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The parametric Weierstrass integral over a BV curve
as a length functional

by

LORIS FAINA (Perugia)

Abstract. The constructive definition of the Weierstrass integral through only one
limit process over finite sums is often preferable to the more sophisticated definition of the
Serrin integral, especially for approximation purposes. By proving that the Weierstrass
integral over a BV curve is a length functional with respect to a sultable metric, we discover
a further natural reason for studying the Weierstrass integral. This characterization was
conjectured by Menger.

1. Introduction, The parametric integral of the Calculus of Variations
was introduced as a Welerstrass integral (W-integral) over a variety, in a
very general setting, by Cesari [16, 17} in terms of a suitable Burkill-Cesari
integral.

Cesari considered the following setting:

Let A be a topological space, {I} be a collection of subsets of 4, (T, >)
be a directed set, and (D;)zer be a net of finite systems of elements of {I};
given a continuous variety z : A — K C R™, a set function ¢ : {I} — R",
and a function f: K x R® — R with the properties:

(1.1)  f is bounded and uniformly continuous on K x R™:
(12)  flp.tq) =tf(p,q) forallt>0,pe K, g R,
consider the set function

@(I)zf(n:(r),qb(I)), Ie {I}a
where 7 is an arbitrary point in I.

Cesarl proved that, if ¢ is quasiadditive (q.a.) (see Section 2), then the
following limit exists:
hlrp Z &),

IeD;
and Cesari called it the W-integral of & over the variety x with respect to
the q.a. function ¢ (i.e. W(f,z, $)); moreover, if ¢ is q.a. and of bounded
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variation (BV) (see Section 2), then W(f, z, ¢) can be extended to a regular
measure p on the Borel sets of A, and has a representation in terms of a
Lebesgue-Stieltjes integral:

W(f,m,¢)=£f( & I)d .

Many authors studied the parametric W-integral in the setting proposed by
Cesari: we just mention Breckenridge [14], Warner [20, 21], and in particular
Brandi & Salvadori [3, 4, 6-8, 10~12] who proved Cesari’s results in abstract
spaces and, especially, weakened the hypotheses on the variety x; more pre-
cisely, Brandi & Salvadori [8-13] extended the definition of the W-integral
gver BV varieties not necessarily continuous.

The Weierstrass integral has a simple and constructive definition through
only one limit process over finite sums; a well lnown advantage in the study
of the W-integral is the definition of a satisfactory length functional.

Consider, for example, the interval function ¥(I) = |Az[; the finite
Weierstrass sums of v, related to a finite system {[t;-1,t] : 4= 1,...,n},
are equal to the Euclidean length of the inscribed polygon {z(t1),. -, z(tn) };
thus, the W-integral of ¢ over z exists for every curve z, and its value is
the length of the curve z in the classical sense On the contrary, the length
functional in terms of a Lebesgue integral X |&| dt does not exist, in general,
unless 4 exists a.e. in [a, b]; furthermore, it is equal to the Jordan length of
z iff  is absclutely continuous. '

There are some more “geometrical” reasons for studying the integrals of
the Caleulus of Variations as Weierstrass integrals, rather than as Lebesgue
ones. The present paper proves that the W-integral over a BV curve, unlike
the Lebesgue one, always represents the measure of a geometric quantity
connected to the curve. Menger [18] conjectured that the W-integral is al-
ways a length functional with respect to a suitable metric d.

Menger’s argument is the following: Let C be a compact and metrizable
space, I' be the class of continuous curves « : [a,b] — C, and L be a
nonnegative functional defined on I' and having the following properties:

(i) (ADDITIVITY) Given two curves 1,2z € I' with a1 () = z2(a), and
denoting by T the compound curve, we have
L(%) = L{z1) + L(za).
(i) (SEMICONTINUITY) Given a sequence (@), C I’ converging point-
wise to zp, we have
1ivlzn L{z,) > L(zo).

