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Norm attaining multilinear forms and polynomials
on preduals of Lorentz sequence spaces

by

M. JIMENEZ SEVILLA (Madrid) and RAFABL PAYA (Granada)

Abstract. For each natural number N, we give an example of a Banach space X
such that the set of norm attaining N-linear forms is dense in the space of all continuous
N-linear forms on X, but there are continuous {(/V + 1)-linear forms on X which cannot be
approximated by norm attaining (N +1)-linear forms. Actually, X is the canonical predual
of a suitable Lorentz sequence space. We also get the analogous result for homogeneous
polynomials,

1. Introduction. A classical result by E. Bishop and R. Phelps [6]
asserts that the set of norm attaining linear functionals on a Banach space
is dense in the dual space. Very recently, some attention has been paid to
the question if the Bishop-Phelps Theorem still holds for multilinear forms
or polynomials. To pose the question more precisely, given a real or complex
Banach space X and a natural number N, let us denote by £¥(X) the
space of all continuous N-linear forms on X and let us say that ¢ € LV (X)
attains its norm if there are y1, ..., yn € By (the closed unit ball of X') such
that

ko - - yn)| = llell = sup{le(@, -, 2w)| 21, 2w € Bx )
We denote by ALY (X) the set of norm attaining continuous N-linear forms
on X. In the same way, if PY(X) denotes the Banach space of continuous
N-homogeneous polynomials on X, we say that P € PN(X) attains its
norm if there is 2p € By such that

{P(z0)| = || P|| := sup{|P(2)] : # € Bx ],

and we denote by APN(X) the set of norm attaining continuous N-homo-
geneous polynomials. The question is whether or not ALN(X) (resp.
APN (X)) is dense in LN (X) (zesp. PV(X)).
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Key words and phrases: norm attaining multilinear forms and polynomials, weakly
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As a matter of fact, the answer in general is negative. An example of a
Banach space X such that the sets AL*(X) and AP2(X) are not dense was
exhibited in [1]. Actually, the example was a predual d.(w,1) of a Lorentz
sequence space d(w, 1) (see below for details) and the fact that these spaces
are ugeful in problems related to norm attaining operators was first observed
by W. Gowers [14].

Sufficient conditions for the denseness of the norm attaining multilinear
forms were given by R. Aron, C. Finet and E. Werner in [5]. They proved
that this denseness holds in spaces with either the Radon-Nikodjm prop-
erty or the so-called property o and deduced a quite general renorming
result. Some other sufficient or necessary conditions for the demseness of
the norm attaining multilinear forms or polynomials can be found in (3], [§]
and [9].

The above results and counterexamples work for every N > 2, so they
lead us to the following natural question: is the denseness of the norm attain-
ing bilinear forms on a Banach space X sufficient to ensure the denseness of
the norm attaining N-linear forms on X for all N > 27 Or, on the contrary,
does the denseness of ALY (X) depend heavily on the integer N? Analo-
gous questions can be posed for polynomials. We will show in this paper
that there is a dependence on N.

We start with the easy observation that ALY (X) is dense whenever
ALNFY(XY) is. Then our main result shows that ALY (d,(w, 1)) is dense if
and only if w & £n. The “only if” part is an extension of the results in {I]
and ultimately depends on the lack of extreme points in the unit ball of
the spaces d,(w, 1), which makes it difficult for a multilinear form to attain
its norm. The proof of the much more interesting “if” part actually shows
that when w ¢ £y there are “few” continuous N-linear forms on d.(w,1).
For example, for w & £3 we show that every bounded linear operator from

dw{w, 1) into its dual d(w,1) is compact, or equivalently, every continuous

bilinear form on d.(w,1) is weakly sequentially continuous. In general, we
show that all continuous N-linear forms on d,(w,p) are weakly sequentially
continuous if and only if a certain simple relation between N, w and p > 1
is satisfied. For p = 1 the relation is just w & £n. Moreover, we give a
new abstract sufficient condition for the denseness of the norm attaining
multilinear forms or polynomials, based on upper p-estimates, which covers
part of our results on Lorentz sequence spaces and applies to some other
classical Banach spaces.

