112 M. Jiménez Sevilla and R. Payd

[20] W.L.C.Sargent, Some sequence spaces related to the lp spaces, J. London Math.
Soc. 35 (1960), 161-171.

[21] A. E. Tong, Diagonal submairices of malriz maps, Pacific J. Math. 32 (1970},
551-559.

Departamento de Andlisis Matemético
Facultad de Ciencias Matemdticas
Universidad Complutense de Madrid
28040 Madrid, Spain

B-mail: marjim@sunaml.mat.ucm.es

Departamento de Andlisis Matematico
Facultad de Ciencias

Universidad de Granada

18071 Granada, Spain

E-mail: rpaya@goliat.ugr.es

Received September 17, 1996 (3739)
Revised version March 26, 1997

icm

STUDIA MATHEMATICA 127 (2) (1998)

The Berezin transform on the Toeplitz algebra
by

SHELDON AXLER (San Francisco, Calif.) and
DECHAO ZHENG (Nashville, Tenn.)

Abstract, This paper studies the boundary behavior of the Bererin transform on the
C*-algebra generated by the analytic Toeplitz operators on the Bergman space.

1. Introduction. Let dA denote Lebesgue area measure on the unit disk
D, normalized so that the measure of D equals 1. The Bergman space L2
is the Hilbert space consisting of the analytic functions on D that are also
in L?(D,dA). For z € D, the Bergman reproducing kernel is the function
K, € L2 such that

flz)= (f ) Kz)
for every f € L2. The normalized Bergman reproducing kernel k; is the
function K,/||K:||2. Here, as elsewhere in this paper, the norm || ||z and
the irnmer product {, ) are taken in the space L?(D, dA}. The set of bounded
operators on L? is denoted by B(L2). _

For § € B(L2), the Berezin transform of S is the function S on D defined
by

S(z) = (Ska, k).
Often the behavior of the Berezin transform of an operator provides impor-
tant information about the operator,

For w € L®(D,dA), the Toeplitz operator T, with symbol u is the op-
erator on L2 defined by To.f = P(uf); here P is the orthogonal projection
from L2(D,dA) onto L2. Note that if g € H> (the set of bounded analytic
functions on D), then T, is just the operator of multiplication by g on LZ.

The Berezin transform % of a function u € L*(D,dA) is defined to be
the Berezin transform of the Toeplitz operator T,,. In other words, U = T,
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114 8. Axler and D. C. Zheng

Because (Tykz, k) = (P(uk,), k) = {uk;, k;), we obtain the formula

(L.1) u(z) = | u(w)lks(w)]® dA(w).

D
The Berezin transform of a function in L°*(D,dA) often plays the same
important role in the theory of Bergman spaces as the harmonic extension
of a function in L°(8D, df) plays in the theory of Hardy spaces.

The Toeplitz algebra T is the C*-subalgebra of B(LZ) generated by
{T, : g € H*}. We let U denote the C*-subalgebra of L>(D,dA) generated
by H™. As is well known (see [2], Proposition 4.5), U equals the closed sub-
algebra of L°°(D,dA) generated by the set of bounded harmonic functions
on D. Although the map % — T, is not multiplicative on L°°(D, dA), the
identities T} = Ty, TuTy = Tug, and T5T, = Tgy bold for all w € L™ and
all g € H*. This implies that 7 equals the closed subalgebra of B(L?) gen-
erated by the Toeplitz operators with bounded harmonic symbol, and that
T also equals the closed subalgebra of B(L2) generated by {T, : u € U}.
Qur pgoal in this paper is to study the boundary behavior of the Berezin
transforms of the operators in 7 and of the functions in I,

In Section 2 we study the boundary behavior of Berezin transforms of
operators in 7. We show (Theorem 2.11) that if S € 7, then S € U. Per-
haps the main result in this section is Theorem 2.16, which describes the
commutator ideal Cr (the smallest closed, two-sided ideal of T containing
all operators of the form RS — SR, where R,S € 7). As a consequence of
this result, we show (Corollary 2.17) that S — T is in the commutator ideal
Cr for every § € T. Writing § = T's 4 (§ — T), this gives us a canonical
way to express the (nondirect) sum 7 = {T}, : u € U} + Cr. We also prove
(Corollary 2.19) that if § € Cr, then § has nontangential limit 0 at almost
every point of 3D,

In Section 3 we study the boundary behavior of Berezin transforms of
functions in 2. We prove (Corollary 3.4) that if u € I, then & — w has
nontangential limit 0 at almost every point of 8. Using similar techniques,
we prove (Corollary 3.7) that if u € I/, then the function z ~ || T, _u(zykzll
has nontangential limit 0 at almost every point of d.0. The main result of
this section is Theorem 3.10, which describes the functions v € I/ such that
%(z) —u{z) — 0 as 2 — 8D. As a consequence, we describe (Corollary 3.12)
the operators S that differ from the Toeplitz operator Tz by a compact
operator, where § is a finite sum of finite products of Toeplitz operators
with symbols in U.

In Section 4 we use results from the two previous sections to describe
(Theorem 4.5) when the Berezin transform is asymptotically multiplicative
on harmonic functions. This theorem is then used to characterize the func-
tions f, g € H* such that T§T, — T,Tf is compact.

icm

Berezin transform on the Toeplitz algebra 115

We thank Jarostaw Lech for useful conversations about the Berezin trans-
form.

2. Boundary behavior of the Berezin transform on 7. In this
section we will study the boundary behavior of the Berezin transform on
elements of 7. We will need explicit formulas for the reproducing kernel
and the normalized reproducing kernel. As is well known,

1
K =
() = T 50y
for z,w € D. Note that
1
2 jranany = — —
HKZ||2 - (KZ’KZ) Kz(z) (1 _ |Z|2)2
Thus
1|z
(2.1) bz (w) = A=)
for z,w e D.

Analytic automorphisms of the unit disk will play a key role here. For
z € D, let ¢, be the Mobius map on D defined by

z—-w
(2.2 o) = 2
Let U, : L2 — L2 be the unitary operator defined by
(2.3) U.f=(fop)pl.

To show that [7, is indeed unitary, first make a change of variables in the
integral defining ||U., f||2 to show that U, is an isometry on L2. Next, a simple
computation shows that U2 is the identity operator on L2 (this holds because
¢, is its own inverse under composition). Being an invertible isometry, U,
must be unitary. Notice that U? = Ut = U,, so U, is actually a self-adjoint
unitary operator.