(iif) (REGULARITY) If, for every n € N, z,, is a curve with z,(b) = po,
and lim, L(z,) = 0, then Umy,, z,{a) = po.
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Menger asserted that, if the space Cis L-connected (*) and L-nonat-
omic (?), then L is the length functional with respect to the metric

dr(p,q) = inf L(w),

where Iy ={z € I' 1 z(a) = _q}

Thus, if the W-integral satlsﬁes the hypotheses (i), (ii), and (iii) and
K ¢ R is W-connected and W-nonatomic, then the W-integral is the
length functional with respect to the metric dw.

Following the outlines of Menger’s conjecture, we prove here that, given
a general class f2 of functions (see Section 2), endowed with an abstract
convergence o, and a nonnegative functional L, defined on (2 and having
the properties (i), (ii) (*), and (iii), L is the length functional with respect
to the metric dr; furthermore, as an application of this result, if f does not
depend explicitly on the curve and satisfies classical hypotheses, then the
Weierstrass integral over a BV curve, possibly discontinuous, is the length
functional with respect to dw.

2. An abstract result. Let X be a metrizable space, T be the collection
of all finite systems of subintervals of [a,b], and § : D — R¥ be a mesh
function. Let 2 be a class of functions ¢ : [a,b] — K, che a convergence on
2 which separates the points of 2 (i.e. if (za)n C 82, zn S zand 2, Sy
with z,y € 2 then z'= ¥), and L be a nonnegative functlonal defined on 2.
‘We shall consider classes (2 of functlons with the following properties:

{iv) (CompacTNESS) For any T € RT, the level set {z € £2: L{z) < 7}
is sequentially o-compact in (2.

(v} (APPROXIMATION) Given a function z € {2 and a sequence (Dn)n
of finite systems with the property that Dp41 is a refinement of D, and
lim,, §(Dy,) = 0, for every sequence {2n)n C {2 such that z, and #n4+1 coin-
cide with z at the endpoints of the intervals of D, we have o-lim, T, = Z.

The consistency of the property (v) can be easily verified by taking as
12, for example, a Sobolev space endowed with the weak topology.

THROREM 2.1. Assume that:

(2.3) L is o-lower semicontinuous and has the properties (i) and (iif);

M Cis L-cunnected if, for every pair {(p,q) € C x C, there is a curve y joining p to ¢
such that L(y) <

() Cis L—'n.onatomzc if, given (pn)n C C with limp pn = po, there is a sequence
(Zn)n C £2, each zn joining pn to po, such that limp L{zn) = 0. Menger called this
property local L-cinnectivity.

(%) In this case, the property (i) is modified by replacing the pointwise convergence
with the o-convergence. : '
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(2.4) 2 has the properties (iv) and (v);
(2.5) K is L-connected and L-nonatomic.
Set

dilp,g) = inf L{z), pg€eK,

e

where £2, , = {z € 2 : z(a) = p, «(b) = g}. Then L is the length functional

with respect to the metric dy,, t.e.
L(z) = Lo, (z) = sup Y _ dr(a(t),z(82)) (),
DeD 127
for every x € £2.

Proof. For every p,q € K, 2,4 # @ and dr(p,q) is finite since K is
L-c¢onnected. In order to prove that dy, is a metric over K, let p,q,7 € K; by
definition of dr,, for fixed £ > 0 there are z*,y* € {2p,4 with

dr(p,q) +&/2 > L(z*) and dr(g,r)+e/2> L")
from the additivity property (i) and the arbitrariness of £, we get

dL(p:T) < dL( =Q) + dL(Q)’r)'

Since X is L-nonatomic, d,(p, p} = 0 for every p € K.

Now, let dy.(p,q) = 0 for some p, ¢ € K; then there is a sequence (Zp)n C
{2, 4 such that Xim, L(z,) = 0. Thus, from the regularity property (iii), we
get p = q. This proves that dy, is a metric on K.