Concerning polynomials, we also prove that APY (d,(w,1)) is dense in
PN (d,(w, 1)) if and only if w & £y. The “if” part follows easily from the
corresponding result for multilinear forms. Curiously enough, the proof of
the “only if” part is very easy in the complex case but more delicate in the
real case.
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2. Norm attaining multilinear forms on d.(w, 1). Let us start with
the simple observation that perturbed optimization of muliilinear forms be-
comes easier as the number of variables decreases.

ProrosiTion 2.1. Let X be o Banach space and N € N such that
ALNFY(X) is dense in LVTL(X). Then ALY (X) is dense in LV (X).

Proof. Given p € L¥(X) with |j¢] = 1 and 0 < & < 1, pick any
g* € X* with ||Jz*| =1 and define ¢ € ALVTL(X) by

Y(z1,. 2N EN41) = (21, 883 (TN41)-
Our assumption provides ¥ € ALY 1(X) such that |[¢] = 1 and |l — || <
/2. If a1,...,any1 € Bx are such that [9(as,-..,0n41)] = 1, we clearly

have

1-e/2<Y(ar, ., anp)l € |2"(an+a)]-

We now go back to £V(X) by fixing the (N 4 1)th variable at a suitable
multiple of an 41, namely we define

@(El, . .,mN) = -’['E(.’.B]_, . ,SGN,G,N+1)/$*(GN+1).

It is easy to check that 7 € ALY (X) and |7 — ¢ <e. w

Let us recall the definition of Lorentz sequence spaces and their preduals,
a family of classical Banach spaces that will play a crucial role in this paper.
By an admissible sequence we shall mean a decreasing sequence w = (w(n))
of positive numbers such that w(1) =1 and w € ¢\ £3. For 1 € p < oo,
the Banach space of all sequences of (real or complex) scalars ¢ = (a(n)) for
which

Jall = sup ( 3 la(rm)Pr(n)) " < oo,
ki m=1

where 7 ranges over all permutations of the integers, is denoted by d(w, p)
and called a Lorentz sequence space [17]. For p > 1, d(w, p) is reflexive, so we
are mainly interested in the case p = 1. It is known ([12], [20]) that d(w, 1)
has a predual d.(w, 1) which is defined by

du(w,1) = {a €ep: 7311330 Ezzlw(k) =0y,
where (@(n)) is the decreasing rearrangement of (la(n})|). The norm on
du(w,1) is given by

Jal) = sup
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Thus, |a|] < 1 if and only if

n
3o lalii < D jwlk),
Jjed k=1

for any n € N and any set J C N with n elements.

Our plan is to characterize the denseness of norm attaining N-linear
forms on d.(w, 1) by a simple relation between w and N. Half of this char-
acterization will follow from the next lemma, which shows that faces in the
unit ball of d. (w, 1) look very much like those of cp and this implies severe re-
strictions on norm attaining multilinear forms. For the sake of completeness
we include a proof of this lemma, an easy generalization of the arguments
given in {1], [2] and [14] for the special case w = (1/n), N =2.

LEMMA 2.2. Let (eq) be the unit vector basis of du(w,1). Then we have:

(i) For every = € dy(w,1) with ||z]| < 1, there exist no € N and §>0
such that ||z + Aen|| € 1 whenever |X| < 6 and n 2 no.

(i) If ¢ € ALV (du(w, 1)), there exists no € N such that p(en,, .-, Eny)
= 0 whenever ny,...,NN = Ng.

Proof. (i) Given ¢ € d(w,1) with [jz]| < 1, there exists ¢ € N such
that

m 1 me
> E(k) < 5 S wk) form>q.
k=1 k=1

Since limp, z(n) = 0 we now find ng € N such that |z(n}| < w(g}/2 for
n > ng. Given y = T+ Aen, With n > ng and |X| < 6 :=w(g)/2, we want to
show that = .c s ly()} < 3 m, wk) for any m € N and any set J C N with
m elements. We may clearly assume that n € J. Then, for m > ¢, we have

S < e +6 < 5 D ulh) + 3@ < 3 ulb)

JjeJ JEJ

_ while if m <q,

men1 m
TGl Y @+ lem) +8< Y wk) +wle) <Y wlk).
k=1 k=1

jeJ je\{n}

(il) Let x = {zy,...,z~) be an N-tuple of elements in By, (w,1) such that
llll = |@(x)|- We use (i) to find no &€ N and & > 0 such that [zx + Aeal| < 1
for n > no, |A < 6and k=1,...,N. Then, for ny > no, we have

