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Intringic characterizations of distribution spaces on domains

by

V. 85 RYCHKOV (Jena)

Abstract, We give characterizations of Besov and Triebel-Lizorkin spaces By (¢7)
and Fyq(2) In smooth domaine 2 < W' via convolutions with compactly supported
smooth keruels satisfying some moment conditions. The results for s € R, 0 < p,¢ < &
are stated in terms of the mixed norm of a certain maximal function of a distribution. For
seR 1<p 00,0 < g% oo characterizations without use of maximal functions are
also obtained. -

1. Introduction. The Besov and Triebel-Lizorkin spaces By (R™) and
Fp(R*), s € R, 0 < p,q< oo, are well-known scales of spaces of tempered
digtributions on B", covering classical Holder-Zygmund spaces, fractional
Sobolev spaces, local Hardy spaces and their duals.

After being introduced in the 60s-70s in the pioneering papers by

0. V. Besov [Besl,2] (B, spaces, s > 0,1 < p,g < ),

M. H. Taibleson [Tai] (Bp, spaces, s € R, 1 < p,q < 0),
P. I. Lizorkin [Liz1,2] (F, spaces, s > 0,1 < p,q < o0},

H. Triebel [Tril] (Fy, spaces, s € R, 1 < p,¢ < ),

J. Peetre [P1,2] (extensions of By, and Fj, to all0 <p,¢ < 00),

these spaces were studied in detail. General references for the theory of
Bg, and Fj$, spaces arc two monographs by H. Triebel {Tri2,3], and the
fundamental paper by M. Frazier and B. Jawerth [FrJ].

In this paper B, and Fj spaces on domains are studied. Let £2 be a
domain in " with smooth boundary. The natural way (also used here) to
introduce distribution spaces B, (12), Fag(12) € D'(£2) is to define them as
restrictions of corresponding spaces from R® to 2. Then the problem of
finding intrinsic characterizations of these spaces arises.

1991 Mathematics Subject Classification: 46E36, 42B25.
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Intrinsic characterizations of By, (f2) with s > 0, 1 < p,g < 0o were
proved by O. V. Besov [Bes3]. G. A. Kalyabin [Kall,2] proved intrinsic
characterizations of Fjy, ({2) with s > 0, 1 < p,q < 0o. Extensions to B, (2)
and F? (2) with s > nmax(0,1/p ~ 1), 0 < p,¢ < oo are due to A. Seeger
[See] and H. Triebel [Tri4] (see [Tri3, 1.10, 5.2]).

We would like to stress two points. First, in all the above-mentioned
cases the spaces under consideration consist of regular distributions (locally
summable functions). Second, all the above-mentioned characterizations are
given in quite constructive terms, such as differences and oscillations of
functions.

However, if we ask for constructive intrinsic characterizations of B; (12)
and Fy, ({2) with, say, s < 0, it turns out that the question for a considerable
part remains open. Indeed, the problem for Besov spaces By, ({2} with s € R,
1 € p,g < oo, and for Sobolev spaces W ({2) = Fj,(£2) with s € R, 1 <
p < oo was solved by T. Muramatu [Mur| by constructing certain integral
representations. As far as general Fy;, spaces or 0 < p < 1 are concerned, the
only relevant work known to us is the paper by H. Triebel and H. Winkelvo8
[TrW], where intrinsic characterizations of B, ({2) and F,;,(£2) by means of
atomic decompositions for all s € R (and even for more general domains)
are given. But these characterizations, in spite of their usefulness for some
applications, are apparently not constructive in the usual sense of the word
(see a more detailed discussion in Section 5(b)).

In this paper we give rather satisfactory constructive intrinsic charac-
terizations of By (f2) and F (2) in the full range of indices s, p and g.
To write an explicit equivalent quasi-norm of a distribution f € D'(£2) in a
corresponding space, we use means of f via some kernels belonging to D(£2).

1t has already been known for a long time that means of f € &' via
compactly supported smooth kernels can be used to introduce equivalent
quasi-norms in B} (R") and F (R") (see [Tri3, 2.4.6]). But the rather deli-
cate question whether these qua51 norms give characterizations of the corre-
sponding spaces was answered only recently by H.-Q. Bui, M. Paluszyriski,
and M. H. Taibleson [BPT1,2]. Fortunately, the answer is yes. Our consid-
erations will be based to a great extent on ideas from [Tri3], [BPT1,2].

The rest of the paper is organized as follows, In Section 2 necessary
definitions are given and main results are formulated and discussed. Proofs
are contained in Sections 3 and 4. Section 5 is devoted to remarks as well
as to relations with other results in the literature.

The symbols N, Ny, R*, S, &', D(2), D'(1) (where {2 is a domain in
R*"), L, (0<p< oo) have thelr usual meamng

For z € B* we write = (2',2,) with 2’ € R*~! and z, € R.

For the sake of brevity we omit R™ in notations of all spaces, quasi-norms
and integrals on R".
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For ¢ = oo an expression (3 |ag|?)*/? always denotes sup |ag|.

For A € D and § € N we write A;(z) = 2"\ (22).

As usual, ¢ denotes an unimportant positive constant, which can change
from one estimate to another.

Acknowledgements. [ would like to express my gratitude to Professor
Hans Triebel, who looked through the manuscript and made several helpful
suggestions. I am also indebted to the referee for pointing out a mistake
(now corrected) in the proof of Theorem 2.1.