Now, given z € {2 and D € I, we have

= E L(zf)a

Ieb
where 21 € £2;(:1) o(21) Is defined by

alt) =z (t + t;

From the definition of dz,, we get

L) =Y Lizr) = Y dula(t]), a(t)));

IeD IeD

Lt — a)) t € [a, b

therefore,
L(z) > sup z dr(z(t]), 2(t)) = L4, (2).
DeD rep

~ For the other inequality, let (Dy)n be a sequence of finite systems with
the properties that D, is a reﬁnement of D, for every n € N and

(%) For every interval I, we write I = [t],}].
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limy, 6(Dy} = 0. From the definition of dr, for every I € D, there is a
2F € fany,000) such that

S e,z 2 Y LGP - o

IED, IeDy
Let 2, be the function defined by

xn(t)-——-z?(a-l—( )tI tI) tel;
we have
S du(w(t]), (t5)) = L{zs) ~ 2n;
IeD,
therefore,
La,(z)+ 1> L(zn)
From the compactness property (iv), we may assume, passing to subse-
quences if necessary, that there is an zp € 2 with z, 5 #g. Taking into
account the approximation property (v) and the unicity of the limit in the

g-convergence, we get zp = z. Finally, by the o-lower semicontinuity of L,
we get

La,(z) =lim 3 dulw(ti),2(1)) > liminf L{ga) 2 L(z). =
IeD,

for every n € N.

3. The Burkill-Cesari integral. Let (4,G) be a topological space
and denote by M the family of all subsets of 4 and by B(A) the o-algebra
generated by G. We consider a subfamily {I} C M and call the sets I inter-
vals. A finite system D = [I1,...,Iy] is a finite collection of nonoverlapping
intervals, i.e.

fi#0 and LnEj=0, i#4 4,i=1...,N,

where T and T denote the G-interior and G-closure of I, respectively.
Let (T,>) be a directed set and let (Dy)zer be a net of finite systems.
Let s : M x M — {0,1} be the function defined by
1 fHCK,
o(H, K) = 0 otherwise.
Let & : {I} — R™ be an interval function. The function & is said to be
Burkill-Cesari integrable (BC-integrable) over M € M (see Cesari [16]) if
the limit below exists:
11%11 Z s{I, M}&(I);
. IeD;
in this case, we shall denote its value by BC-{,, &
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The function & is said te be of bounded variation (BV) over M € M if

V(®, M) =limsup Y s(I, M)|$(I)| < co.
T rep.
The function @ is said to be quasiadditive {g.a.) (see Cesari [16]) over M
if
(q.a.) given e > 0 there is 1y = t1(M, €) such that for every tg 23> ¢, there
is tp = to (M, £,tg) such that if ¢ > tg then

J)ZS(IM‘Z S(7,1)2(7) - B(1)| <&,
(Gi) Z (J, M) [1—2 (J,I)S(I,M)]@(m <e,
J

I
where Dy, = [I] and D; = [J].

The following results are well known (see Cesari [16], Breckenridge [14],
Warner [21], Brandi & Salvadori [3]):

¢ If § is q.a. on M, then it is BC-integrable over M.
o If & is ¢.5. and BV on M, then |®| is q.a. on M.
o If & is q.a. and BV on A, then & is q.a. on M for every M € M.

Consider functions f : R™ — Ry and ¢ : {I} — R™, and denote by
@ : {I} — Ry the set function defined by

&(I) = f{¢1))-

Followmg Cesari [16], the BC-integral of the function @, when it exists, will
be called the parametric Weierstrass integrol of the Calculus of Variations
(W-integral) and denoted by W(f, &, ¢).

Thus, any set of conditions guaranteeing that ¢ is q.a. and BV yields an
existence theorem for W(f, &, ¢).

Throughout the paper, we will suppose that the integrand f satisfies the
following conditions:

(Fy)  fis continuous on {z € R™ : |z = 1};
(Fp)  fl(tz) =tf(z) forevery t > 0, z € R™,

3.1. The parametric W-integrol over a BV curve. In this section we recall
some known results about the existence, representation, semicontinuity, and
approximation for the parametric Weierstrass integral over a BV curve.