MO(X) + E(P(ml: e 3 Br—1yC6ngs Tht 1l - - - )mN)I

= I‘P(mla cas !mk—l.) Tp 6enk:mk+l) “y ﬂ:N)l < H‘P“ = |(,D(X)|,
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50 @(T1s- -+ Th=1,€nys Tkt 1, .-, TN) = 0. Now, for any 5,k = 1,... N (say
j < k) and n;, ni = ng we get
Igp(x) + 62(p(.’£1, T80y Tt e TR 1, €y Thpl - o ,.&",‘N)f
= lp(z1, ..., Tj-1,2; 6€nsy Ty oy Thmt, Bk + 8€nyy Tl + -+ » TN )]
< Jleoll = (=),
a0 tp(ml, ey m,-."l,enj,wj,*nl,. ces L1y Bnpy oty . ,GJN) = (. The pI‘OOf is

concluded after N steps. w

The next lemma, on the existence of “diagonal” multilinear forms, is
probably known. The result for bilinear forms can be traced back to [21]
and a short proof can be found in [17, Proposition 1.c.8]. We omit the proof
of the general case, which is rather similar.

LeMMA 2.3. Let X be a Banach space with unconditional basis (e,) and
p € LN(X). Then there exists v € LN (X) such that P(€hyy -1 €ry) = 0
unless k1 = ... = ky and Y(en, ..., en) = @(en,...,e.) for oll n. If the
unconditional constant of (e} is 1, then |¢| < |||

The next proposition is the key result in our discussion. Later we will
see that the norm attaining N-linear forms on d.(w,1) are dense if and
only if all continuous N-linear forms are weakly sequentially continuous
(Lemma 2.2 already pointed in this direction). The latter property will now
be characterized in terms of w and N. Actually, our proof also works for
p > 1 (then di(w,p) is nothing but the dual of d(w,p)). We denote by
LY (X) the space of weakly sequentially continuous N-linear forms on a
Banach space X.

PrOPOSITION 2.4. Given an admissible sequence w, 1 < p < oo end
N 2 2, the following statements are equiévalent:

(1) LN (s (w, p)) = Lse(du(w, 1)),
(if) p < N* and w & £o where 1/a+p/N* =1 and1/N +1/N* =1,

Proof. (i}=(ii). Suppose (ii) fails. If p > N* it is clear that the formal
identity ¢ : £y — d(w,p) is bounded, and the same happens in case p < N*
and w € £, (Hslder inequality). Then the adjoint operator ¢* : d.(w, p} —
£y (take the restriction to the predual if p = 1) is also bounded. Therefore,
we can define 9 € LN (dw(w,p)) by

",/)(-'1'»‘1,--«,031\!) = Zml(.?)wN(.?)
=1

Since ¥(en,...,en) = 1 for all n € N, 9 is not weakly sequentially continu-
ous, C
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(ii)=>(i). Suppose that (i) fails and p < N* to prove that w & £,. Since o
decreases with N (for fixed p) we may assume that N is the minimal natural
number such that (i) fails. We use the following fact, which is known and easy
to check: If all continuous &-linear forms on a Banach space X are weakly
sequentially continuous, then a continuous (k+1)-linear form on X is weakly
sequentially continuous if and only if it is weakly sequentially continuous at
zero. Thus, by the minimality of N, there is ¢ & LY (du(w,p)) which is not
weakly sequentially continuous at zero. Take weakly null sequences (u),
h=1,...,N, such that

lp(ul,...,ul) =1 forallneN.

QOur purpose is to modify ¢ so that it satisfles the above condition with the
last sequence (uY ) replaced by (e,), the unit vector basis of d,(w,p). Let
us define a seminormalized sequence (u)) in d(w, p) by
u:. = ‘lo(u'}l’ T 7u£"1’ .)'

For any fixed 2** € d(w,p)*, the mapping (z1,...,28-1) = z**(p(z1,...

-1 ZN-1,-)) is a continuous (N — 1)-linear form on d.(w,p). By the min-
imality of N this form is weakly sequentially continuous, so z**(u}) — 0
and the sequence (uy) is weakly null. By standard arguments we can find
a subsequence of (u!), denoted in the same way, which is equivalent to a
seminormalized block sequence (v};) of (e} ), the unit vector basis of d(w, p).