2. Definitions and results. From the variety of known equivalent def-
initions of By, and F;q spaces, the following one is the most close to the
spirit of our paper. H. Triebel [Tri3, 2.4.6] called it “characterization via
local means”.

DeFINITION 2.1. Let 0 < p,g < o0 (p < oo in the Fy, case), s € R and
M €Ny, 2M > 3. Let Ao € D and {Ag(z) dz # 0. Let A = AM g, where A
stands for the Laplacian. Then

Bro = {f €81 ||F1Bggll = (iza‘sq“)\j *f(.)\Lqu)llq . OO}?

Vo] <0}

Remark 2.1. (a) A reader familiar with the original Fourier analyt-
ical definition of B3, and Fj, (see eg. [Tri3, 2.3.1]) will notice that all
its main features (the sequence of convolutions, the factor 27°7, I,(L,) and
Ly(l;) quasi-norms) are preserved in Definition 2.1. The only (but crucial)
difference lies in the convolution kernels A; having compact support in Def-
inition 2.1. This was by no means the case in the original definition, where
the Fourier transforms )\ rather than the A; were compactly supported.
The equivalence of the two definitions follows from more general results of
[(BPT1,2); see a,lso [Tri3, 2.4.6] for earlier versions.

(b) Defining Fy;, spaces, we excluded the case p = oo. The spaces F,, will
not be treated in thm paper. We only note that Definition 2.1 does not work
in this case and should be replaced by a more sophisticated construction.
The details can be found in [Tri2, 2.3.4] and [FrJ].

Given. a space of distributions on R, one can easily construct the corre-
sponding space on an arbitrary domain (2 c B* by a restriction procedure.
The exact definition of By, and F" spaces on domains is the following.

DEFINITION 2.2. Let 2 be a domain in R™. Let 0 < p,¢ £ = (p< oo
in the F?, case) and s € R. Then B, (12) and F, 5,(2) are the restrictions of

= {res s Ii1Fyl = H(szv\ « FO19)
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Bg, and F}, to {2, quasi-normed by

1£1B3,(2)]| = iné{llg| B2yl : ¢ € Biyy gl = F in the sense of D'(2)},
LFIFS(Q)] = nf{|]g|FS, | : 9 € Fiyy gl = £ in the sense of D/(2)}.

Remark 2.2. Being defined in this way, spaces B; ({2} and F7 (2)
luckily inherit some good properties of spaces on R™, e.g. the completeness
in the topology induced by the quasi-norm, and the embedding assertions.

Some other properties either do not have direct analogues in the case
of spaces on K™, or should be given a separate proof. Besides that, gener-
ally speaking, a certain smoothness of the boundary 942 is needed. If 802
is smooth enough (say, C*°), then B} (£2) and F,({2) have the following
properties (which we demonstrate on the example of the F5, scale).

{(a) The extension property ([Tri3, 4.5.5]). There exists a linear bounded
extension operator ext : F (£2) — FJ,.

(b) Estimates for elliptic operators (J. Franke and T. Runst [FrR]). Let
s> (n—1)max(0,1/p— 1)+ 1/p. Then the Dirichlet prcblem

Au=f inf2, ulgn=20

has a unique solution u € Fj (£2) for every right-hand side f € Fg72(£2).
(¢) Intrinsic characterizations. We have already discussed this question

in the Introduction. The aim of the paper is to contribute in just this field

of knowledge about Bj,(£2) and F; (12).

Our main results will be formulated for the case of {2 being an open set
above the graph of a smooth function w : R*! -» R. The exact definition
of that class of domaing runs as follows.

DEFINITION 2.3. Let L € N. A special CX-domain 2 C R is a domain
of the type

2={(z',z,): ' € B*, 2, > w2},

where the function w(z") has continuous derivatives up to order L, and
iDw(z')] < € < oo for all multi-indices & with 0 < |a| < L and all
' e RP1,

We want to give characterizations of By, (2) and F2((2) inspired by
Definition 2.1. It means that we should provide ourselves with a sequence
of averaging kernels having sufficiently many vanishing moments (as A =
AM ), does). Moreover, convolutions of these kernels with distributions from

D'(£2) should make sense. These two crucial properties are summarized in
the following definition.
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DEPINITION 2.4. We say that a function ng € D is a proper kernel of
order M € Ny if

Sno (z)dz =1,
and the function n defined by n(z) = no(z) — 2~ "no(z/2) has vanishing
moments up to order M, i.e.

Sm“n(m) de =0 for all multi-indices o with |a| < M.

Furthermore, we say that the kernel ng is suitable for a special C*domain
12 if ny is supported in a cone

K ={z:}z'| < B™Y&a|, zn < 0},
where sup |Vw(z)] < B < oo,

The condition suppng C K implies that, for every z € 2 and each

je No,
suppni(z ~ ) Cz - K C 02

and thus the convolution n; * f(z) is correctly defined for every f € D'({2).

Given a number M & Ny and a special Cdomain {2, one can construct
a proper kernel of order M, suitable for {2, in the following way. First, there
exists a function 7 € D supported in the lower halfspace {z : £, < 0} and
such that

Sng(m)dw=1, Sm“ng(m)dmmo, O<lal<M

(see [Txi3, 3.3, pp. 173-175] for details). Then A™ lno(Az’,z,) is a proper
kernel of order M for every A > 0. For sufficiently large A this kernel will
also be suitable for (2.

