abel equation (A.e.)
is a special kind of functional equation, namely,

(L1 p(Fa) = p(z)=1 (z€X)

where F : X — X is a given continuous mapping of a given arbitrary
topological space X, and ¢ : X — C is an unknown function. N. H. Abel [1]
(pp. 36-39) considered this equation on an interval [0,a) C R.

We say that (L.1) is solvable if this equation has a continuous solution
. Note that if the A.e. has a solution ¢ then the real part of ¢ is also a
solution which is continuous since ¢ is. Therefore the solvability of the A.e.
over C is equivalent to its solvability over R.

Being written in the form
p(Fz)=p(z)+1

equation (1.1) means that we have the commutative diagram
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Key words and phrases: functional equation, Abel equation, cohomological equation,
wandering set.
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x—Es>x

aal l
c—>C

with Sz = 241, i.e. F and § are semicongjugate via . Thus, the solvability of
the A.e. is connected with some deep intrinsic properties of the mapping I
We consider the equation

(1.2) Pa)p(Fz) + Qz)y(z) = (=)
with an unknown vector-valued function ¢ : X — C'. The functions P,Q :
X — Hom(C",C") and v : X — C" are given and they are supposed to be
continuous. {1.2) can be viewed as a system of r scalar linear equations with
! unknown scalar functions; then P and @) are r x [-matrix-valued functions.

Equation (1.2) is called totally soluable if it has a continuous solution
for every continuous . From now on, solution means “continuous solution”.

The following theorem shows a crucial role of the A.e. for the total solv-
ability of the general equation (1.2). Call the latter equation nondegenerate
if

rank P(z) = rank Q(z) =» (z e X).

THEOREM 1.1. Let F' be a homeomorphism. If the A.e. is soluable then

any nondegenerate equation of the form (1.2) is totally soluable.

In the case of an injective mapping F the conclusion of Theorem 1.1
is valid at least under some additional assumptions on the topology of X
(see Corollary 1.6 below). If F' is not injective then the solvability of the
A.e. does not imply the total solvability even in the case of the so-called
cohomelogical equation (see (1.8} and Example 1.7 below).

‘The point is that the solvability of the A.e. implies some special prop-
erties of the topological dynamical system (X, F'), To explain this we note
that if ¢ is a solution of the A.e. then

(1.3) p(F"z) ~ p(z) =n
where F™ is the nth iteration of F, n € N={0,1,2,...}.

ProrosiTioN 1.2. If the space X is compact then the A.e. has no solu-
tion.

Proof Being continuous, any solution ¢ is bounded, which contradicts
(1.3). m

Thus, the A.e. is not solvable if there exists an F-invariant compact
nonempty set K ¢ X. A fortiori, if the A.e. is solvable then F has no
periodic points. Certainly, this can be seen directly from (1.3).
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Now let us call a closed set A C X an absorber if its image F(A) is
contained in A (i.e. A is invariant) and for any point zy € X there exists
a neighborhood Vo = V(zo) of 2y and a number ko = k(zy) such that
F*(Vp) € A for n > ky. Similarly, a closed set N C X is said to be a
nozdle if its preimage F~1(N) is contained in N (ie. X \ N is invariant)
and for any xy € X therc oxists a neighborhood W, = W(zo) of zg and
a number kg = k(o) such that F~"(Wp) ¢ N for n > k. Thus, if F
is a howeomorphism then a nozele for F is an absorber for the inverse
mapping FL,

TaworEM 1.3, If the A.c. is solvable then there emist an absorber 4 and
a nozzle N awith emply intersection. Conversely, let F be o homeomorphism
and suppose the spoce X normal. If there exist an absorber and a nozzle with
empty intersection then the A.e. is solvable. ‘

Both Theorems 1.1 and 1.3 are proved in Section 3. We do it using a
technique of extension of solutions developed in Section 2.

A regular construction of an absorber is the following. Take an open
covering of X, ' .

X=|JUa,

gt
and some function ¢ : I — N, Then
(L.4) A= U PHUL)
a kzgle)

is an absorber for F' (the bar means closure). Any absorber A contains a
reguler absorber, namely, the following one:

U U i)
)

BEX hh{w

where k() and V() come from the definition of an absorber.
Similatly, any nouzle contains a set of the form

(15) N“:U U F"'h(Ua).