We can also suppose ||v}; — u}|| < 1/n for all n. The sequence (v%) has the
form
dnt1

vy = Z ager,
k=gn-+1

with suitable sequences of integers (g,,) and scalars (cvz). Two cases will be
considered:

(a} The sequence (o) does not converge to zero. Then we can find in-
creasing sequences of integers (n;), (k;) and n > 0 such that g,, < k; <
Gny+1, /11 < 1 and |y, | > 25 for all j. It follows that ’

Jpluun, - )| = s, (e, )| 2 [u (k) = 1/mg = || = 1/ny > 1
for all § € N. Since the basis {e,) is symmetric, we can use a suitable iso-
morphism in the last variable to get a new form & € £V (d,(w, p)) satisfying

Plup,y - un, He) =1 foralljeN
(b) The sequence (k) converges to zero. In this case, we use a result due
to Altshuler, Casazza and Lin [4], [7] (see [L7, Proposition 4..3]) to get a
subsequence (vy, ) which is equivalent to the unit vector basis of £, and such
that its closed linear span X = [v;; : 7 € N is complemented in d(w, p). We
compose the projection from d(w,p) onto X with the isomorphism which
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takes (vy, ) into the £,-basis and then the formal identity from £, into d(w, p)
to get a bounded linear operator T from d(w,p) into itself which satisfies
T(v;,) = €}, § € N. Now consider § € L¥(d.(w,p)) given by

P(z1,. 0 2n-1,) = T{plz1,.. ., TN-1,))-

This time we have
- - T T
Bk, ull )| = [T, (o) = 1T (o)~ I =g - I
Mg g
Again by a suitable isomorphism in the last variable we get a new form
3 € £V (d,(w, p)) satisfying exactly the same condition as in case (a).

The procedure used to pass from ¢ to & can now be iterated N — 1
more times, working in the N — 1 remaining variables, to end up with the
fact that there exists a bounded N-linear form v on d,(w,p) satisfying
(e, ... e;) = 1 for all j € N. By Lemma 2.3 we can arrange that ¢ is
diagonal, i.e.

Y(z1,.-.,ZN) = Zml(k)wg(k) ...zn(k).
k=1
For fixed n € N let us take z = 5, w(k)*/Vey,. Using the Holder inequal-
ity, it is easy to check that |jz| < (Zzﬂw(k)a)l—l/p’ hence
- N(1-1/p)

S wlk) = o, ) < 0l (S w(k))

k=1
Since N(1— 1/p) < 1, this implies w € £,, as required.
Note that the last calculation is valid (and easier) when p = 1. Actually,
the whole proof is shorter for p = 1 because the sequence (uy) is weakly
convergent to zero, 50 no subsequence can be equivalent to the £;-basis.

An easy weak-compactness argument shows that every weakly sequen-
tially comtinuous multilinear form on a reflexive Banach space attains its
norm. Therefore, the above proposition gives

COROLLARY 2.5. If N, w, and p > 1 satisfy statement (ii) in Proposition

2.4, then
ENM*(“":P)) = AﬁN(d* (w,p)).

However, we are mainly interested in the case p = 1. For this case we
get:

THEOREM 2.6. Given an admissible sequence w and N = 2, the following
statements are eguivalent:

(i) ALY (dy(w, 1)) is dense in LN (du(aw,1)).
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Proof. (i)=>(ii}. As in the proof of Proposition 2.4 (note that o = N
for p = 1), if w € &y there is ¥ € £V (d.(w, 1)) such that Y(en,...,en) =1
for all n. By Lemma 2.2, |3 — || = 1 for every ¢ € ALY (dy(w, 1)).