We will need two more simple properties of U,. First,

(2.4) Ul = —kz;
this follows from {2.1)-(2.3). Second,
(2-5) UzTuUz = Tuogp,

for every u € L°°(D, dA); this is proved as Lemma 8 of [3]. Thus if us, ..., un
€ L*(D,dA), then :

(2.6) UpTay - -Tu Uz = Tujops + - - Tunop,

because we can write the operator on the left side as
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(U, U HU= T, Us) - - (U T, Uz)

and then use (2.5).

Next we compute the Berezin transform of a product of Toeplitz opera-
tors. The formula given by the following lemma will be used later when we
prove that § € U for every 8 € T (Theorem 2.11).

LEMMA 2.7. If vy, ..., un € L®(D,dA), then

(Tuy oo T )™ (2) = (Tusop, - Tunow, 1, 1)
for every z € D.

Proof. Suppose us,...,u, € L°°(D,dA) and z € D. Then

(Tae o T )" (2) = (Tuy o Tuhay ka) = (T, . T UL, U L)
= <U2TU1 - T’unUzll 1> = (T'uloﬁﬂ’z . “Tunm.ﬂzlz 1):

where the first equality comes from the definition of the Berezin transform,
the second equality comes from (2.4), the third equality holds because U, is
self-adjoint, and the last equality comes from (2.6). m

We will need to make extensive use of the mazimal ideal space of H®,
which we denote by M. We define M to be the set of multiplicative linear
maps from H™ onito the field of complex numbers. With the weak-star
topology, M is a compact Hausdorff space. If z is a point in the unit disk D,
then point evaluation at z is a multiplicative linear functional on M. Thus
we can think of z as an element of A and the unit disk D as a subset of M.
Carleson’s corona theorem states that D is dense in M.

Suppose m € M and z > ¢, i8 a mapping of D into some topological
space E. Suppose also that 8 € E. The notation

lim a, =4

Z— T
means (as you should expect) that for each open set X in F containing
A, there is an open set Y in M containing m such that a, € X for all
z € Y N D. Note that with this notation z is always assumed to lie in D.
‘We must deal with these nets rather than sequences because the topology
of M is not metrizable.

The Gelfand transform allows us to think of H* as contained in C'(M),
the algebra of continuous complex-valued functions on M. By the Stone—
Weierstrass theorem, the set of finite sums of functions of the form f7,
with. f,g € H®, is dense in C'(M), where C{M) is endowed with the usual
supremum norm, Because D is dense in M, this supremum norm is the same
as the usual supremum norm over D. Thus we can identify C'(M) with U,

the closure in L°°(D, dA) of finite sums of functions of the form fg, with
f,ge H™, -

icm

Berezin tronsform on the Toeplitz algebra 117

We will make frequent use of the identification discussed above of U
with C{M). It asserts that given a function v € I, which we normally
think of as a function on D, we can uniquely extend u to a continuous
complex-valued function on M; this extension to M is also denoted by w.
Thus for v € Y and m € M, the expression u(m) makes sense—it is the
complex number defined by

u(m) = zlgrglu(z)

Conversely, we will sometimes use the identification of U with C(M) to
prove that a function is in U, Specifically, if u is a continuous function on D
and we can prove that u extends to a continuous function on M, then we
can conclude that u € U.

For m € M, let ¢ : D — M denote the Hoffman map. This is defined
by setting

pm(w) = lim o (w)
for w € D; here we are taking a limit in M. The existence of this limit,
as well as many other deep properties of ¢, was proved by Hoffman [9].
An exposition of Hoffman’s results can also be found in [8], Chapter X. We
shall use, without further comment, Boffman’s result that ¢y, is a continuous
mapping of D into M. Note that ¢, (0) = m.

If w € U and m € M, then u o (5, makes sense as a continuous function
on D, because @,, maps D into M and u can be thought of as a continuous
function on M, as we discussed above. The next lemma provides the crucial
continuity that we will soon need. Recall that a net of operators {5.}zep C
B(L2) is said to converge to S € B(L3) in the strong operator topology as
2 — m if im,_m S,f = Sf for every f € L2, where the last limit is taken
in the norm in L2.

LeEMMA 2.8. If ug,...,un €U, then
(2-9) li].’.l:}n TUlO(P; s Tunogp] = Tuiofpm ces Tuno‘Pm
for every m € M, where the limit is taken in the strong operator topology.

Proof Fix m € M. We will prove (2.9) by induction on n. To get the
induction started, suppose n = 1, so we consider a single function v € U.
As z — m, clearly u o @, converges to u © @, pointwise on D. Because the
family of functions {u o ¢, : z € D} is uniformly bounded, this convergence
is uniform on each compact subset of D if u happens to be analytic on I},
Thus the convergence is also uniform on each compact subset of D if u
happens to be the product of an H*® function and the complex conjugate
of an H™ function. Finite sums of such functions are dense in I{. Thus we
can conclude that wo ¢, converges to 10 @m (as z — m) uniformly on each
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compact subset of D for arbitrary u € . Fix f € L2. Then
(2.10) lim § (w0 ps)(w) ~ (wo pam) ()| f(w)]* dA(w) =0,
D

because D), and hence the integral above, can be broken into two pieces—a
large compact subset of D (on which u o @, converges uniformly to u o o)
and a set of small measure on which all the integrals are small. (We had to
use uniform convergence on compact subsets of D to prove (2.10) because
the Lebesgue dominated convergence theorem fails for nets, as opposed to
sequences.) Because

lim [|(ue @) f = (uo pm)fllz = 0,

we have lim, .y, ||Tyoy, f — Tuop,. fll2 = 0, proving (2.9) in the case n = 1.
Now suppose that %1,...,u, € I and that (2.9) holds when n is replaced
by n — 1. For convenience, let

Sz =Tuop, - Tun_rop, ad  Spm = Tuiopm -+ - Tun—z0pm-

By our induction hypothesis, ||S,g — Smgllz — 0 as 2 — m for every g € L.
Fix f € L2, Then

||T111°‘Pz ne T”-‘Ino‘sz - T"”rloﬁam v T“no‘me|[2
b HSzTu.no:pzf - SmTuﬂoqomeZ

S Hsznzll(Tuno‘Pz - Tunoﬁom)f”z + H(Sz - m)(TunOmef)Hz'

Because ||5;||2 is bounded by [[¢1]/co - - - ||#nlce, Which is independent of z,
the first term in the last inequality above has limit 0 as # — m (by the
n =1 case that we already proved). Qur induction hypothesis implies that
the second term also has limit 0 as z — m, completing the proof of (2.9). w

Now we are ready to prove that the Berezin transform maps 7 into 4.
Most of the work needed to prove the theorem below was done in the last
two lemmas. For the first time we will need to use the linearity of the Berezin
transform as well as its continuity: ||F|leo < ||S|| for all § € B(L?2). We will
also need to make use of the description of T as the closure in B(L2) of the
set of finite sums of operators of the form T, ... T, , where wy, ..., uy € U.