@ kzg(e)

It is a nozzle if F is a homeomorphism, The construction (1.5) without the
bar has all properties of the nozale except possibly for being closed, but then
it may happen that X\ IV is not invariant. Indeed, consider X = RU{i} C C
and let F(z) = o--1, ¢ € R, F(i) =0 € R Let Uy = {i}, U1 = (~o0, 1),
Us = (e —2,0042) (@2 2), ¢(0) =1, g(1)=1, g(ar) = @+ 2 (@ > 2}. Then

U U ka(Ua)=(—0010)-

o kzgla)
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Its closure is N = (—00,0], and X \ N = (0,00) U {¢}. The latter is not
invariant since F(i) =0¢ X \ N.

Thus, if the A.e. has a solution, then there exisis a pair A, N of the
form (1.4), (1.5) respectively with AN N = §. To formulate this in more
relevant dynamical terms, let us introduce the concept of a wandering set
(cf. [4], §0.2).

We call an open nonempty set U C X wandering if there exists a number
v > () such that

(1.6) FoynF™{U) =0

for all n,m € N such that |n ~ m| > v. Note that if U is wandering then
(1.6) holds for all integers n,m with |n — m| 2 v. Indeed,

(L.7) FP(En (Vi) n Fm(Va)) © B2 (Vi) N Fm+e(Va)

for all p > 0 and arbitrary sets Vi and V; in X. An arbitrary nonempty set
S C X is called wandering if it has a wandering neighborhood.

Obviously, any subset of a wandering set is also wandering. Every peri-
odic point (in particular, every fixed point) is nonwandering (i.e. the corre-
sponding one-point set is).

In Section 4 we show that all compact sets are wandering whenever the
A.e. is solvable. Furthermore, we prove

THEOREM 1.4. If the A.e. is solvable then there exists a nondecreasing
sequence of open wandering sets which covers X. Conversely, assume that
the space X is normal and there erists o sequence {Uj }o2, with the above
properties. In addition, suppose there exists a sequence v; < vy < ... of
positive integers such that all the mappings

Fe: | Frn) 5 U Fr+r(un)
‘nZVk nzu;c

are homeomorphisms. Then any nondegenerate equation of the Jorm (1.2} 4s
totally solvable.

The A.e. is a special case of the cohomological equation (c.e.)
(1.8) p(Fz) — p(z) = y(z),
which, in turn, is a particular case of (1.2).

The solvability problem for the c.e. in C(X) on a compact space X was
investigated earlier (see [2] for details and references). Now we suppose that

X is locally compact and countable at infinity (l.c.c.i.). The countability at
infinity means that there exists a covering

(19) - x={x

=1
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where K; are compact. (Without loss of generality one can assume that

K; C Kiz1.)
For any K C X we consider the mappings
(1.10) U Frg) S | oK), veN

ney nav
Obviously, all these mappings are surjective.

THEOREM 1.5. Assume that the space X is l.c.c.i. Then the following
statements are equivalent,

(a) Any nondegenerate equation (1.2) is fotally solvable.

(b) (1.8) is totally solvable. ,

(¢) Bvery compact set K C X is wandering and there ezists a numnber
v =v{K) such that the mapping (1.10) is injective.

(d) Buery compact set K C X is wandering and there exists a number
v =v(K) such that the mapping (1.10) is a homeomorphism.

We prove this theorem in Section 5. As a consequence of Theorems 1.4
and 1.5 we obtain

COROLLARY 1.6. Assume that the space X is Le.c.i and F' is injective.
Then the following statements are equivelent.

(«) Any nondegenerate equation (1.2) is totally solvadle.

(B) The A.e. is solvable.

() Buery compact set in X is wondering.

Note that the implication (3)=-(a) may fail in the noninjective case.

ExaMPLE 1.7. In the space X = [1,00) let us take the following se-
quences:

1 I4 -t (1£1<n—1),
= el () an—1
o =lt g b {5-1—51; (L n).
Obviously,
l<a < <o, <t <. <all =p{" <141,
and o) — 1 and b ~ | as n tends to inﬁnityi Let Fu‘t_)l_(i)a piecewiae. linear
mapping such that P = af*Y and F(bﬁ.)) = by, ’. The continuous
function ;
! (1<o<al’ =2,
PO=ge— 1) P <acirr iz,
1
satisfies the A.e. On the other hand, F‘(ag)) # F! B (1 £ n~2) an.d
Fr1(gMy = F“"l(b%l)). This means that condition (c) of Theorem 1.5 is
violated. Hence, the c.e. (1.8) is not totally solvable.
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Let us point out an interesting application of our general results.