(ii)=>(i). For each 4y,...,ix € N, consider the continuous N-linear form
{monomial) given by

B'i;i_,...,iN (Z']_, ey ﬁ‘".N) = 6:1 (xl) re G;‘N (IN),
where (e7) is the unit vector basis of d(w,1), and let M denote the linear
span of all these monomials. Using the fact that (e, ) is a monotone basis, one

can easily check that M C ALY (d,(w,1)). If (ii) holds, by Proposition2.4
we have

(2'1) EN(d*(ws 1)) = ‘C{vvsc(d* (ws l))

Recall that, for any Banach space X, there is a canonical identification of
LY(X) with the space £YV~(X, X*) of X *-valued continuous (N —1)-linea
mappings on X. When X has a shrinking basis, it is not hard to check
that under such identification £, (X) becomes the space LY¥21(X, X*) of
weakly sequentially continuous (N — 1)-linear mappings, i.e. those (IV — 1)-
linear mappings taking weakly convergent into norm-convergent sequences.
Since (en) is shrinking, we infer from (2.1) that £Y¥~*(d,(w, 1),d(w,1)) =
L2 dy(w, 1), d{w, 1)), so we can apply [11, Theorem 1] to deduce that M
is dense in £V (d,(w,1)) and (i) follows. m

As an immediate consequence we get the following result, which was the
main motivation for the research of this paper.

COROLLARY 2.7. For each natural number N there is a Banach space
X such that ALY (X) is dense in LN(X) but ACNTY(X) is not dense in
LNFLX).

Proof. Just take X = d, (w,1) with w € £y41 \ £x.

Concerning the proof of Theorem 2.6 we remark that, for a Banach space
with shrinking basis like X = d.(w, 1), the fact that all continuous N-linear
forms on X are weakly sequentially continuous is equivalent to some other
remarkable properties, for example that all X*-valued continuous (N — 1)-
linear mappings on X are compact, that is, they take bounded sets into
relatively norm-compact sets [11]. The case N = 2 is especially appealing.
From Proposition 2.4, Theorem 2.6 and the above observations we get:

COROLLARY 2.8. Given an admissible sequence w, the Jollowing state-
ments are equivaleni:
(1) AL*(dy(w, 1)) is dense in L2(dy(w, 1)).
(ii) w Q £2. .
(iif) Buery bounded linear operator from d, (w,1) into d(w, 1) is compact.
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It is worth mentioning that every bounded linear operator from d. (w, 1)
into d{w,1) is weakly compact, regardless of the admissible sequence w.
This follows from the fact that d.(w,1) is an M-ideal in its bidual (see [15,
Example II1.1.4.(c) and Corollary I1L.3.7]).

Remark 2.9. In Theorem 2.6 we have shown the denseness of the norm
attaining N-linear forms in many situations where no previously known suf-
ficient condition for this denseness is satisfled. Let us mention the result
by Choi and Kim [9, Theorem 2.2] that ALY (X) is dense in £V (X)) for
every N, provided that X has the Dunford-Pettis property and a shrink-
ing monotone basis. Since the unit vector bases of d.(w,1) and d(w, 1} are
weakly null, d.(w,1) fails the Dunford-Pettis property. Nevertheless, by
taking w(n) = (1 + logn)~* we get an admissible sequence w such that
ALY (d,(w, 1)) is dense in £V (du(w, 1)) for every N.

We conclude this section by generalizing some of the arguments we have
been using for Lorentz sequence spaces, in order to get a new sufficient
condition for the denseness of the norm attaining multilinear forms, under
more abstract assumptions on the Banach space. The proof will also work
for polynomials. Recall that a Banach X has properiy S, (1 < p < 00)
if every seminormalized weakly null sequence (2.} has a subsequence (y,)

with an upper p-estimate, i.e.
n 1/;}
<M (3 o)

"
|| Z aiYi
izl =1

for some constant M > 0 and every choice of scalars {a;};, n € N.

PrOPOSITION 2.10. Let X be a Banach space with a shrinking monotone
basis (ey) such that X has property S, for somep > N > 2. Then ALY (X)
is dense in LN(X) and APV (X) is dense in PV (X).