THEOREM 2.11. If § € T, then § € U. Furthermore, if ui,...,un €U,
then

(212) . (Tul e Tu")"‘(m) = (T"-"lo‘Pm e Tun°¢m13 1)
for every m € M.

Proof If uy,...,un € U, then Lemmas 2.7 and 2.8 show that (T3, ...
... Ty,)™ extends to be a continuous function on M and that the extension
is given by (2.12). Thus the Berezin transform maps sums of operators of the
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form Ty, ... Ty, , where each uy € I, into I{. The linearity and continmity of
the Berezin transform now imply that the Berezin transform also maps 7
intod. m

A multiplicative linear function m € M is called a one-point part if @,
is a constant map. In other words, m is a one-point part if g, (w) = m
for every w € D. The set of all one-point parts is denoted by M;. As is
well known, M, is a closed subset of M that properly contains the Shilov
boundary of H* (in particular, M, is not the empty set). Actually M,
should be thought of as a small subset of M\ D, as the complement of M,
in M\ D is dense in M\ D.

The following corollary shows how to compute the Berezin transform on
M; of a finite product of Toeplitz operators with symbols in U.

COROLLARY 2.13. If uy,...,un €U, then
(2.14) (Tuy .- - Tu, )" (m) = ug(m) .. . un(m)
for every m € M.

Proof Suppose uy,...,un, € U and m € M;. Because m € M,, each
function u; 0 pn, 1s a constant function equal to the constant u;(m). Thus
each of the Toeplitz operators in (2.12) has constant symbol, reducing (2.12)
to the desired equation (2.14). =

The next corollary shows that the Berezin transform is multiplicative
On Ml.

CoOROLLARY 2.15. If R,5 € T, then
(RS)™(m) = R(m)S(m)
for every m € Mi.

Proof. If R, S are each products of Toeplitz operators with symbols
in U, then the desired result follows from Corollary 2.13. The proof is com-
pleted by recalling that sums of such operators are dense in 7. w

Recall that the commutetor ideal Cr is the smallest closed, two-sided
ideal of 7 containing all operators of the form RS— SR, where R, S € 7.In
a remarkable theorem, McDonald and Sundberg ([11], Theorem 6; also see
i13] for another proof) showed that T/Cr is isomorphic, as a C*-algebra,
to C(My). More precisely, they showed that the map w ++ Ty +Cr is a
surjective homomorphism of I onto T/Cz, with kernel {u € U : w1, = 0}.
Rephrased again, the McDonald-Sundberg theorem states that each SeT
can be written in the form § = T, + R for some u € I and some R & Cr.
Furthermore, if u € U, then Ty, € Cr if and only if u[p, = 0. These results
account for the importance of understanding the commutator ideal Cr. We
now describe Cr in terms of Berezin transforms. :
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THEOREM 2.16. Suppose S € T. Then S is in the commutator ideal Cx
if and only if S|m, = 0.

Proof. The commutator ideal Cr is the norm closure of the set of finite
sums of operators of the form S1(5255 — 5353)54, where 51,59, 53,5, € 7.
By Corollary 2.15, each such operator has a Berezin transform that vanishes
on M;. Thus if S € Cr, then S|y, = 0, proving one direction of the
theorem. 5

To prove the other direction, suppose S|a, = 0. By the McDonald-
Sundberg theorem, we can write § = T}, + R for some » € U and R € Oy,
Thus

0= 8|pm, = Tulsmy + Rlay = ulMl + RIMi = ulMl’
where the third equality comes from Corollary 2.13 and the fourth equal-
ity holds by the direction of this theorem that we have already proved.
The McDonald~Sundberg theorem now tells us that T, € Cr (because
u|aq, = 0). Therefore § € Cr, completing the proof. m

Given an operator § € 7, the McDonald-Sundberg theorem tells us that
& can be written in the form § = T, + R for some u € i{ and R € Cr. The
choice of v is not unique, as it can be perturbed by any function in I that
vanishes on M;. However, we now show that there is a canonical choice
of u, namely the Berezin transform of §. The corollary below states that
the decomposition

g = Tg + (S - Tg)

satisfies the requirements of the McDonald—Sundberg theorem, because the
term in parentheses is in Cr.

CoroLLARY 2.17. If S €T, then S — Tz € Cr.

Proof. Suppose § € 7. Then by Theorem 2.11, § € . If m € My,
then using Corollary 2.13 (with n = 1) we get ’

(S — T5)™~(m) = §(m) — §(m) = 0.
In other words, (S —T5)"™ |1, = 0. Thus Theorem 2.16 implies that §—Tj €
Cr, completing the proof. m

The next lemma will allow us to translate results about My, a rather ab-
stract object, into results about nontangential behavior on the unit disk D.
When we refer to “almost every point of dD”, we mean with respect to the
usual linear Lebesgue (arc length) measure on 8.1,

LEMMA 2.18. If u € U and ujaq, = 0, then u has nontangential limit 0
at almost every point of OD.

Proof. As is well known, every function in H* has a nontangential
limit at almost every point of 81. Thus every finite sum of functions of the
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form fg, where f,g ¢ H®, has a nontangential limit at almost every point
of 8D. Hence any function on D that is the uniform limit of a sequence of
guch functions also has a nontangential limit at almost every point of 8D
(this holds because the union of a countable collection of sets of measure
0 has measure 0). In other words, every function in Z{ has a nontangential
limit at almost every point of 0.D.

Suppose u € U and u|at, = 0. Define a function u* (almost everywhere)
on 8D by letting »*(A) equal the nontangential limit of u at A € 8D. Let
X ¢ M denote the Shilov boundary of H*. By Theorem 11 of Axler and
Shields’s paper [5], the essential range of u* on 8D equals u(X). However,
X is contained in My, sc we conclude that the essential range of u* on
8D is just {0}. Thus u* equals 0 almost everywhere on 8D. Hence u has
nontangential limit 0 at almost every point of 4D. m

Now we can prove that the Berezin transform of each operator in the
commutator ideal of 7 has nontangential limit 0 almost everywhere on 4D.

COROLLARY 2.19. If 5 € Cor, then S has nontengential limit 0 ot almost
every point of 8D.