TEEOREM 1.8. Let X be a lc.c.i. topological group. For any element
hEX the ce.

(1.11) p(hz) — p(z) = ()
is totally solvable if and only if h is aperiodic and the set {h™ | n € N} of
powers has no limit points.

Proof. Since the mapping Fe = he is a homeomorphism of X, one can
apply criterion () from Corollary 1.6. '

Suppose a compact set is nonwandering. Then it has a neighborhood
whose closure K is compact, and there exists a subsequence {n;} C N such
that A K N K % 0, hence A™ € KK ~!. Since KK ! is also a compact set,
the set {h™} is either finite (and then h is periodic) or this set has a limit
point.

Conversely, suppose all compact sets are wandering. In particular, so is
the set {e} where ¢ is the unit element. This means that 2" 5 e for all n, i.e.
h is aperiodic. Now suppose that the set {A" | n € N} has a limit point g.
Let W be a central symmetric compact neighborhoed of e. Then A™ € Wy

for a subsequence {n;} C N, hence g=% € A~ W, and so W is nonwander-
ing. m '

In particular, Theorem 1.8 is applicable to the c.e.
(1.12) p(z+h) ~ @) = ()

on R, so that (1.12) is totally solvable. However, this case is rather simple
itself (see [3]). In general, the problem of total solvability on R can be

effectively treated by Theorem 1.5. We can restrict ourselves to the case
of ce.

TaeoREM 1.9. The c.e.
(1.13) P(Fz) — p(z) = v(x)

on R is totally solvable if and only if F' has no fived points and F' is injective
on a ray of the same direction as o = sign(Fx — 2).

Proof. Suppose (1.13) is totally solvable. Then the corresponding A.e.
is solvable, hence Fz 5 z for all z. Let, for definiteness, Fz > z for all z,
so that ¢ = 1. Consider K = {0, F0]. By Theorem 1.5 there exists v > 0
such that F is injective on | J,,»,,, F™(K). A fortiori, F is injective on the ray
[F“0, 00). -

Conversely, let, for definiteness, Fz > z for all z and let F be injective on
a ray [g,00), By Theorem 1.5 we only need to establish that every compact

set K is wandering. It is sufficient to prove that every segment [a,b] is
wandering. 3
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For any = the increasing sequence {FPz}22, tends to infinity, otherwise
its limit is a fixed point. Thus, for any z we get FPx > ¢ with some ex-
ponent p. Let p = p(x) be minimal possible. Then for any z there exists a
neighborhood U such that FP®)y > ¢, ie. p(y) < p(x) for y € U. Hence, the
function p is bounded above on every compact set.

Let g = sUp,<.<p P(x) and let [o, 8] = F¥a,b]. Then [o, 8] C [g, 0).
Since F' is nondecreasing on [, 8], we get

(114) Fla,b] = F*~la, §] = [F"~7a, F™ig]
for all n > ¢. Note that there exists a segment [c,d] containing all F™[a, b]

with 0 < m < ¢. In particular, [c,d] D [, 8]. Let ¥ = p+ g where i satisfies
Fra > d. Then (1.14) is valid for m 2 0 and n — m > v. We prove that

F"a, b N F™[a,b] = 0.
In the case m > g we have
F™a,b) N F™a,b] = [F"9a, F*98] 0 [F™ 90, F™ 790

by (1.14). The last intersection is empty since F™ ™o 2> Fra>d> g, s0
that F"9q > F™ 0.
If m < g then

F™a, b F™a,b] C [F*" 9, F*0] N e, d].
The last intersection is empty since F* % > Fha >d. u

COROLLARY 1.10 ([3], §3.2). If F' is a horneomorphism of R without fized
points then the c.e. (1.13) is totally solvable.

As an application of Theorem 1.8 we consider the c.e. {L.11) on X =
GL(n), the group of all invertible matrices over C or R. .