Now we are in a position to formulate our results. These are two theorerns
below. Recall that n; = 2/"n(27z) for § € N.

THEOREM 2.1. Let s € R, 0 < p,¢ < co end a > n/p (p < o0 and
a > n/min(p,q) in the FS, case). Let M = [|s| + 2a]. Let 2 be a special
CM+L_domain, and ny be o proper kernel of order M, suitable for {2, For
FeD(R) and § € Ny introduce the magimal functions

e 2,5 (0) = sup W)

MW pef)
ven (1 + 2|z —y))e

Then
By ()= {f e ()

”.fiB;‘f(m”' = (iZj”“Hnﬁaf(-)le(n”p)”q < oo},
=0
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Fe (@) ={feD'(2):
AE@ I = || (S 2*n2s07) " Eate) | < o0},
i=0

and the quantities || f|B5 (2)|I" and || f|Fp(2)||" are equivalent quasi-norms
wn the corresponding spaces.

THEOREM 2.2, Let s € R, 1 < p < oo (1 < p < oc in the Fy, case) and

0 < g < co. Let 2 be o special CF+-domain, and oy be o proper kernel of
order M, suitable for {2, where

L = [5|s| + 4n/min(1,q)], M = [8|s|+ 8n/min(1,q)].

Then
B, (2) = {feD'(2):

1B = (32 2%l = FOILR(@) " < oo,

=0
F(2) = {f e D'(2) :

A" = (izmim w£0F) Lo} < 0},

and the quantities || f| By, (£2)||" and || f|F5,(12}]|" are equivalent quasi-norms
in the corresponding spaces.

Theorems 2.1 and 2.2 give the desired intrinsic characterizations of
F3,(£2) and Bp (£2) for domains £2 of the indicated type. Theorem 2.1 is
applicable in the full range of parameters s, p, ¢. Its result can be called
a “characterization via maximal local means”., On the other hand, Theo-
rem 2.2 supplies a “characterization via local means”, which is very close to
that of Definition 2.1 for spaces on R". However, in this case we have nct
been able to cover the “gap” 0 < p < 1.

Remark 2.3. (a) The maximal functions (2.1) are nothing but modi-
fications of Peetre’s maximal functions

2.0
(2'2) nj,af(m) - ysélll%?‘ (1 -+ 2f|w . y!)am
introduced by J. Peetre [P2). In the same paper the first characterizations of
Fpq spaces by means of these maximal functions were obtained. Far-reaching
generalizations of these results have recently been proved in [BPT1].

(b) We note that with the help of a smooth partition of unity our two
thecrems can be used to write down intrinsic characterizations for spaces
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B;q(ﬂ) and F;q(ﬂ) on an arbitrary bounded domain {2 with smooth bound-
ary of class C*, L being sufficiently large. We omit the exact formulation of
this result, but we believe that the main idea should be quite clear.

(c) We realize that the limitations M = [|s| 4 2a] and M = [8|s| +
8n/min(1,¢)], imposed on the number of vanishing moments of kernels in
Theorems 2.1 and 2.2, look unnatural in comparison with Definition 2.1,
where (roughly speaking) only s vanishing moments are required. The con-
trast becomes even more evident if 3 < 0 is taken, and M = 0 is admissible
in Definition 2.1.

Theorems 2.1 and 2.2 are proved in Sections 3 and 4, respectively. In the
proofs we consider only the case of Fy, spaces. For By, spaces the corre-
sponding arguments are quite analogous and generally simpler.

3. Proof of Theorem 2.1. To prove Theorem. 2.1, it is necessary and
sufficient to show the following two assertions.

(A) Let g € F}, and f = g|g. Then
[ F1Epg (D" < eliglFy -

(B) Let f & D'(R2) and || f|Fg,(§2)}]' < co. Then there exists a distribu-
tion ext f € F?, such that ext flo = f and

llext | Fpgll < cllf1Epg (D"

Step 1. Let us prove (A). Immaterial modifications of [BPT1, Theorem
3.1] (see also [Tri3, 2.4.1, Corollary 2]) show that if  has vanishing moments
up to order M > [s] (which is true in our context), then, for every g € Fy,.

(S 29r5000%) | 1] < el
=0

where ] ,g(x} are Peetre’s maximal functions (see (2.2)). Let f‘z gl Since
the kernel 7 is suitable for {2, we see that, for all z € {2 and j € Np,

2, f(z) < a9(e).
This implies that || f|Fa ()| < cllg| Fgail-

Step 2. To prove (B), we should choose an appropriate extension operator
ext, : .

Let 1 < 1wy < g < ... < Usm43. L6t U1,. .-, Vanr4s be the uniquely
determined real numbers such that ‘ '
2M+3

(3.1) Y vm(l - um)t =1, k= —(M+2),..,0,..., M

m=1
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(Vandermonde’s determinant). In the sequel, the index m will always run
through the set {1,...,2M + 3}, and > will always denote an‘niﬁ

First, let f be a continuous function in 2 (f € C(£2)). For such a function
we put

)  ifzedd
(32) extflz)= { vaf(g;,’g;ﬂ + um(w(z’) —z,)) fzeR™\

where w : R*™! — R is the function describing 82. Note that (3.1) with
k = 0 immediately implies that ext f € C{R").