Proof Combine Theorem 2.16 and Lemma 2.18 to obtain the desired
result. m

The converse of the corollary above is false. To see this, let u be a func-
tion in C'(M) that equals 0 on the Shilov boundary of H* but that is not
identically 0 on Mj. Then T, equals 0 on the Shilov boundary of H* (by
Corollary 2.13). The proof of Lemma 2.18 thus shows that Ty has nontan-
gential limit 0 at almost every point of 4D, However, T, is not identically 0
on M; (by Coroliary 2.18) and thus T, is not in Cy (by Theorem 2.16),
providing the desired example.

The next lemma will be used in the proof of Proposition 2.26. In equation
(2.21) below, 1 denotes the constant function on D (the function that maps
z to 1) and z denotes the identity function on D (the function that maps z
to z).

LEMMA 2.20. If S € B(L2), then § is real-analytic on D and
(2.21) (AB)(0) = 16{5z, z) — 8(S1,1).
Proof Let § € B(L2). Define a complex-valued function F on D x D
by
F(w,z) = (SKw, K.}
for w,z € D. Note that here we are using the unnormalized reproducing

kernels. For fixed w € D, the function §Kz is in I2, and hence is an.alytic
on D. Becanse Fi(w, z) = (SKw)(2), this implies that F(w, z) is analytic in 2
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for fixed w. Similarly, for fixed z € D, the function S*K, is in L2, and hence
is analytic on D. Because F(w, z) = (5* K, }(w), this implies that F'(w, z) is
analytic in w for fixed 2. Because F is analytic in each variable separately, we
conclude that F is holomorphic on D x D. Clearly §(z) = (1 —|2]|*)2F(Z, 2).
Because F is holomorphic on D x D, this implies that S is real-analytic
on D, as desired.

To prove (2.21), we first express the explicit formula (2.1) for the nor-
malized reproducing kernel as a power series:

ko (w) = (1 — |22 i(j + 1) Fwd.
=0

Thus
§(z) = (Sky, k2}
ed .

(2.22) =(1- 122 Y (G + Hn+1)(Sw/,w™) 22"

Hn=0

0 -

(2.23) = (1-222+2°2%) 3 (§+1)(n+1)(Swf,u™)5 2"

. Fyn=0
(2.24) = 3 ajn#z",

Jin=0
where the coeflicients a; , could be computed explicitly. Note that
~ 32
(AS)(D) = 6 502 (0) 4:(11 1,

where the last equation follows from (2.24). From (2.23) we see that

a11 = 4(5?.0,11)) - 2(81, 1)

The proof of {2.21) is completed by combining the last two equations and
replacing the independent variable w above (denoting the identity function)
with the more common symbol z. w

We note for later use that (2.22) implies that an operator § € B(L?)
is uniquely determined by its Berezin transform. To see this, suppose § €
B(L?) and S is identically 0 on D. We need to show that .S = 0. Differ-
entiating the infinite sum in (2.22) n times with respect to z and j times
with respect to Z and then evaluating at z = 0 shows that (Sw’,w™) = 0
for all nonnegative integers j and n. Because finite linear combinations of
{w? : j > 0} are dense in L2, this implies that § = 0, as desired.

 For SeB(Li)and z € D define S, € B(L?) by

S, =U,SU,.
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Recall that U, was defined by equation (2.3). Note that if S is a finite
product of Toeplitz operators, then a formula for S, is given by (2.6). The
next lemma shows us how to define S, for each m € M in a manner
consistent with the definition just given for §,. This operator S, plays an
important role in Proposition 2.26, where it is used in the proofs of parts
(b) and (c) even though it is not explicitly mentioned in the statements of
those results.

LEMMA 2.25. If § € T and m € M, then there exisis S,, € T such that
lim 8, = S,

Edamd 17

where the limit is taken in the strong operator topelogy. If § =T, ... Ty,

where U1, ..., Un € U, then Sy = Tuop,, - - Tunopm-

Proof. Fix m € M. First suppose § = T, ...
U. Then S; = Ty 00, -
by Lemma 2.8,

T, where ui,...,un €
Ty, 0, for every z € D, as we saw in (2.6). Thus,

lim S, = Tujop,, -

2
To prove that the operator on the right side of this equation is in T, we
must show that u o @, € U whenever u € I{. Clearly this holds if u € H*™,
because then u o ., € H®. Taking complex conjugates and then products,
we see that u o @, € U for all u of the form fg, where f,g € H*. Finite
sums of such functions are dense in I{, showing that uop,, € U for allu € U,
as desired. This completes the proof of the lemma when S has the special
form Ty, ...Tu,, where uy,...,u, € U.
Now suppose S € 7. Fix f € L2. We must prove that lim,_,,, S, f exists
in L2. To do this, suppose ¢ > 0. Then there is an operator R that is a
finite sum of operators of the form T, ... T, where each u; € U, such that
|8 — R|j < e. Thus ||Ssf — R.fll2 < &||f]|2. From the paragraph above, we
know that R.f converges (as z — m) to a function R, f. Thus

limsup ||S:f — Bm 2 < €l fll2

o Tom-

Thus

limsup || S, f ~ Sw fll2 < 26]|£|2-

Z,W—+m
Because ¢ is an arbitrary positive number, this means that 8. f is a Cauchy
net in L2 (as z — m). However, L? is complete, and so this Cauchy net
nust converge, as desired.

From the first paragraph of this proof, we know that Sy, € 7 for all 5 in

a dense subset of 7. The mapping S — Sy, is continuous (in the operator
norm), so Sy, must be in T for all § € 7, completing the proof. =
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A function u € U is said to be real-analytic on M if uoey, is real-analytic
on D for every m € M. The next proposition tells us that the Berezin
transform of any operator § € T is real-analytic on M. Furthermore, for
m € M we get a formula for computing the Laplacian at 0 of S ¢ ¢,. These
results will be used in the next section of this paper.

PROPOSITION 2.26. Suppose S € T. Then
(a) So O = . for every m € M,
(b) § is real-analytic on M;

5 (1= e (w) Y2 (AS) (s (w))
(¢} (A(S 0 wm))(w) = _}Eﬁln 1 — [uP)?

for every w € D, m & M.

Proof. We begin by deriving a useful formula. Suppose w,z € D. If
f € L2, then

<f= Usz> = <sz: K’u}) = (sz)(w)

= (f o p}w)p, (w) = {f, &, (W) Ky, u))-

Thus U, Ky = ¢, (w)K,, (w)- Rewriting this in terms of the normalized
reproducing kernels, we have

(2.27) Upkw = aky, (u)

for some complex constant . Without doing a computation, we know that
la| = 1, because ||ky||2 = ||kp,(w)ll2 = 1 and U, is unitary.