Let us say that a matrix h is quasiuntbary if b = t“lut,‘where uis a
unitary matrix snd ¢ € GL(n). A matrix h is quasiunitary if and only if
|A| = 1 for all eigenvalues X and there are no Jordan blocks of order > 1 for
every A, Equivalently, a matrix h is quasiunitary if and onlyl if the sequence
{rn}%e___ is bounded, and morcover, if and only if there exist two bounded
subsequences {h™} and {A~™} with n; — co and my; — 0.

Lemma 1.11. Let b € GL{n). Then the sequence {h"}52o has no w-limit
points in GL(n) if and only if h is not quasiundtery.

Proof. Let h be quasiunitary. Then the sequence {h" %l—o? has an TL:'-
limit, point g € M{n). The matrix g is invertible. Indeed, let g = lim; 00 A7,
0<my <ng < ..., and suppose det(g) == 0. Then det(h™) — 0, hence
det(h~™) — oo, contrary to the boundedness of (A"} o

Conversely, suppose that g = limy.co h™, where n; — 00 and g € GL(n).
Then ¢~ = lm; o =™ . Hence, h is quasiunitary. w
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COROLLARY 1.12. The c.e. (1.11) with X = GL(n) is totally solvable if
and only if the matriz h is not quasiunttary.

2. Extension of local solutions. Let us say that a continuous vector-
valued function o), £ € X, is a local solution of equation (1.2) on a subset
M C X if oy satisfies (1.2) for z € M.

In the case M = X any local solution is a solution in the previous
sense. We call it then a global solution. We say that a global solution ) is
an extension of 9y, a local solution on a subset M, if ¥|M = | M, For
example, if v|M = 0 then the function 4p(z) = 0 is a local solution (Jocal
zero solution) and any global solution % such that 40| M == 0 is its extension.
Note that if 1% is a local solution on M then by the substitution ¢ = w1,
(1.2) is reduced to the equation

(2.1) P(z)p(Fz) + Q(z)p(z) = F(=z)
with

Y(z) = v(z) — Plw)yo(Fz) — Q(x)ho ().
Obviously, 7|M = 0 and the global solution v of equation (1.2) is an ex-
tension of the local solution vy if and only if ¢ is a global solution of (2.1)
extending the local zero solution.
We see that the extendability of local solutions does not depend on .
"Thus, every local solution can be extended to a global one if it is so in the
case of the local zero solution.

LEmMA 2.1. Let A be an absorber and let N be a nozzle. If
(2.2) rank Q(z) =r,

then any local solution of equation (1.2) on A4 can be estended to a global
solution. If

(2.3) rank P(z) =r
and the mapping
(2.4)  F P \mtN) S X\ e v

is o homeomorphism then any local solution vy, of equation (L.2) on N can
be extended to a global solution.

Proof. Let 4|4 = 0. We need a global solution of (1.2) vanishing on A.
It follows from (2.2) that the matrix Q(z)Q*(2) is ivertible for all &, so
Q" (2)(Q(x)Q*(z)) ! is a right inverse to Q(z). By substituting
W(z) = @"(2)(Q(2)Q(e)) " w(a)
into (1.2) we get

(2.5) w(z) = (Tw)(z) +(x)
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where T is a linear operator in the space of continous vector-valued func-
tionsd,
(2.6) (Tw)(z) = —P(2)Q" (Fz)(Q(F2)Q* (Fz))"'w(Fz).
We need a solution w of (2.5) vanishing on A. Formally,
o0
w(z) =Y (T")(z).
n=
Tn fact, this is a solution provided the series locally uniformly converges. In
our case we have even more: for any r € X this series reduces to a finite
sum with a locally constant number of terms. Indeed, since A is an absorber,
any zp € X has a neighborhood Vy-such that F™(Vy) C A for n > ko, This
yields T™|Vy = 0 for n > Ky, hence
kg1
sla)= 3 (T™)(a)
n=0
for z € Vp. It remains to note that w|A = 0 since A is an invariant set. The
first part of Lemma 2.1 is proved.