Remark 3.1. The construction of the extension operator in the form
(3.1)-(3.2) goes back to M. Hestenes [Hes], at least in the case of £2 being
the halfspace. Tn fact, conditions (3.1) with nonnegative k guarantee that
ext f € CM(R™) for each § € C'™({2). However, we shall use these conditions
in another context. Conditions (3.1) with negative k are especially imaportant
for extensions of spaces with negative smoothness; they were introduced by
H. Triebel (see, e.g., [Tri3, 4.5.5]).

Now let us consider the general case: f € D'(2) and |[F|Fg (2)]|' < oo.

For j € No we define f;(z) = n; * f(z), 2 € 2. It is clear that f; & C(f2),
and thus the extensions ext f; can be defined by (3.4). For ¢« € N we put

i
ext’ f = Zext Fi
i=0

Below we shall prove the uniform boundedness of the sequence {ext’ f} in
F? . :
Pq

(3.3) lext? FIFll < cllF1F5 (D), ieN,

and this will be enough to finish the proof. Indeed, by (3.3) and the contin-
uous embedding Fj, C &', the sequence {ext’ f} € &' is uniformly bounded
on a neighborhood of 0 in a separable topological vector space 8. Now by a
variant of the Banach-Alaoglu theorem (see, e.g., W. Rudin [Rud, Theorem

3.17)) there exists a subsequence {exti* f} converging in &'. Dencting its
limit by ext f, we see by (3.3) that -

llext f1Fpgll < €l FI1Fg ()]

Moreover, since Zj:o i (@) = 2"no(2*x) — § (Dirac’s &H-function) as i — oo,
we have 3777 f; = f in D'(£2), and thus ext f|p = £
The proof of (3.3) will be divided into 4 steps.
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Step 8. Let us note the following identity. Let A € D and f € C(£2).
Then straightforward calculations, based on (3.2), show that

(3.4) VM) ext f(z) dz = | Mz) f(2) de,
2
where
(35)  Alw) = Az) — Z 7 fw;m)\(m',w(m’) + %ﬂ), zefl

We establish somne properties of A Taking into account the smoothness
of w, stated in Definjtion 2.3, we see that

(3.6) X e cMHYD),

i.e., all derivatives D*}, |a| € M + 1, are continuous and bounded in £2.
Moreover, using the identity

i
Um 1 _ o o
Z(l.—um)“l(l—l—um) =0, 4,720,i+i<M+1,

m

following from (3.1) with negative k by linearity, it is not difficult to see that
(3.7) D*¥Alga =0, |a|<M+1,

This implies, in particular, that the function A, obtained by the extension
of X from §7 to the whole R” by zero, belongs to CM+(RM).

Another useful circumstance {clarifying the role of {3.1) with positive k)
is the following. Suppose additionally that A has vanishing moments up to
order M. Then the same is true for Ag. To see this, we note the following
easy consequence of (3.1) with nonnegative k: if f(z) = 2%, z € {2, where
la| < M, then ext f = 2%, ¢ € R™. From this fact and (3.4) it follows that,
for |af < M, -

{ 2*A(z) de = {2*M) da,
02

and thus
(3.8) fer@)de =0, |ol <M = [2*X(@)de =0, |o| < M.

Step 4. Now let again f € D'({2) and ||f|F;q((2)||’_ < oo, ".F‘o estimate
lext FIES, ||, we shall use the following lemma, which is essentially known
(combine Theorem 3.3.3 from [Tri3] with results of [BPT2]).

LEMMA 3.1. Let 0. < p < o0, 0 < g < 00, and s € R. Let pg be-o proper
kernel of order M > s. There exists a natural number J = J(up) such that,
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foralige &',

?

o) < (32 oy =a0)09) " [14)
=-J

J'____

where for negative § we put p;(z) = 27" po(2x).
Qur way to the application of Lemma 3.1 begins with the inequality

(39)  Imwext! f(m)] € Y |m*ext f5(2)] = Suf(z),

j=0
zeRY ieN, 1> —J, J=J(n).

According to (3.4)-(3.8), we have the identity
o0

(3.10) Sif@) =3 | Kile,u)n; + 1) dy
J=0

where the kernel K;(z,y) is given by

K[(ﬂf,y)
Um ; ; n Y~ w(y)

—~) - - - n

_ {m(r y) ; 1_umm<x vhon —wly) - ) ye L,
0 otherwise,

and has the properties
(3.11) Ki(z,)) € CMTHR™), zeR™Y;
(3.12) \v°Ki(z,y)dy =0, |o|<M, zeR", 121

We add to these the following observation:
(3.13) DK (z,y)| < 2ol o] < M+ 1, 2,y € R™

Moreover, the locelization properties of Kj(z,¥) are important for us. They
can be summarized as follows.

There exist constanis ¢, C' > 0, independent of I > —J and z ¢ R™, such
that

(a) if ¢ € 12, then
supp Ki{z,-) C 2N {y: |z —y| < 27}
(b) ifz € R™\ 2 and —C27" <z, —~ w(z’) <0, then
supp Ki{z,") C 2N {y: |F -y <27},
where T = (2, 2w(z’) — x,) € 12;
(¢) if z € R\ 12 and z, — w(z') < —C27, then

Ki(z,y) = Zsz(w,y), supp Kim(z,) C 2N {y: [F™ — y| < 27},
m
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where T = (&', 2n + um(w(z’) — za)) € 0, and the functions Kim(z,y)
satisfy the same conditions (3.11)~(3.13) as K,(z,y). In other words, (3.11)-
(3.13) remain true with Ky(z,y) replaced by Kim(z,y).