Let z : [a,6] — R™ be a bounded variation curve in the generalized
sense (BV) (see Cesari [15]). It is well known (Boni [1}, Salvadori [19]) that
esslim,_, .+ =(t) = ¥ (c) exists for every ¢ € [a,b] and if we take B, = {c €
Ja, b : x(c) = zF(c) = 7 (c)} and Sy = {c € Ja,b] : 2™ (c) # 7 (c)}, then
[a,b] \ By is a null set and S, is at most denumerable.

Pargmetric Weierstrass integral 15

Let {I} be the family of all closed subintervals of [a, ] whose endpoints
belong to E, and let D, be the collectlon of all finite subdivisions D =
[f,...,In], with I; € {I} andU = [P, 8P].

Consider the mesh function & : Dm — R* defined by

§(D) = max{a® ~a,b— 8,1 : I € D},
which makes D, a directed set.

Consider the function Az : {I} — R™ defined by

Az(I) = Az{[o, 8]) = 27 (B) — 2T ().
Let V*(z) be the generalized variation of z, that is,
V*(z) = V(Az, Es).

The BC-integrals of the interval functions Az and |Az| can be extended to
regular measures (see Cesari [17], Breckenridge [14], Brandi & Salvadori [7]);
more precisely, there is a regular measure x : B([a,b]) — R™ of bounded
variation such that

u(@) =BC-{ Az and |ul(G)=BC-|{4e, G Cla b,
G G

where |u| denotes the total variation of y. For further properties of y and
||, we refer to Cesari [16, 17] and Brandi & Salvadori [6, 7, 9].

TueoREM 3.1 (Existence and Representation, see Cesari [16], Warner
[20], Brandi & Salvadori {8, 12]). Let f: R™ — Ry be o function sotisfying
(Fy) and (Fy), and let  : [a,b] — R™ be a BV function. Then the interval
function @ : {I} — R defined by

o(I) = f(Ax(D))

is g.a. and BV with respect to D, and §; moreover,
b du

Wi(z) = f(—m) dlul (3).

@ =) ©)

In particular, if & is absolutely continuous in the generalized sense (AC)
(see Cesari [15]), then

]
Wis) = [ a0 o

THEOREM 3.2 (Semlcontmulty, see Brandi & Salvadori [11]). Suppose
that f s conves and satisfies (F1) and (Fo). Let 2 : [a,b] = R™, n 20,

(%) When there is no risk of confusion, we write W(x) instead of W(F, &, Az).
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be a sequence of BV curves such that sup,>oV*(zn) € R and z, — 2o
potntwise a.e. in [a, b]. Then -
lim inf W (z,,) > W (o).
=00
THEOREM 3.3 (Approximation, see also Brandi & Salvadori [10]). Under
the hypotheses of Theorem 2.1, for every x € BV there is a sequence (Po)n
of broken lines such that

P,—z in Li([e,b])

and
b

Jima W(P,) = lim [ F(Pa(t)) dt = W(z).

Proof Let D, € D, be such that lim, §(D,) = 0 and assume that
Dy is a refinement of D,.

Denote by P, the broken line with vertices at those points of the graph
of 2 which are the endpoints of the intervals of Dy. By Theorem 2 of Boni
[1] and Lemma 4 of Boni & Brandi [2], we have P, — 2 in L1 ([a, b]).

Assuming that D = [J] is a refinement of D, = [I], we have

AF,(I) _ AP.(J)
1] ]
Now, if D is a refinement of D,,, we get

Wiz) - W(P)| < [Wia) = 3 f(da(D)]

for every J C I.