For the second part, we consider the space E of all continuous vector-
valued functions w such that w|N =0,

It follows from (2.3) that the matrix P(x) P*(z) is invertible for allz € X,
so P*{z)(P(z)P*(x))~" is a right inverse to P(z). For any w € E' we define
the function ‘ .

ho(y) = {P*(ﬁ“ly)(P(F“ly)P*(ﬁ“"ly))’lw(F‘ly) (y € X\ intN),
0 (y € int N).

Ify &€ N\ intJA, then ﬁ”ly & N by definition of a nozzle, and th'erefore
ho(y) = 0 since w|N = (. The function h,, turns out to be contlpuous.
Indeed, A, |N = 0 and int N © N since N is closed. Thus, h, € E. It is easy
to see that P(z)he(Fz) = w(z), ie. Plz)(Llw)(Fr) = w(z), z € X, where
L: E — F is the linear operator defined by Lw = he.

Let v € E. By the substitution 9 (x) = (Lw)(z), w € B, equation (1.2)
takes the form
(2.7) w(w) = (Sw)(x) + v(x)

where S : B — B is the linear operator given by (Sw)(z) = —Q(z)(Lw)(x).
Since N is a nozzle and v € K, the series

o) = Y (&)

nz0

defines a solution w € F of equation (2.7) as before in the case of absorber. m
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COROLLARY 2.2, Under the conditions of Lemma 2.1 egquation (1.2) is
globally solvable if it is locally solvable on an absorber or on a nozze.

COROLLARY 2.3. Suppose the space X is normal. Let A be an absorber
and N be a nozzle. Suppose that all conditions of Lemma 2.1 are sotisfied.
Then any local solution v on the intersection A NN can be extended to o
global solution.

Proof The function
M) = {’y(m) (z € 4),
P(z)ho(Fz) + Q(a)o(z) (z € N),
is continuous on the closed set A U N, It follows from normality that there
exists a continuous extension v, of ¥ to the whole X, By Lemma 2.1 there
exists a solution 1 of (1.2) with «y; instead of y such that ;[N = )| N.
Similarly, there exists a solution 13 of (1.2) with 72 = v — 1 instead of ~
satisfying 2|4 = 0. (Note that y2[A = 0.) Then the sum % = ¢; -+ 15 is a
solution of (1.2) which coincides with ¢ on ANN. =

3. Proof of Theorems 1.1 and 1.3. We start with the following simple

LemMA 3.1. Let @ be a real-valued solution of the A.e. Then the Lebesgue
sels

Ae) ={z|v(z) 2 ¢}, N(E) = {z|p(z) < 6}

are an absorber and a nozze for F respectively.

o Pr 0 of. For instance, consider A{g). It is closed since ¢ is continuous. It
Is invariant by (1.3). Now we choose a neighborhood V; with a = inf{p(z) |
€W} >~00. By (1.3), FP(W) CA(e) it n > e —a. n

Passing to the proof of Theorem 1.1, fix & > 0 and take a continuous
function ¢ : R — R such that 6(z) = 0 for ¢ > & and 6(t) = 1 for t < ~&. Let
% be a real-valued solution of the A.e. Then the composition 7= 6o is a
continuous function on X such that 7(z) = 0 for x € A(e) and +(z) =1 for
z € N(—e).

Turning to equation (1.2) we consider two equations,

(3.1) Pl (Fz) + Qz)ir(z) = (z)y(x)
and
(3.2) P(z)ie(Fz) + Q(z)rpa(z) = (1 - T(z))y(=).

Equation (3_.1) has the local zero solution on A(z). By Lemma 2.1 it has a
global solution ¢1_- Similarly, equation (3.3) has a global solution 1. The
sum 9 = 1 + 2 is a solution of (1.2). =

Now let us prove Theorem 1.3.
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Let ¢ be a real-valued solution of the A.e. By Lemma 3.1 the set Ale)
is an absorber and N(6) is a nozzle. Obviously, A(e) N N(6) =0 if § <.

Conversely, let F : X — X be a homeomorphism of a normal space X,
(liven an absorber A and a nozzle N such that ANN = {, one can construct
a continuous function 7 : X — R such that 7(z) =0 for z € A and 7(z) = 1
for x € N. Then both of the equations

p1(Fa) = pu(a) = (&), a(Fz) ~ waa) =1 - ()

have some global solutions wy and @y (which are extensions of the corre-
sponding local zero solutions). The sum ¢ = 1 + ¢z is a solution of the
Ae. nm

4. Proof of Theorem 1.4
LEMMA 4.1. Let @ be a solution of the A.e. and let U C X be o subset
such that
¢ = sup |p(z)| <oo.
zel

Then U is wandering.