Let us verify these assertions. Part (a) is obvious, as Kj(z,y} = mi{z—y)
for z € £2. Furthermore, as soon as €' > 0 is chosen and fixed, (b) is plainly
true with sufliciently large ¢, depending on C. It remains to choose Kip, (z,y)
and C so that (c) is true. We take

Kim(z,y) = —= Yn =~ W(y’))

I . LAY
1_umm(m Vi —wly) = T

_ _Um mlz -, (B™)n — 4 — um(w(z’) — w(y)) )

The localization of Ky, (z,y) around ™ is clear. Take C so large that, for
z with @, — w(z’) < ~C27,

supp T?J(m - ) CR* \'Qa supp Klm(wa ) C {2

This implies that Ki{z,y) = 3, Kim(z,y) for these z. Finally, it is clear
that (3.11)~(3.13) are true with Kim(2,y) in place of Ki(z, ).

Remark 3.2. The idea to consider three different cases of the localiza-
tion of K{z,v) is due to H. Triebel [Tri3, 4.5.5], where it appeared in the
context of extension theorems for the halfspace.

Step 5. Now we are ready to derive the estimates of S;f {z), which are
the essence of the proof.

From (3.10), using the identity f = Y oq 7 * f in D'(£2), we come to

(14  Sif@m< 3 SKz(m,y)m*nj*f(y)dy’
Liz0
<z Y lmevnens o)
hiz 0 i~z ]F -1 . :

where the latter inequality follows from the commutativity 1 * n; = 75 * 1.
As we have seen in the previous step, for every z € R" the kernel Ki(z,y)
is localized around some point 5 € 7 (cases (a), (b)), or can be represented
as a finite sum of kernels so localized (case (c)). Having in mind necessary
modifications, which should be done in the latter situation, we assume that
the former case occurs. T ' '
Qur plan is to estimate the summands on the right-hand side of (3.14)
by values of maximal functions at the point Z. This can be done as follows:
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(318) | [ Kalz,) s s+ £()
= [ Kilo,v) ity —F + 2)n # f(F — 2) dzdy
< [ Ko, ) mly = F 4 2)dy| - In « (& - )| de

< Lj - i, (@),

Here, in passing to ), f(Z), we have used the inclusion supp K;(z,-) C 7]
and the fact that n;(y — T+ 2) = 0 for y € 2, T — 2 € (2, and we have set

(3.16) Lije = | (1 + 27[2])°

VK2, — 2+ v) mi(y) dy| dz.

To establish appropriate estimates of Ij;, we need (3.11)—(3.13), the
localization properties of Kj(z,'}, and the moment conditions on ;. The
main idea is to expand either K;(z,-) or n; by Taylor’s formula. The terms
with lower derivatives then vanish because of the moment conditions on
the other function, and the necessary estimates arise. It is intuitively clear
that one should expand the function which is more “flat”, i.e. has a smaller
subscript.

Remark 3.3, Thisidea can be traced back to N. J. H. Heideman [Hei].
Estimates, somewhat less general than we need, but proved in a similar
fashion, can be found in [BPT1].

Let us turn to concrete estimates of I;;;. Consider the case i > 1, 1> 1.
‘We begin with Taylor’s expansion

K@E-z+y)= Y. %D;‘Kg(m,&:’— z)

lor| <M
1
+ Z Cay™ S (1 - r)MD2K (2, T~z + Ty) dr.
|| =M 41 0

We put it into (3.16) and use the moment conditions on n; to get

Lj = (1 + 271"

% | Z caiy“S(l—T)MD;”Kl(w,ZE—z+q’y)d7n.;(y)dy dz.
jajl=M+1 a

Now rough estimation suffices. By the localization properties of Ky(z, ) and
7, the integrand is zero if |z| > c2~ or |y| > 27¢ (recall that i > ). Taking
into account this fact and (3.13), we have
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(3.17) Lijp < cmax(1, 207 18)g - (ML) gllnt M+1)ging—ing~ln
== omax(], 2(5"“)“)2(“*')(M+1), izl i 51

Note that this estimate is also true for ~J < 1 £ 0,4 = 0 with a constant
depending on J.

Quite analogously to (3.17), by Taylor’s formula for 7; and the moment
conditions (3.12) on K;(z, ), we also obtain

(3.18) Lij < cmax(1,20-Ho)gt-00041) g <

Putting (3.14)-(3.18) together, we arrive at

-1 i @
8, f(z) < CZ"?;’?@JC(E)(Z glf—ilagli-i)(M-+1) 1 Z 2(1—%)(M+1))
F=0 =0 . i=21—j
' 2—j 00

Jlr ci nfaf(af)( Z o(i=)ag(i—1)(M+1) + 22(j~!)a2(l»—ij(M+1))
— |

=0 i=j
-1 o0 ‘

< CZ nfaf(ﬁc”)z(j—z)(Mﬂ) + Cznﬁaf(i)z(l——J)(M-i-l—Za).
d=0 P

In view of M > |s| + 2a ~ 1, this implies

(3.19) Sif(e) < > 2Vl (@),

=0

where o > [s].