IeDn
+| 33 #aam) - 3 rarm)
I€D, IeD
+ 13 HAP(D) - W)
IeD
< |We)- 3 f(as(D)
IeD,
£ 3 AP = 3 faru)|
lely, JCI
+| 30 AP - WP

IeD
therefore, lim, W(FP,) = W{(z). =

3.2. W(2) as a length functional. Since the result of this section is a
straightforward consequence of Theorem 2.1, we use here the same notation
of Section 2.
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Let K < R™ be connected and bounded. For every p,q € K, set
vi,q ={x:[a,b] = K, BV :zt(a) = p, z7(b) = g}
Put
BV}C = U B'Vf’q.
PEx

Let o be the following convergence on BVX: a sequence (zn)n C BVF
F-converges 1o g € BVXEif

e 1z, — Tp pointwise a.e. in [a, b);
o sup, V*(z,) < co.

In order to prove that the W-integral over a BV® curve is a length
functional as a consequence of Theorem 2.1, we should make some remarks.
The functional L(z) defined in Section 2 is meant in the classical sense,
while W(z) is meant in a generalized sense (it makes no sense to consider
the value z(t]) or z(¢1)). However, by the definitions of Section 3.1, each
division D € D, is formed by points of essential continuity for z, therefore
the value x(¢) for ¢ € D might be meant as the essential limit of = at ¢.
With this fact in mind, Theorem 2.1 still holds in a space of generalized
functions such as BV™. Therefore, we only have to check that W, BV,
and K satisfy the hypotheses of Theorem 2.1.

THECREM 3.4. Suppose that f is convezr and sotisfies (F1) and (F2);
assume that the following coercivity condition holds:

(F3)  Wi(z) 2 MV*(z) for every z € BVY, with M e R,
Then W is the length functional on BVE with respect to the metric
dw(p,q)= inf W(z).

K
mEBVL,

Remark 3.5. Condition (F3) is satisfied in the following remarkable
case:

F(w) > Mlw|  for every w € R™, with M € R*.

Proof (of Theorem 3.4). The class BV" satisfies the approximation
condition (v} by virtue of Theorem 2 of Boni [1] and Lemna 4 of Boni &
Brandi [2]: furthermore, from (F3) and the boundedness of K, the level sets
of W are ¢-sequentially compact due to the Helly compactness theorem.

From Theorem 3.1 and the connectivity of K, K is W-connected. In
order to prove that K is W-nonatomic, let (pg), C K with lim, pn = po,
and (), C BVX be defined by

[ pp ift€la{a+b)/2,
mn(t)_{io iftE}(a'l‘b)/z&b];

/2\
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we get, ‘
W(xn) = f(p'n- ‘“‘PO)
and, since f{0) =0,
lim W (z,,) = 0.
From Theorem 3.2, W is o-ls.c., and (Fj3) easily implies the regularity
property (iii).
1t remains to prove that W is additive on BVX, that is, if 2 € BV?’,C, .
and y € BVLC,,, then the function '
(2t —a) iftela,(a+b)/2],
(a) 2(t) =14 4q if t = (a+b)/2,
y(2t—-b) ift<](a+b)/2,b],
belongs to BVE | and W(z) = W(z) + W(y).
To this end, given D € D, with (a +5)/2 € D, we get

A = Y f(As(l-a)

IeD IeD, tl<{a+b)/2

>
IeD,t{>(ath)/2
> flas(n)+ 3 faud)
I€D, . IeDy.
+ f(Dx(2[8"=, 1] — @) + F(Ay(2[a, o] - b))
where 2] ~a = {t € [a,b] : (t+a)/2 € I}, 2I—b={t € [a,b] : (t-+b)/2 € I},
and Dy ={I € D:tL < (a+b)/2},D,={I €D:t > (a+b)/2}.
Since lim,, §(D™) = 0, we get lim,, §(D%) = 0 and lim, §(D}} == 0, and
from the existence of W(z), W(y), and W(z), we get W(z) = W(z) +
Wiy). =

Remark 3.6. We underline that, if BV™ is replaced with ACK = {z:
[a,b] — K, AC}, the boundedness of K can be dropped.
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