Proof Suppose that
(4.1) x e Peo(UynFm(U)
for some n,m € N. Fix £ > 0 and choose a neighborhood W 5 z such that
lp(2) — o(z)| < & for z € W. It follows from (4.1) that W N Fr(U) s ) and
W F™U) # 0. Let F™u; € W and Fug € W where u; € U and ug € U,
By (1.3), p(F™uy) — p(uy) = n and @(F™ug) — p(ug) = m, hence

In —m| < 2+ |@(F uy) — p(FMu2)| < 2¢+ 2.
Therefore
FryNFmU) =0 if [n—-m|>2c u

Since any continuous function is bounded in a neighborhood of a compact
get we obtain

COROLLARY 4.2. If the A.e. is solvable then every compact set K C X
is wandering.

Now we can prove Theorem 1.4.

The nondecreasing sequence of open sets Uy = e (—k, k) (k=1,2,...)
covers X and the sets are wandering by Lemma 4.1. :

Conversely, let Uy be open, Uy C Uryr (k= 1,2, Sy X = Uy Uk For
every k there exists vy > 0 such that the mapping
(4.2) R |J P 5 | FoU)

n>vy C MP2VE
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ig a homeomorphism and
(43) FrUg) N Em(Ue) =0 (In—ml 2 v).

Let Vi = Fv (U} and let

o0
(4.4) Xy=|J F"(W).
=00
Note that all F"(V%) are closed via the homeomorphisms Fj, for n > 0 and
F itgelf for n < 0.
We prove that X3, is also closed.
Let £ € X. We have to find a neighborhood W 2 & such that Wn X,
= . We start with a neighborhood U, containing 2. Let v = max(vy, v,).
The finite union
R= |J F(W)
{ntug|<w
is closed. Since z ¢ R, there exists a neighborhood W 3 z such that WN R
= (1. If we know that F*(V;)NUs =@ for [n-+vg| > » then W =W NU, is
3 neighborhood we need. In fact, we can prove more, namely,

FrVi)nFm(U,) =0

for [n—m.--v| 2 v. This follows from (4.3). Indeed, by (1.7) one can suppose
that n > 0and m > 0. Let s < k, so U, C Us. Then

Fn(Vk) NF™U,) C Fn(Vk) N Fm(Uk) ¢ Frtve (Uh) M Fm(Uk) =0
by (4.3). Now if s > k, so that Uy, C U,, then

Fr(Ve) N Fm(U,) © Frdve(Ug) N E™(U,) = 0

by (4.3) with s in place of k.

Obviously, all the sets X}, are invariant. Furthermore,

Vi = Fox (Uy) C F~(v:c+1—%)puk+1(Uk+1) = F—(V’d+l—uh)(Vk+l) C Xpt1,
hence X - Xpt1. Finally, Uy, € Xy since Uy C F~¥(V}). Hence X =
(J Xk, and in this covering all the X, are closed and invariant.

For the mappings Xy I x x the gets
Ak = U FN(Vk), N = U F.—?W'(Vk)
n2 Ve n>0

are an al?sorber and a nozzle respectively. First of all, they are closed like
Xy Obviously, F(Ax) C Ay and F='(Ny) < Ny. Finally, for any point

%‘Le X and Up 3 zg the set W = X}, N U; is a neighborhood of zg in Xj.
en

W= U (Fj(‘/?e) nap)

[gtrgl<u

Abel equation 93

where p = max(vg, v1) because F7 (Vi) N Uy = 0 for |5 + vz 2 p. Hence, for
all integers » we have
FPwyc | FITP(W).
e <p

The last union is contained in Ay if p is positive and large enough. The
union is contained in Ny, if p is negative and |p| is large enough. -
The intersection of Ay and Ny is empty since if n > vy and m 2 0 then

F" (Vi) N = (Vi) € oo (Ug) N F=rs (0 = §

by (4.3).