For the rest of the proof, fix m € M. To prove (a), fixw e D. If z € D,
then

Sp(w)) = (Sk%(w),k%(wﬁ = (SUkuy, Uskyw) = {U;SU Ky, k),
where the second equality comes from (2.27) along with the extra informa-
tion that |a| = 1. Taking limits of the first and last terms above as z — m,
we get §(om(w)) = (Symkuw, kuw). Thus (a) holds.

To prove (b), recall that S, € T (by Lemma 2.25). Thus S5, is real-
analytic on D (by Lemma 2.20). Now (a) shows that 5 ¢ @, is real-analytic

-~

on D. We thus conclude that S is real-analytic on M, completing the proof
of (b). '
To prove (c), fix w € D. Then

AR = BEC0u))O) _ (A5,)(0)
A0 = e = = w2

_ 168Uz, Uwz) — 8(SUw 1, Ul

(1~ )2 !

icm

Berezin transform on the Toeplitz algebra 125

where the first equality follows from a standard calculation, the second
equality comes from (a), and the third inequality comes from Lemma 2.20.
The equation above shows that the map § — (AS)(w) is a continuous linear
functional on B(LZ) with respect to the strong operator topology on B(L2).
Now fix m € M. Then

(A(F 0 o)) = (A8)(w) = lim (AF.)(w) = lim (A(F 0 .))(w)

o (L1 (0)22(A5) (. ()
= (= )2 ’

where the first equality holds by (a), the second equality holds by the conti-
nuity discussed earlier in this paragraph and Lemma 2.25, the third inequal-
ity holds by (a), and the fourth inequality holds by a standard calculation.
This completes the proof of (c). m

3. Boundary behavior of the Berezin transform on 4. Ia this
section we will study the boundary behavior of the Berezin transform on
elements of U, Recall that if u € L*°(D, dA), then the Berezin transform @
is the function on D defined by % = T,,. This definition leads to the explicit
formula (1.1).

Our next result states that if w is in I, then so is @. If w € U, then
% 0 (o, is bounded and continuous on D, s0 the integral appearing in the
proposition below makes sense.

PrOPOSITION 3.1. The Berezin transform maps U into U. Furthermore,
if u €U, then

(3.2) u(m) = S {0 o ) (w) dA(w)
D
for every m e M.
Proof. Supposeu € . By definition, & = T.,. Theorem 2.11 thus tells us

that 7 € U, Furthermore, from (2.12}, which is used in the second equality
below, we have

@m) = Tu(m) = Tuopn L 1) = (Pwo pm), 1)
= (10 gm, 1) = | (w0 pm)(w) dA(w),
D
for every m € M, as desired.

If » is a bounded harmonic function on D, then so is uoyp, for each z € D.
The mean value property and (3.2) then imply that %(z) = (u0p,)(0) = u(z)
for each z € D. In other words, every harmonic function equals its Berezin
transform. :
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The next corollary shows that a function in & and its Berezin transform
agree on the set of one-point parts.

COROLLARY 3.3. If v €U, then |, = u|m, -

Proof. Suppose u € U and m € M;. Then (u o on)(w) = u(m) for
every w € D (recall that m € M, tmplies that ,, is a constant map on D).
Thus (3.2) shows that %(m) = u{m), as desired. m

The next corollary shows that a function in ¢ and its Berezin transform
have the same nontangential limits almost everywhere on 8D (recall from
the proof of Lemma 2.18 that every function in & has nontangential limits
almost everywhere on 8D).

COROLLARY 3.4. If u € U, then U—u has nontangential limit 0 at almost
every point of 8D.

Proof. Suppose v € U. Then % — u € U (from Proposition 3.1) and
(% — u)|m; = 0 (from Corollary 3.3). Lemma 2.18 now gives the desired
result. m

For u € L*°(D,dA), the Hankel operator with symbol v is the operator
H, from L2 to L*(D,dA) © L? defined by H,f = (1 — P){(uf). The next
corollary shows that Toeplitz and Hankel operators with symbol in I/ behave
nicely on normalized reproducing kernels corresponding to a net of points
converging to a one-point part. :

COROLLARY 3.5, If u €U, then
zIi_’n%1 T uimykzlla =0 and zli]i?n ||Hykz|l2 == 0

for every m € M.

Proof Suppose u € U and m € M. We claim that
(3.6) Tim [[(w ~ u(m) kel = 0.
Once this is proved, the proof will be done, because

1T u(mybzllz = 1P((s — u(m))kz)ll2 < [|(u = w(m))k. ]2

and
[ Huksll2 = (| Hu—uimykallz = (1 = PY((u — u(m))k.) |2 < [[(u — w(m))ks|la.

To prove (3.6), note that

Jim |l — u(m)kolE = T § fu(w) - u(m) ?hs(w)/ dA(w)

D

= Jim (Ju = u(m)[2)™(2) = (ju—u(m)[2)~(m),

where the Jast equality holds because (| — u{m)]?)™ can be thought of as a
continuous function on M (by Proposition 3.1). The function |u—u(m)|? is in
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U, so it equals its Berezin transform on M, (by Corollary 3.3). In particular,
because m € My and |u — u{mn)|? equals 0 at m, the last quantity above
equals 0, completing the procf.

In the next corellary we, once again translate a statement involving AM;
into a more concrete statement.

CoOROLLARY 3.7. If u €U, then the functions
20 | Tumuiykzllz ond 2 [|Huks|2
have nontangential limits 0 af almost every point of 8D.

Proof. Suppose w € U, As in the proof of the previous corollary, we
need only show that ||(u — u(z))k. | has nontangential limit 0 at almost
every point of @D. To do this, note that

I = u(@)kala® = § Ju(w) — ul(2) ks (w)}? dA(w)

(fu(w)|* — 2 Re(ul2hu(w)) + |u(2)|*) k. (w)[* dA(w)

I
[ B R

= [u?(2) - 2Re(ulz(2)) + [u(2)
for z € D. The equation above, along with Proposition 3.1, shows that
the function z — {j(v — u(2))k.||3 is in . The equation above, along with
Corollary 3.3, shows that the function z — ||(u — u(2))k,||3 is 0 on M;.
Lemma 2.18 now gives the desired result. m

The next two lemmas will be useful in proving Theorem 3.10, which is
the main result of this section. The formula for (A%)(0) given by the first
lemma below could be proved by differentiating twice under the integral
in the explicit formula for % obtained from (1.1) and (2.1). However, we
have avoided that computation in our proof by using the formula given by
Lemma 2.20.