This is the crucial estimate. Let us write it in its full form, specializing
the position of % € 2 in dependence on z € R™ (cases (a)~(c), Step 4). The
necessary modification to be done in case {c}is clear: n_,fu f(Z}in (3.19) must
be changed to 3, 7%, f(z™). Thus, we have

(320) S fmeext fi(z)| <Y 27
J=(} J=0

ni%f(z)
it f(e', 2w(z") ~ 2n)

S0 (1 um(w(a) — 3n)) i @ — le) < ~C27

ifz e {2,

if —027' €y —w(z') 0,
X

Step 6. Having (3.20), it is not difficult to complete the proof ?f (3.3).
Tndeed, by Lemma 3.1 (with g = 70), (3.9), (3.20), and well-known inequal-
ities for l,, we have, with r = min(1, g),
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Jost* 1z ) (32 29 (3wt £5031)) |
j— §=0

Sc( i 2—|m(o——rsi)r)l/"”(izjsqﬂj_zﬂf(.)q)I/Q‘LP(Q)H
m=-—00 =0

< el FIEs (DI
"The proof of Theorem 2.1 is complete.

4. Proof of Theorem 2.2. The proof itself is given at the end of the
section. Its main point is to establish the inequality

(4.1) £ (DN < ell F1Epg ()",

which enables us to reduce Theorem 2.2 to Theorem 2.1, The proof of (4.1)
uses the ideas of [BPT2] and is based on some pointwise estimates for 77;{,?@ I
collected in Lemma 4.1 below.

Let M denote the Hardy—Littlewood maximal operator and let ¥ stand
for the characteristic function of §2. If a function g is defined on {2, then its
extension to the whole R™ by zero is formally denoted as a product g- xq.

LEMMA 4.1. Let £2 be a special C*-domain with some L € N. Let ny be
a proper kernel of order M € Ny, suitable for 0.

(a) Let a > 2n and M > 20~ n ~ 1. Then, for oll f € D'(02}, 1 € Ny
and T € 12,

(4.2) S (2) < e 20992 p(|ns « £ - x0)(a).
=l

(b) Let 0<r<l,a>2n/r,1<p<oco,se R, M > 2max(2a,n/p— s)
—n—1. Let f € D'(12) be such that, for some constant B and all 7 € Ng,
(4.3) llms = f|Lp ()| < B27°.

Then, for alll e Ny and z € 12,

(4.4) Miaf (@) < ¢ 200020y w417 - 0 (a),

=1
the constant ¢ being independent of B.

Remark 4.1. This is an analogue of [BPT2, Lemma 2]. The latter
dealt with the case of the whole R", and the authors were able to prove
it without the a priori assumption (4.3). In Section 5(a) we discuss some

specific difficulties, arising’in our context. To overcome them one requires
(4.3). :
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Proof. Step 1. In this step we prove the following preparatory estimate.
Let ¢ > 0 and M > 2a —n — 1. Then, for all f € D/(2),le Ny and z € 2,

(4.5) lm x J‘(QJN < CZQ(l—j)a2jn S aﬁ_:li—%dy.

J=l 2
We begin with a representation

(4.6) f=2m*m*f=(z+ > )m*’?j*f-

1,40 ig>l i<l or j<i
We note that
[ o [ o P!
(47) S omrn = (A - ey
i<t or §<i im0 j=0 j=01i=0 =0 j=0
t [ i
=2 m—(Zm)*(Zﬂj)
i=0 i=0 =0

= 2(): — (o)1 * (o)

= (2np — no *x ok = ¥,
where Wy = ¥ = 2ng = np * mp. By (4.6), (4.7), and the fact that m * s, 7o,
and o * ng have support in K, for every x € {2,

(4.8) I+ f(2)] € Y Imxnaxmy* Fle)] + o o » f ()]

i,g>l
<2 3 3 Vimemlz—9)l - Inj » F()ldy
joitl i=g 02
+ {18z — )| Im* £ ()] dy-
0
It is clear that
n . czﬁn

{4.9) Uz — y) = 2"P(2 (m“y))ﬁm-

We want to establish analogous estimates for |m*nu{z -y}, 4 = 7 2 [+1.
By Taylor’s formula and the moment conditions on 7; we have
1
mam(a) = Y. cal (1)@= 7)MDnle — 1y) drm(y) dy.
o=+ 0
Using i > I, we see that the integrand is zero if |z} > 2~V or |yl 2 2
This iraplies

—i

< (.2--1'(M+1)2l(n+M+l)2in2—in . Cztnz(l-—i)(M-l—l),
I x () { =0 if o 227
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Hence it follows that, for¢ > j > 141,
c2ln2(i-—z‘)(M+1) cglnz(l—i)(M+l)
| € e S )ﬂm___f__a‘.
(14 2z —y[) (1+ 2]z —yh)
Now we put (4.9) and {4.10) into (4.8), sum over i and arrive at (4.5)
provided M > 2a—n — L.

(410)  |mx (= 20!

H

Step 2. Estimate (4.2) can be derived from (4.5) by the following trans-‘

formations, very similar to those used in [BPT2] for R™.
By (4. 5) for every z +y € £2,

< (t—5)agin |77:w * f(2)]
Im*f(m-i—y)i_cjg*? §2(1+_23|x+yuz|)a

(4.11)

In view of the inequality

(1 + 2z z|)®

(L+2|z+y—z)* > (1+2 |z +y—2))* >

(1+2yl)e
(1+ 2!z — 2])*/?
(1+2y|)=
(1 + 2]z — 2])*/2 2U-1a/2 s
(1+2y))e ’ =

it follows from (4.11) that

o+ flz+ y)|
{1+ 2 y[)

2 -7 a/22gn |"7.7*f<z)| .
"Z 5 S

Decomposmg £2 into a union of concentric annuli:.