Now we are going to construct a solution of equation (1.2) by induction
on k. Namely, let tx..1 € O(Xy—1,C") be a local solution on Xy1. In order
to obtain a local solution vy on X which extends .1 we note that the
union A% = Ay U Xj—1 is an absorber and Nj = Np U Xj_; is a nozzle for

Fy. Obviously, A; N N,'c = Xk-1. Since

Xp\ Ny C U F(Vg) C U Frt(Ty),

n>1l N>

the mapping Fy - F~Y( X} \ int Ng) Ex % \ int IV is a homeomorphism. By
Corollary 2.3 the required local solution 1y does exist. In particular, 4 is
a local solution on X obtained as before with Xy = # and with no 9. m

5. Proof of Theorem 1.5. We start with a topological statement.

LEMMA 5.1. Suppose the space X is locally compact and oll compact
subsets of X are wandering. Then for any compoct subset K C X and any
integer v the set S = |5, F"(K) is closed. If, moreover, the mapping
(1.10) 4s ingective for some v, then it is a homeomorphism.

Proof Let z & S andlet M 3 z be a compact neighborhood. Then there
exists vy such that F*(K)NM = @ for n > v, because K UM is wandering.
Since all the F*(K) (n = 0) are compact, the set 81 = Upengm £7 (X) _if
closed. Take a neighborhood U 3 z such that UNSy =0 Then V=MNU
is a compact neighborhood of @ such that VNS = @. The first statement is
proved.

Now we suppose that the mapping (1.10) is injective; then, actually, it is
bijective. It is sufficient to prove that F(V) is closed for any closed V' C S.
However,

V=) Vs Va=VnFYK)

nzy
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so every V,, is compact and
F(v)=|J F(Va).
nZv

This set is closed by the same argumént ag before. w

LEMMA 5.2. Suppose the space X is locally compact. If the c.e. is totally
solvable then for any compact subset K C X there ewists v = vp(K) > 0

such that oll the mappings F™(K) il FrHU(K) with n 2 vy are injective.

Proof. Suppose that the statement is not true for a compact K C X.
Then there exist some sequences {n;} ¢ N and {u;}, {v;} C K such that
(5.1) - Frin; # Flayy, Flitlyy = Fiitly,

The A.e. is solvable as a particular case of (1.8). Therefore all compact
gets are wandering by Corollary 4.2. Hence, there exists v, such that

(5.2) FYKYNF™(K) =1,
A fortiori, F' has no periodic points, hence Flu; % Fu; for [ # s and
Fly; 5 Féu; for l,s < ny.

One can assume that In{n; + 1) > nd_; + In(nj_; + v1). Consider the
subset W which consists of the points Flu;, F*v; where [ and s satisfy ny > 1,
§ > nj_1 + v;. Now one can construct a bounded continuous function vy on
X which equals 0 at every point Fév; € W and 1/1 at every Flu; € W. We

show that equation (1.8) with such a 7 is not solvable. Indeed, let ¢ be a
solution. Then

(5.3) o(F"2) ~ p(@) = 3 7(F'a).
I=0

|n = m| > vy

In particular,

T
PE™ ) = plug) = 3 A (Flug),
1=0

W(F™ ) — o(ug) = Z’r(F"uj).
: 1=0
Then {5.1) yields

() — (o)l = | S olr(Fas) = (P,
I=0

i

> Y

l=ng . +wy

1
7 .‘ZM('n,_.,-ml + 1)

icm
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where M = sup,¢ x |v(x)|- Thus,
nj + 1
() = o(os)| 2 lnmm

This contradicts the boundedness of | K. m

— 2M(nj._1 +)z n?ul - 2M(nj._1 +14).

Now let ug prove Theorem 1.5.

{(a)=-(b) is trivial.

{(b)=>(c). By Corollary 4.2 every compact set K is wandering. Hence,
(5.2) holds for some vy = v1(K'). It remains to prove that the mapping (1.10)
is injective for some v = v(K). Assume that the latter is false. Then there
exist some sequences {n; }, {m;} C Nand {u;}, {v;} C K suchthat F™u; #
Fmiy; but Frotly; = Fratly, i follows from (5.2) that [ny —my| < 11
Let, for definiteness, 0 < mj—n; < v;. Then for z; = F™uy and y; = F™v;
with v} = F™i~"iv; we obtain
(5.4) x; # vy, Faj=Fy;, 25,y € FM (K1),
where K1 = ¢, F*(K). By Lemma 5.2, the mapping

FF™Ky — FPVEK
is injective for m > wp(Ky). Hence, Fz; # Fy; if m; > wp(Ky). This
contradicts (5.4).
(c)=>(d) follows from Lemma 5.1.