LEMMA 3.8. If u € L>(D,dA), then U 4s real-analytic on D and

(AT)0) = 8 { u(z)(2]2* ~ 1) dA(=).
I

Proof. Suppose u € L®(D,dA). Then % = 7., and hence Lemma 2.20
implies that % is real-analytic on D, From Lemma 2.20 we alsc have

(AT)(0) = (ATL)(0) = 16({Tuz, ) — 8(T01,1)

= 16{uz,z) — 8{u,1) = 8 S u(2)(2]z% - 1) dA(z),
D S

completing the proof. w
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The next lemma provides information about the Berezin transforms of
functions analogous to the information about the Berezin transforms of op-
erators provided by Proposition 2.26.

LEMMA 3.9, Suppose u € . Then

(a) Wo om = (o pn)™ for every m € M,
(b) % is real-analytic on M,

(1 - |wl?)?
for every w € D,m € M.

Proof Suppose m € M. Then
o pm = Tuo Pm = (Tw)m)™ = Tuop,)” = (Lo m)™,
where the second equality comes from Proposition 2.26(a) and the third
equality comes from the second statement in Lemma 2.25. The equation
above shows that (a) holds.

Because % = T, (b) and (c) follow immediately from parts (b} and (c)
of Proposition 2.26. m

Now we turn to the question of describing the functions v € U such that
Him,..ap %(2)—u(2) = 0. Because the digk D is dense in M, this is easily seen
to be equivalent to the question of describing the functions « & I/ such that
% equals u on M\ D. We have seen that 4 equals u on My for every v € U
{Carollary 3.3); now we are asking when equality holds on the larger set
M\ D. As motivation for cur answer, recall that we pointed out earlier that
every bounded harmonie function equals its Berezin transform. The converse
also holds, so a function in L (D, dA) equals its Berezin transform if and
only if it is harmonic (for proofs of this deep result, see the papers by Englig
[7] or Ahern, Flores, and Rudin [1]). Thus we might guess that a function
u €U equals ¥ on M\ D if and only if » is harmoenic on M \ D (whatever
that means). As we will see, this turns out to be correct if we define the
notion of harmonic on. M\ D in terms of the parameterizations given by
the Hoffman maps.

Motivated by the paragraph above, we define HOP (which stands for
“harmonic on parts”) to be the set of functions u € U such that u o ¢, is
harmonic on D for every m € M \ D. Every bounded harmonic function
on D is in HOP. (Proof: If % is a bounded harmonic function on D, then
80 is u o g, for every z € D. Now © 0 @r{w) = lim,—m u 0 @, (w) for every
w € D, m € M. Because the pointwise limit of any uniformly bounded net
of harmonic functions is harmonic, we conclude that uo ¢, is harmonic, as
desired.) Every function in C(D) is also in HOP (because if u € ¢/(D) and
m € M\ D, then u o @, is a constant function on D).
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The next theorem gives several conditions on a function u € I that are
equivalent to having lm..ep(U(2) — u(z)) = 0. Note that conditicn (h) in
the theorem below would not make sense for an arbitrary v € U (because
functions in I/ need not even be differentiable on D). Even for a function
u € U that is differentiable on D, there is no obvious connection hetween the
derivatives of v on D and derivatives of the functions uo,, for m € M\ D.
This helps explain the extra hypothesis required below for the applicability
of condition (h).

THEOREM 3.10. Suppose u € U. Then the following are equivalent:

(a) im,—op(E(z) — u(z)) = 0;

(b) & =u on M\ D;

(c) v € HOP;

(d} @ € HOP;

(e) Ty — T is a compact operator;

(f) lim,.ap §p{uc (pz)('i.u)(2|w|2 -~ 1) dA(w) = 0;
(8) lim.—on (L - [22)*(41) (z) =

If u is @ finite sum of functions of the form uq ... un, where each u; s a
bounded harmonic function on D, then the conditions above are also equiv-
alent to the condition below:

(h) lim,pp (1~ |2[*)*(Au)(z) =
Proof. Asis well known, the equivalence of {a) and (b) follows from the

corona theorem.
Suppose (b} holds, s0 % = u on M \ D. Let m € M\ D. Then
(uo@m)™ =Topm =uo pm,
where the first equality comes from Lemma 3.9(a) and the second equality
comes from our hypothesis (b). The equation above says that u o, is a
function in L>®(D,dA) that equals its Berezin transform. As we discussed
earlier, Engli§ (7] and Ahern, Flores, and Rudin [1] proved that only har-
monic functions equal their Berezin transforms. Thus « o ¢, is harmonic.
Because m was an arbitrary element of M\ D, this implies that u € HOP.
Thus (b) implies {c).
Now suppose (c¢) holds, so u € HOP. If m € M\ D, then
T o = (40 )™ = 10 P,
where the first equality comes from Lemma 3.9(a) and the second equality
holds because u o @, is harmonic. The equation above shows that UG Pom
is harmonic for all m € M \ D, which means that % € HOP. Thus (c)
implies (d).
Now suppose (d) holds, so % € HOP. Let m € M\ D. Thus- %o o, is
a harmonic function and hence is equal to its Berezin transform. In other
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words,
(Uo <Pm)~ =U0pm = (uowm)”,
where the second equality comes from Lemma 3.9(a}. Because the Berezin

transform is one-to-one (as we showed after the proof of Lemma 2.20), the
equation above implies that

U0 P = U0 P
Evaluating both sides of this equation at 0 shows that d%(m) = u(m). Thus
(d) implies (b). At this point in the proof we have shown that (a), (b), (c}),
and (d) are equivalent.

A result of McDonald and Sundberg ([11], Proposition 5) states that
for a function v € U, the Toeplitz operator T, is compact if and only if
lim,—.ap v(2z) = 0. Applying this result with v = % — v shows that (a) and
(e) are equivalent. Thus we now know that (a) through (e) are equivalent.

By Lemma 3.8, eight times the integral in (f) equals (A{u o ¢.}~)(0),
which by Lemma 3.9(a) equals (A(% o ¢, })(0), which by a standard calcu-
lation equals (1 — |2|2)2(A%)(z). Thus (f) and (g) are equivalent.

Now suppose that (d) holds, so % € HOP. Thus

(A(E o em))(0) =
for every m € M\ D. By Lemma 3.9(c) (w1th w = 0}, this gwes (g). Thus
() implies (g).