(4.12)

N={ze:|jz—2x<27Uu U{ze Q;z’f—j—l <z — 2| SQF“”j},
k=1
we obtain (4.2) from (4.12), provided a > 2n.

Step 8. In this (last) step we prove that, under the conditions of (b), for
alll ¢ Ny and z € 12,

i+ fl2){" < ci o= dargin | g * £ Q)"

(4.13) L AT E A —
o (1420w —yl)er

dy,

g=l
the constant ¢ being independent of B. Estimate (4.4) follows from {4.13)
in the same fashion as (4.2) foliowed from (4.5).

For L € Ny, a > 0 and f € D'(12) satisfying (4.3), we introduce the
maximal function

Mo(z,I)= sup —1*f(2)]

i>teea (1255 — 2))® x e N

DICAIL
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Let b > max{2a,n/p - s) be such that M > 2b—n — 1. Note that b > n/p'.
Applying Hélder's inequality to (4.5) with b instead of a, and using (4.3),
we see that, for every = € {2,

l* f ()]
o0 /:U’
pl=93693n ( { . x F()Pd 1“’( dy '
ch (i\m f)l ?J) S(1+zﬂlx—y|)b”')

e o0
<cBY. oll=ilboing~Jog-in/p' .  golln/p—s) " l=so=r/pe)
j=l F=1

< cB2!n/pP-e)

Hence My(z, L) < oo for all z € 22 and L € Ng.

Furthermore, by the definition of M,(z, L) and (4.5) with b instead of
a, we have, for every z,xz € 2 and I > L,

s Flo)| < S al-apgin | _Ini* SN
| * f(z)] < ; §2(1+2LLz—yDb
X (Mb(w: L)(l + 2L|CU - yl)bz(j_l‘)b)l—rdy

< (:Mg,(w, LYY (1 4 25|z — 2])balt-1)
XZ‘?L 367‘2]11.5 1"73*f( )l

N —rarrwedl?/
O+ e -y
This implies that, for every z € £2 and L € Ny,

My(m, L) < cMy(e, )" 5 2lb=dlrgdn § 2l ()

P VA2 Te—

Thus, taking into account that My(=, L) < oo, we get

(4.14) l"?L * f( |1 < M{,(’L,L)

(L-grggn {0 S,
s 22 g Sl+21'|az ol

Jeals
"
, (L—jYr/20in mj *f(y)| d
< (--22 2 § (1+231m Y)or2 v

The constant ¢ here does not depend on B, since we used (4.3) only to show
the finiteness of My(x, L). It remains to note that the right-hand side of
(4.14) will only increase if we change b to 2a < b. Lemma 4.1 is proved.




294 V. S. Rychkov

. Remark 4.2. The R™ prototypes of estimates (4.5) and (4.13) were
proved in the book by J.-O. Strémberg and A. Torchinsky [StT, Chapter V,
Theorem 2(a)]. The scheme of our proof is essentially the same: first consider
the case r = 1, and then derive the estimate for r < 1 by the “trick” with
M,(z, L}.

Proof of Theorem 2.2. Let f € D'(12) and ||f|Fs,(2)[|" < c0. One
can easily verify that for L and M from Theorem 2.2 it is possible to choose

r € (0,min(p,q)), r=1ifp,g>1,
and
a > max(2n/r, —2s)
such that
M > 2max(2a,n/p—~s)—n~-1, M,L 2 [s|+ 2a].
By Lemma 4.1(b) (note that (4.3) is satisfied) we have, for all z € 2 and
7 €Ny,

nfaf (@) < e 2N EM(|fy ") (=),

j=I

(4.15)

where we put f; = (n; = f) - xo. Consider the quasi-norm || f]F, (£2)||' from
Theorem 2.1 with the same 79 and the chosen a. It follows from (4.15) that

“le;q(Q).Hr < CH (ith(iz(le)ar/ZM([fjkr)(_)) '1/7')1/'1|Lp(9)”
I=0 J=i

= e (L2 ( S osetimgne) ) et
1=0 pan

By a discrete version of the Hardy inequality

o0 o0 T oo
227 (Lll) <eY 2,

which is valid for o > 0, 7 > 0, the last expression is no greater than
o 8 r 1/q )
e (3o 2 emunmes) |y
=0

We can now use the vector-valued maximal inequality by €. Fefferman and
B. M. Stein [FeS] to conclude that

AR < (3210 |2a| = el mz
=0
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The inverse inequality ||f|Fp, ()" < ||£|F2,(2)| is obvious. Thus, the
quasi-norms || - [F5 (£2))]” and |- |Fay{2)||" are equivalent. Now Theorem 2.2
follews from Theorem 2.1.

Remark 4.3. Note that in the case of By, spaces with L < p < 0, 0 <
g < oc and F, spaces with 1 < p < 00, 1 < ¢ < 00 we can prove Theorem
2.2 with the help of Lemma 4.1(a) instead of Lemma 4.1(b) (the other
arguments remain the same). This leads to somewhat milder conditions on
the number of vanishing moments M. Say, M = [5|s| + 4n] is sufficient in
this situation.