Proof. Since X has property Sy and N < p, every continuous N-linear
form on X is weakly sequentially continuous (see [13], for example). Also, X
has a shrinking monotone basis, so we can use exactly the same argument
as in the proof of Theorem 2.6 to get the denseness of ALN (X) in LV (X).
The proof for polynomials is analogous, since APN(X) contains the linear
span of all polynomials of the form e, ... e}, , which is dense in PN(X). =

ExAMPLES 2.11. (i) Recall that, given p > 0, an admissible sequence w
is said to be p-regular [19] if

1 n
P = )P eN
w(m) p 3:1 w(i)?, n

In case w ig p-regular, with p > N > 2 (which in particular implies that
w & ) we obtain a shorter proof of the fact that ALY (d,(w,1)) is dense in
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LN (dy(w,1)). Indeed, we first apply a result of Reisner [19] to deduce that
d(w,1) is p*-concave and thus d.(w,1) is p-convex [18]. This implies that
every seminormalized block sequence of the unit vector basis has an upper
p-estimate, hence d.(w, 1) has property S, and Proposition 2.10 applies.

(ii) Fix N > 2 and let M be an Oxlicz function with Boyd index apr > N
(cf. [17], [18]). Then the Orlicz sequence space associated with M, defined
by

bae = {(.'J:(n)) : ZM(IE(TL)'/Q) < oo for every g > 0},
n=1
satisfies the assumptions of Proposition 2.10 since hps has property Sp for
any p < e (see [16], for example). It can be seen that ks fails the Dunford-
Pettis property and if Sas = oo, then hjps also fails the Radon—Nikodjm
property.
If we consider for instance

M) =e Y (witht>0),

we have ayr = fur = 00, so Proposition 2.10 tells us that ALY (hpar) (resp.
AP (har)) is dense in LV (hps) (resp. PV (har)), for every N € N.

3. Norm attaining polynomials on d,(w, 1). The next lemrua shows
that norm attaining N-homogeneous polynomials on complex preduals of
Lorentz sequence spaces “behave” like norm attaining N-linear forms.

LEMMA 3.1. Consider the complez space di(w,1). If P € AP¥ (d\(w, 1)),
then P(en) = 0 for n large enough.

Proof Let xg € By, (w,1) be such that ||P|| = |P(xo)|, and find np €N,
& > 0 such that ||zg 4+ Aen|| < 1 for |A| £ § and n > ng. Then, for each
n > ng, the modulus of the complex polynomial A — P(zg -+ Ae,) attains
a local maximum at the origin. By the maximum modulus principle this
polynomial is constant, so Ple,)=0. =

The real case is different. Just take w € £y with |jw|z = 2, and P €
P2(ds(w, 1)) defined by

(3.1) P(z) = 42(1)* —~ Z z(n)?.

' n>2
It is easy to check that ||P|| = 4 = P(e;) and P(e,) = —1 for n > 2.
Nevertheless, we have the following analog of Theorem 2.6 for palynomi-

als. We denote by P (X) the space of weakly sequentially continuous
N-homogeneous polynomials on a Banach space X.
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THEOREM 3.2. Given an admissible seqguence w and N > 2, the following
statements are equivalent:

(i) APY(du(w, 1)) is dense in PN (d.(w,1)).
(i) w & L.
(iii) PN(d* (wa 1) = ‘P“Jysc(d* (w,1)).

Proof. (ii)=(iii). This follows directly from Proposition 2.4.

(iii)=-(i). By [10, Proposition 10], (iii) imaplies that P (d.(w,1)) is the
closed linear span of polynomials of the form ef, ...ef, withy,...,in € M,
where (&) is the unit vector basis of d(w, 1). The fact that the unit vector
basis of d4(w, 1) is monotone easily implies that any finite linear combination
of these polynomials attains its norm, and (i} follows.

(i)=>(ii). We assume that w € £ and find a polynomial @ € PV (di(w, 1))
which cannot be approximated by norm attaining polynomials. In the com-
plex case this is easy: we just take

o0
Q(z) =Y a(k)".
k=1
Since Q(en) = 1 for all n, Lemma 3.1 tells us that | — Pl > 1 for every
P e APYN(d.(w,1)).