Now suppose (g} holds. Fix w € D and m € M\ D. Note that |p,(w)| —
1 as 2 — m (recall that w is fixed). From Lemma 3.9(c) and our hypothesis
(g) we now conclude that (A{# o pm))(w) = 0. Thus % o ¢, is harmonic
on D. Because m was an arbitrary element of M \ D, this means that
i € HOP. Thus (g) implies (d), completing the proof that (a) through (g)
are equivalent.

To deal with (h), now suppose that u is a finite sum of functions of the
form u; ... un, where each u; is a bounded harmonic function on D. For each
such u;, the function u; o v, is harmonic on D for every z € D. If m € M,
then uj 0w, converges pointwise on D) to u; o om as z — m. A pointwise
convergent net of uniformly bounded harmonic functions has the property
that every partial derivative (of arbitrary order) also converges pointwise to
the appropriate partial derivative of the limit function. Applying this (and
the appropriate product rule for partial derivatives) to u gives

(Ao pm))(a) = lim (A(uo p.))(w)
= i L lea (WP (Av) (@s (w))
o (@ — WPy ’
for every w € D, m € M, where the second equality comes from a standard
calculation. To prove that (c) is equivalent to (h), now follow the pattern of
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the proof showing that (d) is equivalent to (g), using the last equality above
in place of Lemma 3.9(c). =

A continuous bounded function on D can have Berezin transform in
C(D) without itself being in C(D) (of course, to say that a continuous
function on D is in C(D) means that it extends continuously to a function
on D). To construct an example, consider a continuous function v on [0,1)
that equals 0 most of the time (enough so that the average value of v on the
interval [r,1) tends to 0 as r increases to 1), but whose graph occasionally
has a small bump with height 1 (so that v does not extend continucusly to
[0,1]). Define a radial function u on D by u(z) = v(|2]). Then % extends
continuously to D even though v does not have this property. The following
corollary shows that functions in I/ cannot behave in this fashion.

COROLLARY 3.11. Suppose v € U. If & &€ C(D), then u € C(D).

Proof. Suppose @ € C(D). Then i € HOP (because u o .y, is constant
on D for every m € M\ D). Because condition (d) in Theorem 3.10 holds,
condition {a) in the same theorem also holds. Condition (a) and the con-
tinuity of % on D imply that u extends continuously to D, completing the
proof. m

Suppose u € 4. In proving Theorem 3.10, we used the McDonald—
Sundberg theorem that T, is compact if and only if u(z) — 0 as z — 0D
([11), Proposition 5). To provide an easy proof of this theorem using our
tools, note that Theorem 2.2 of our paper [6] asserts that T}, is compact
if and only if % — 0 as z — 8D. The equivalence of (a) and (d) in The-
orem 3.10 shows that this happens if and only if u(z) — 0 as z — 8D,
completing our proof of the McDonald-Sundberg theorem. (This is not a
cireular proof of the McDonald—Sundberg theorem, as that result was used
in the proof of Theorem 3.10 only in showing that (e) is equivalent to (a);
this equivalence is not used in the proof we have just given.)

The McDonald-Sundberg theorem proved in the paragraph above gives
another example of how I provides a more natural context than L>°(D, dA)
for many Toeplitz operator questions. Specifically, the McDonald-Sundberg
theorem just proved becomes false if the hypothesis that u € U is weakened
to the hypothesis that u € L*(D,dA)—Sarason constructed an example,
presented in Section 5 of [12], of a function u € L*(D, dA) such that T, is
compact but |u(z}| =1 for all z € D.

In Corollary 2.17, we showed that S — T is in the commutator ideal
Cr for every S € 7. This raises the question of when § — T is a compact
operator. In the corollary below, we answer this question for 8 lying in a
dense subset of 7. We do not know whether the hypothesis on S in the
corollary below could be replaced by the weaker hypothesis that SeT.
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COROLLARY 3.12. Suppose S is a finite sum of operators of the form
Tuy - Tu,, where each wj € U. Then the following are equivalent:

(a) S~ Tg is o compact operator;

(b) § € HOP;

(¢) lim, _gp (1~ |2[*)2(AS)(z) = 0.

Proof. In Theorem 2.2 of [6], we showed that a finite sum of finite prod-

ucts of Toeplitz operators is compact if and only if its Berezin transform has
limit 0 on &D. Applying this result to the operator § — T, whose Berezin

transform equals § — §, we conclude that S —
if

Tz is compact if and only

(3.13) Jim (8(2) — 5(2)) =

The equivalence of conditions (a) and (¢} in Theorem 3.10 (with u = 5)
shows that (3.13) holds if and only if § € HOP, In other words, conditions
(a} and (b) above are equivalent.

Now suppose that (b) holds, so § € HOP. Thus (A(S ¢ ¢m)}0) = 0
for every m € M\ D. Proposition 2.26(c) (with w = 0) now tells us that
lim. a5 (1 — [22)2(A8)(2) = 0. In other words, (b) implies (c).

Now suppose that (c) holds. Fix w ¢ D and m € M \ D. Note that
loz(w)] — 1 as z — m (recall that w is fixed). From Proposition 2.26(c)
and our hypothesis (¢} we now conclude that (A(§ o vm))(w) = 0. Thus
S 0 ¢y, is harmonic on D. Because m was an arbitrary element of M\ D,
this means that § € HOP. Thus (¢) implies (b), completing the proof. =

4. Asymptotic multiplicativity. The Berezin transform. is pot mul-
tiplicative even over the space of harmonic functions. However, ut(z) —
u(z)u(z) — 0 as z — 8D for some pairs of functions u,v. In this section we
describe when this happens for bounded harmonic functions. Note that if »
and v are harmonic, then % = 4 and ¥ = v, 80 we want to know when w0 is
approximately equal to uv near 8.D.

Our key tool in proving Theorem 4.5 below will be Theorem 3.10. How-
ever, we will also need the following two lemmas.

LemMa 4.1. If u,v are bounded and harmonic on D, then
| U(z) —u(2)v(z) = (HpH, + HyH.)™(2)
Jor every z € D.
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Proof. Suppose u and v are bounded and harmonic on . Then there
are four functions f1, f2, g1, 92 € L2(D) such that w = fi+f2 and v = g1 +7,.
Let z € D. Then

(HZH,)™(2) = (HiH, ks, k) = (Hok,, Hzk,)
= {(1 = P)((91 + G2)k2), (1 — P)((f1 + f2)k2))
= {1 = P)(gaks), (1 ~ P)(F1k.))