5. Concluding remarks. (a) We now discuss the difficulties in the
proof of Theorem 2.2 which prevented us from including the case 0 < p < 1.
The problem lies in the derivation of (4.13) from (4.5). In that derivation
the assumption p > 1 was used to prove that M,(z, L) < oo for some a
for which (4.5) holds. In fact, we always have M, (z, L) < co for sufficiently
large a > a(f). Therefore all problems would disappear if we had (4.5) for
all . Why have we been unable to prove {4.5) for all a? Because in the
“reproducing formula” (see (4.6), (4.7))

(5.1) f«"‘f—Zm*m*J‘+2Zm*m*fﬂﬁ*f,
il i>i>l

used in the proof of {4.5), the first (“reproducing”) kernel 7; has a lim-
ited number of vanishing moments. In Calderén’s reproducing formula f =
Yoy Wi* @i * f, used for similar purposes in [StT], [BPT2), the Fourier trans-
form ’1:5 of the reproducing kernel 4 is compactly supported away from
the origin, and thus all moments of ¢ vanish. However, working in do-
mains, we need reproducing formulas with compactly supported reproduc-
ing kernels, and Calderén’s elegant formula is not applicable in this set-
ting, ‘

Some more reproducing formulas with compactly supported reproducing
kernels can be found in D.-C. Chang, S. G. Krantz, and E. M. Stein [CKS),
and in T. Schott [Sch], but they have the same shortcoming as (5.1), and
cannot improve the situation.

(b) We now explain why we regard the atomic characterizations of
Bp,(£2) and Fg,(12) from [TrW] (mentioned in the Introduction) as being
nonconstructive.

Let us briefly recall what is meant by atomic characterizations. It was
proved in [FrJ] that a distribution f on R™ belongs to Fj, if-and only
if it can be expanded in a seties f = 35, co¥q, where @ runs thiough
all dyadic cubes in K™ with side length < 1, compactly supported func-
tions g (called atoms) satisfy certain smoothness, moment and localiza-
tion (around @) conditions, and the sequence of coefficients ¢g lies in some
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discrete space £, with norm depending only on the magnitudes jcg|. There
exist explicit, though complicated, formulas to calculate the coeflicients cg
from f.

In [TrW] a similar decomposition f = 3 gcqubq for f € Fg(f2) C
D'(2) is established, where @ s through dyadic cubes having nonempty
intersection with f2. But no way to determine the coefficients cg from f
directly is pointed out. (Following [TrW], one should take first an extension
fe F (R™), which is possible since F (12) is defined as the restriction of

Fj,, and then apply Frazier and Jawerth's decomposition to f.)

(c) As we have already mentioned in Section 2, for Definition 2.2 of
B:,(12) and F5,(R2) to work in the most perfect way, the boundary of 2
should be sufficiently smooth. However, there also exist certain results for
nonsmooth domains, and we now list some of themn (see also references in
[TrWl).

To begin with, for s > 0 and 1 < p,g < oc intrinsic characterizations
of BE,(£2) and Fj,(£2) were obtained in [Bes3], [Kall], [Kal2] at one stroke
for the class of domains having Lipschitz boundary, and the same is true for
what is done in [Mur].

For 1 < p,g < oo and s > 0, $ — 1/p ¢ Ny there exist intrinsic
characterizations even for certain domains with cusps (zero angles) due to
G. A. Kalyabin [Kal3].

Turning to the case 0 < p < 1, we would like to mention investigations of
the Hardy spaces H,(12) carried out by A. Miyachi [Miy]. In that paper the
spaces H,({7) are defined in a constructive way (by means of certain maximal
functions) for an arbitrary domain 2. It is shown that for a wide class of
domains (including domains with Lipschitz boundary) they coincide with
the restrictions of the usual Hardy spaces H,{R™). Since H,(R") coincides

with the homogeneous space Fg}z (R™), Miyachi’s result can be interpreted
as an intrinsic characterization of F0,(12).

{d) We also note that for s > 0 and 1 < p,¢ < oc there exists another ap-
proach to the theory of B}, and F;, spaces on domains, not via restrictions.
It consists in introducing explicit norms in Ly({2) and defining B;,({2) and
Fp.(§2) as the sets of L,(f2) functions for which these norms are finite. This
allows one to study Bj,(f2) and Fy,({2) spaces on a very general class of
domains having nonsmooth, even fractal boundary (the domains satisfying
the so-called flexible cone condition). This theory is to a great extent due to
0. V. Besov. We mention cnly his paper [Bes4] and the book by O. V. Besov,
V. P. Il'in, and S. M. Nikol'skii [BIN], where further details and references
can be found. Probably, this approach can also be extended to s < 0 and
0 < p < 1. For Lipschitz domains and s > 0, 1 < p, g < oc, both approaches
are equivalent.
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Addendum (September 1997). 'We have recently found reproducing for-
mulas with compactly supported kernels having arbitrarily many vanishin
moments (cf. Section 5(a), where we discussed the necessity of such formug-
las). With the aid of these formulas we can improve Theorems 2.1 and 2.2
Namely, we can prove similar results for domains with Lipschitz bounda.rf
and under the natural assumption M > [s]. We can also dispense with the
restriction p > 1 in Theorem 2.2. The details ({Ry]) will appear elsewhere.
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