Tn the real case comsider the minimal natural number M < N such
that w € £3r. For P € APN(d.(w,1)), let 20 € By (w,1) be such that
|P|| = [P(z0)|, assume for the moment that P(zo) > 0 and use Lemma 2.2
to find ng € N and & > 0 such that ||zg + Aea|] < 1 for n. > mg and [A| < 6.
Then, if we denote by  the symmetric N-linear form associated with P, we
have

(3.2) P(mo+)\en)=P(wo)—I—NAgp(xg,...,zg,en)+...
+ (ﬁ)AM(p(mg, ve oy B0 Eny M en) 4 .+ AV Plen)

< P(QO),
for m > ng and |A\| < &. By Proposition 2.4 every continuous k-linear form on
dy(w, 1) is weakly sequentially continuous for k < M, so lim,, ¢(z0, .. ., %o,

en, #), e,) = 0 for k < M. Therefore, by letting n — coin (3.2) and dividing
by AM we get '

tim sup (( ¢ ) @(Tos - - - 1 %0 €,y M) e,)
n
+ ’\(Mﬁl)@(mﬁa o0y B0, Eny (M"}"I): en) ot AN_MP(ETL)) <0
for 0 < X < 6. It follows that

lim sup tp(wo, ver 1 B0, By (~M-);en) <0.
111
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In case. P(zq) < 0, the above argument applies to —P and we get

lim inf (g, - .. , To, €, M), €,) 2 0.
k23

Now define @ € P (d.(w, 1)) by

Q@) = (1M 3 ()RR,

k=1

If ¢y denotes the symmetric N-linear form associated with @, it is easy to
check that

(ﬁ)lw(m! <or 3 By Epy (M), en) - (—1)n$(1)N—M
for every z € di(w,1) and n > 2, s0

(M) limsupg(z, ..., 2, eq, M, €0) = |m(1)| VM
T

= —(ﬁ) limninfqb(:v, - enl, M) e,).

We assume that @ can be approximated by norm attaining polynomials to
get a contradiction. Fix ¢ > 0 and let P € AP (d,(w,1)) be such that
Q@ — P|| < eN'/N¥, so that the corresponding symmetric N-linear form ¢
satisfies |9 — || < &. Now let @ € Ba, (w,1) be such that | P|| = |P(zo)|. If
P(zy) > 0 we have

(ﬁ)_lmo(l)!N‘M =limfup'z,b(:co,..,,mo,en,(.M),en)
< lim,fup @(Zo,. .-, %0, em, M en) + e < g,
while if P(zg) < 0 we get the same conclusion:
— (30 eV M = lim inf (3o, - -, 70, en, ), €5)
> liu}zinfgp(a:g, B0 €y, M) ) — 8 > —e

It follows that
QI < |P|| 4+ = P{xo)i +& < [Q(z0)| + 22

= |m0(1)|N~M§: o (k)| M + 2 < e((f\\f,) iw(k)M + 2).
k=1 k=1

Since e > 0 was arbitrary, we have the desired contradiction. m

Remark 3:3. Note that in the real case, if w € £y \ £y—-1 with N odd,
the above proof shows that lim, P(e,) = 0 for every P € AP (d.(w,1)}.
For N even we cannot expect the same conclusion, as shown by the example
given after Lemma 3.1. '
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The Berezin transform on the Toeplitz algebra
by

SHELDON AXLER (San Francisco, Calif.) and
DECHAO ZHENG (Nashville, Tenn.)

Abstract, This paper studies the boundary behavior of the Bererin transform on the
C*-algebra generated by the analytic Toeplitz operators on the Bergman space.

1. Introduction. Let dA denote Lebesgue area measure on the unit disk
D, normalized so that the measure of D equals 1. The Bergman space L2
is the Hilbert space consisting of the analytic functions on D that are also
in L?(D,dA). For z € D, the Bergman reproducing kernel is the function
K, € L2 such that

flz)= (f ) Kz)
for every f € L2. The normalized Bergman reproducing kernel k; is the
function K,/||K:||2. Here, as elsewhere in this paper, the norm || ||z and
the irnmer product {, ) are taken in the space L?(D, dA}. The set of bounded
operators on L? is denoted by B(L2). _

For § € B(L2), the Berezin transform of S is the function S on D defined
by

S(z) = (Ska, k).
Often the behavior of the Berezin transform of an operator provides impor-
tant information about the operator,

For w € L®(D,dA), the Toeplitz operator T, with symbol u is the op-
erator on L2 defined by To.f = P(uf); here P is the orthogonal projection
from L2(D,dA) onto L2. Note that if g € H> (the set of bounded analytic
functions on D), then T, is just the operator of multiplication by g on LZ.

The Berezin transform % of a function u € L*(D,dA) is defined to be
the Berezin transform of the Toeplitz operator T,,. In other words, U = T,
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