(d)=-(a). One can choose an open covering X =U;, U; C Uigy, such
that each K; = U; is compact. Then it follows from Lemma 5.1 that

U o c U Frix)

neYy n2vy
where v; = ¥(K;). Since the mappings (1.10) are homeomorphisms for K =
K; and v = v, one can apply Theorem 1.4.

Remark 5.4. Only (d)=(a) needs the countability at infinity. The
chain (a)=>(b)=(c)=+(d) is true for any locally compact space X. :

6. Appendix. Smooth solutions. Let X be a C*-manifold and let ¥l
X - X and P,Q : X — Hom(C!,C") be C*-mappings, 0 < k < co. Then
one can copsider equation (1.2) in the class of C*-vector-valued functions.
The C*-total solvability is defined as in the case k = 0.

TEEOREM 6.1. Let F be a O*-diffeomorphism. If the A.e. is C%-solvable
then any nondegenerate equation (1.2) is C*-totally solvable.

Proof. By Theorem 1.3 there exist an absorber 4 and a nozzle N with
AN N = §. By a Whitney theorem (see [5], Appendix ITI, §1), there exists
a C_function 7 : X — R such that 7(z) = 0 for z € 4 and (z) = 1 for
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2 € N. With this function 7 one can repeat our proof of Theorem 1.1 and
Lemma 2.1 for the class C*. m

In Theorem 6.1 the class of C*-diffeormnorphisms cannot be extended to
C*-homeomorphisms.

ExAMPLE 6.2. Let 0 < o < 1 and
Foz=z+1—-asinfa™'z), zeR

The mapping F,, is a real-analytic homecmorphism without fixed points. By
Corollary 1.11 the corresponding c.e. is totally solvable. However, Fy, is not
a diffeomorphism since it has critical points,

e(Fa) = {2 ] Flo =0} = {2.)32 oo
where 2, = 2sm. We show that if
(6.1) Fle(Fu))Ne(Fy) =0 (n>0)

then the corresponding c.e. is not C*-totally solvable. Since by induction
F2zy) = g5 + F20 (s,n € Z), condition (6.1) means that Fr0 # 2sma for
all s and n > 0.

Indeed, let

(6.2) p(Faz) — p(z) =¥(z), »€C*(R).
By differentiation it follows from (5.3) that

#'(2) = ansa(@)p (F 2} = ) we(a)y (Fiz)
k=0

where
k1
ax(z) = [ Fi(Fie).
i
Due to the factor F,(FZz), we have an1(Fy"z,) = 0, hence

T
(6.3) o (Fetwe) = — Z ak(Fc:n‘Ea)'Yl(F(?mnwa)-
k==0}

Here an(Fg"z,) # 0 because of (6.1), Let
_ 1 -7
o = [ 27raF"‘ 0]

where [] means the integer part. Obviously, s, — oo but

(6.4) |F 25, | = |@s, + F7™0| < 270

Abel equation a7

Now let v be a smooth function satisfying
n—1
1

{n+ 3 lan(F ) 1y (FE 2,1}

|,yf(m5n)| 2 | (
an k=0

Fa_nmsn)l
Then it follows from (6.3) that
o' (F "2s,)] 2 7.

This means that ¢’ is unbounded on the interval [—~27a, 2ma] because of
(6.4). Hence, equation (6.2) has no smooth sclutions.

Remark 6.3. The set of « is uncountable. Indeed, (6.1) holds if and
only if & ¢ {JZ,,, where Z, is the zero set of the analytic function
bn,s(c) = F20 — 2s7ar.

Remark 6.4. If (6.1) does not hold, then it may happen that the
corresponding c.e. is C*-totally solvable in the class of C*-functions, k > 1.
For instance, if o = 1/(2n) then ¢(F,) = Z. This set i3 invariant, hence (6.1)
is violated. In this case one can prove the C*-total solvability for all & > 1.

The authors thank the referee for valuable remarks.
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