G2k ~ 92(2)k=, Fikz — 1(2)ks)

f19oks, k2) — fi(2)g2(z).

A similar formula holds for (HrH,)™(2). Adding these two formulas gives
(HiH, + HpHL) ™ (2) = {(fifs + Fa01)kz k) — fo F(2)e1(2)

= {(fr + F2)(01 + G2 )bz K2}

~ (f1(2) + £2(2)) (01(=) + 92(=))
= (uvky, k,) — u(2)v(z) = wo(z2) — u(z)v(2),

{
{
{
= (g
=
(2)92(2) ~

as desired. m

Although the following lemma is probably-well known, we were unable
to locate a proof in the literature. Thus we have included a proof.

LEMMA 4.2, Suppose u,v are harmonic on D. Then uv is harmonic on
D if and only if ot least one of the following conditions holds:

(a)} u and v are both analytic on D;
(b) T and T are both analytic on D;

(c) there exist complex numbers o, B, not both 0, such that ou+ fv and
a®— {7 are both analytic on D,

Proof. Because u and v are harmonic on D, an elementary computation
Bu Bv
Aluy) = 4 (% 3 il

shows that
ou Bv
z Bz)
on D. Thus uv is harmonic if and only if
oudv  Quodv
820z 0207
Clearly (a) implies that wv is harmonic, as does (b). Condition (c) can

be restated to say that there exist complex numbers a, 3, not both 0, such
that :

(4.4)

(43)

Ou B du v
a-égm—wﬂb—z and asm =g

Thus (c) implies (4.3), proving one direction of the lemma.
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To prove the other direction, we use an argument from the proof of
Theorem 1 of [3]. Suppose that wv is harmonic, so (4.3) holds. Because u
and v are harmonic, u/8z and Ov/8z are analytic; furthermore, du/67 and
8v /6% are conjugate analytic. Let

n:{wen:%@g¢0md%wg¢@.

First consider the case where (2 is the empty set. Then either v is analytic
or % is conjugate analytic. If v is analytic, then (4.3) implies giz‘_- %-;i = 0, which
implies that either u is analytic (so (a) holds) or v is conjugate analytic (so
{c) holds with & = 0 and § = 1). Similarly, if v is conjugate analytic, then
either (b) or (c) holds, completing the proof when (2 is the empty set.

Now suppose {2 is not the empty set. Then (2 is a dense open subset
of D. On £2, we can rewrite as

du du
8z Bz
Ty T Bv
8z 0z

The left side of this equation is a conjugate analytic function on £2. The right
side is an analytic function on 2. Thus both sides equal the same constant
function on 2. We conclude that for some constant 3, we must have

bu v Ou ov

7= " ™ %
Thus (4.4) holds (with & = 1) and hence (¢) holds, completing the proof. m

Now we can describe when the Berezin transform is asymptotically mul-
tiplicative on harmonic functions. For partial results on when the Berezin
transform is multiplicative on B(L?), see Kili¢’s paper [10].

THEOREM 4.5. Suppose u and v are bounded and harmonic on D. Then
the following conditions are equivalent:

(a) i, —ap (W0(2) — w(z)v(z)) = 0; .

{b) lim,_5p{1 — |2|*)2A(wv)(2) = 0;

{¢) uwv € HOP;

(d) 2Ty, — T, T, — T, T, is compact;

(e) for each m € M\ D, at least one of the following conditions holds:

(i) uo m and vo @, are both in H™;
(ii) To @m and To @, are both in H™;
(iii) there ezist complez numbers «, 8, not both 0, such that
QU © P + BV © @, and O © v, — BT © Py, are both in H™.

Proof. The equivalence of (a), (b), and (¢) follows from the equivalence
of conditions (a}, (h), and (c) in Theorem 3.10.
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The equivalence of (a) and (d) follows from Lemma 4.1 and Theorem 2.2
of [6] along with the identity 2T, — T, T, — T, T, = HAH, + H:H,.
Finally, the equivalence of (¢) and (e) follows from Lemma 4.2. w

As an application of the theorem above, we now show how it can be used
to give an easy proof of the characterization of the functions f, g € H* such
that TfT, — TyTy is compact. Suppose f,g € H*. Then

2T, — T§Ty — T,Tj = T4T, — T, T,

Thus by Theorem 4.5 (with u = f and v = g), T7T,

- TyTy is compact if
and only if

lim (1 - s A(fg)(z) = 0.

Because A = 4(0/02)(0/0z), we see that T5T, — T T; is compact if and
only if

(46) Bim (1~ |2)f(2)g'(2) = 0.

This result was originally proved by Zheng [14] using other methods; also
see [4] for additional conditions that are equivalent to (4.6).
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Associated weights and
spaces of holomorphic functions

by

KLAUS D. BIERSTEDT (Paderborn), JOSE BONET (Valencia) and
JARI TASKINEN (Helsink)

Abstract. When treating spaces of holomorphic functions with growth conditions, one
is led to introduce associated weights. In our main theorem we characterize, in terms of the
sequence of associated weights, sever. Npropertles of weighted (LB)-spaces of holomorphic
functions on an open gubset G € CV which play an important role in the projective
description problem. A number of relevant examples are provided, and a “new projective
description problem” is posed. The proof of our main result can also serve to characterize
when the embedding of two weighted Banach spaces of holomorphic functions is compact.
Our investigations on conditions when an associated weight coincides with the original
one and our estimates of the associated weights in several cases (mainly for G =C or D)
should be of independent interest.

Spaces of continuous functions with G- or o-growih conditions occur in
approximation theory; the corresponding spaces of holomorphic functions
arise in complex analysis, spectral theory, Fourier analysis, partial differen-
tial equations and convolution equations. (For concrete examples and ref-
erences, see [11], Section 4.) In contrast to the case of spaces of continuous
functions, however, not all continuous and strictly positive weights v are nat-
ural and intrinsically defined for spaces of holomorphic functions, as simple
phenomena demonstrate (e.g., in connection with Liouville’s theorem, see
Section 1.A). Therefore, one is led to introduce associated weights ¥ which
contain information on the holomorphic functions estimated by 1/v. (For
the exact definition see 1.1 and the start of Section 1.B.)

In fact, associated weights have been part of the “folklore” of the sub-
ject; for instance, they were mentioned explicitly in Anderson-Duncan 2],
beginning of Secuon 2. But, to the best of our knowledge, so far nobody
has ever undertaken a systefratic study of associated weights in reasonable
generality. In particular, it was not clear which conditions on a weight v
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