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Derivations into iterated duals of Banach algebras
by

H. G. DALES (Leeds), F. GHAHRAMANI (Winnipeg),
and N. GRONBAEK (Copenhagen)

Abstract. We introduce two new notions of amenability for a Banach algebra . The
algebra 2 is n-weakly amenable (for n € N) if the first continuous cohomology group of
2 with coefficients in the nth dual space %™ is zero; i.e., H* (2, 2lmhy = {0}. Further, 2L
is permanently weakly amenable if 2 is n-weakly amenable for each n € N,

‘We begin by examining the relations between m-weak amenability and n-weak amen-
ability for distinct m,n € N. We then examine when Banach algebras in various classes
are n-weakly amenable; we study group algebras, C*-algebras, Banach function algebras,
and algebras of operators. Our results are summarized and some open questions are raised
in the final section. )

1. Introduction. In this paper, we shall be concerned with determining
when continuous derivations from a Banach algebra % are necessarily inner.
We begin by recalling some terminology.

Let 2 be an algebra, and let X be an 2-bimodule. Thus there are bilinear
maps (a,z) — a-z and (a,z) — z - a from A x X into X such that

(ab) -z =a-(b-z), =z (ab)={(z-a)'b, a (x-b)=(a-z)-b

{(a,b e, z e X).
For example, the algebra %l is a bimodule over itself, with bimodule opera-
ticns the product in 2. An %-bimodule is symmetric if
a-z=z-a (aeU relX)
a symmetric bimodule over a commutative algebra 2 is called an 2-module.
In the case where 2 has an identity eq, the bimodule X is unital if
eq-x=x-exg=2 (z€X)
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The space of characters on an algebra 2 is denoted by Py
Let » € &y U{0}. Then C is a symmetric A-bimodule for the products

(e e, z€C);

in this case the bimodule is denoted by C,.
Let 2 be an algebra, and let X be an 2-bimodule. A derivation from A
into X is a linear map I such that

o-z=2z a=pa)z

(a,b e 2).

D(ab} = a- D(b) + D(a) b
For example, let z € X, and define
d{a)=a-z~2-a (ac).

Then §, is a derivation; maps of this form are called inner derivations. A
derivation from 2 into the A-bimodule C,, is a linear functional d on 2 such
that
d(ab) = p(a)d(b) + d(a)p(b) (a,b € 2A);

such a linear functional is a point derivation at @. Suppose that 2 has
an identity ey and that X is unital. Then D(ey) = 0 for each derivation
DA X,

Now suppose that 2 is a Banach algebra and that X is a Banach space
which is also an 2[-bimodule. Then X is a Banach A-bimodule if the module

maps are continuous; in this case, by changing to an equivalent norm on E,
we may suppose that

oz <elllll, lz-all < lallllz] (a€, z€X).

For example, if 9B is a Banach algebra containing 2 as a closed subalgebra,
then B is a Banach 2-bimodule with respect to the products in B.

Let X be a Banach space with dual space X’; the value of A € X' at
T € X is denoted by (z, ). The second dual of X is X", and the canonical
embedding of X in X" is denoted by ¢ or ~. We adopt the convention when
writing a duality {-, ) between Banach spaces that the clement on the right
is regarded as the functional. In particular,

Az)) =(NE)={z,A) (z€X, AeX).
When no ambiguity seems possible, we shall cmit both ¢ and ™. ‘

We continue to define higher duals by X = X’ and X(+1) = X ()
for n € N; we also set X(® = X.

The weak-* topology on X' is denoted by (X', X'). We shall frequently
use Goldstine’s theorem: for each A € X, there is a net (z,) in X such that
[z < || A} and 2z — A in (X", 0(X", X").

Let A be a Banach algebra, and let X be a Banach 2-bimodule. Then
X! is also a Banach 2-bimodule in a natural way: for a € % and A € X', we
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define a- A and A-a in X' by

(,a-Ay=(z 0N, (z,Aa=( =) (aec zecX)
Similarly, the higher duals X(™ are Banach A-bimodules; the definitions are
consistent in the sense that a7 = @ &, etc., so that X (™ is a submodule of
X+2) for eachn € Z+. If X is symmetric, then each X ™ is also symmetric;
if X is unital, then so is X'.

We write B(E, F') for the Banach space of all bounded linear maps from
E to I, where F and F' are Banach spaces, and we write B(E) for the Banach
algebra B(E, E). Let T' € B(E, F'). Then the adjoint of T is T/ € B(F’, E').
Note that T" € B(E", F'') is continuous when E” and F" both have their
weak-* topologies.

Let X be a Banach 2-bimodule, and let n € N. The adjoint of the
injective map ¢ : X1 — X+ i5 the projection P : X(n+2) — x(n),
defined by P(A) = A|e(X(?~1)). Then P is a morphism of 2-bimodules, and
80 we may write

X(n+2) — X(n) S ker P = X(n) ® lL(X(nwl))J_
as Banach 2-bimodules, where, in general, for F C Y, we write
Fl={eY (2, =0 (zec )}

Let 2 be a Banach algebra, and let X be a Banach 2-bimodule. The
space of continuous derivations from % into X is denoted by Z* (2, X), and
the space of (necessarily continuous) inner derivations from 2 into X is
N(%, X). The first (topological) cohomology group of 2 with coefficients in
X is defined to be the linear space

HY A, X) = 22, X) /N, X).

Thus H(2, X) = {0} if and only if each continuous derivation from 2 to
X is inner.

There have been very extensive studies devoted to the calculation of the
cohomology groups H* (2, X) and the higher groups H™{(2, X) for various
classes of Banach algebras 2 and Banach 2-bimodules X; we shall continue
this study here, being particularly concerned with the cohomology groups
HY{Y, A for n € N. _

Let 9 be a Banach algebra. Then 2 is amenable if H* (%, X') = {0} for
each Banach 2-bimodule X; this definition was introduced by B. E. Johnson
in [20]. The Banach algebra 2 is weakly amenable if H'(2, ') = {0}; this
definition generalizes that introduced by Bade, Curtis, and Dales in [2],
where it was noted that a commutative Banach algebra 9 is weakly amenable
if and only if H* (%, X) = {0} for each symmetric Banach 2-module X.

For example, it was shown in [20] that the group algebra L'(G) is
amenable if and only if G is an amenable group, and in [21] that L'(G)
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is weakly amenable for each locally compact group G; for a shorter proof of
this latter result, see [7]. ,

The following definition describes the main new property that we shall
study. '

DerINITION 1.1. Let 2 be a Banach .algeb'ra, and let n € N. Then % is
n-weakly amenable if 7 (A, AM) = {0}; A is permanently weakly amenable
if 2 is n-weakly amenable for each n € W.

Qur purpose in this paper is to determine the relations between m- and
n-weak amenability for general Banach algebras 2 and for Banach algebras
in various classes, and also to determine when Banach algebras in various
classes are n-weakly amenable. We are most interested in the relation be-
tween weak amenability, 2-weak amenability, and 3-weak amenability. We
shall give some general results in this first section, and then consider vari-
ous special classes of Banach algebras in subsequent sections. We shall also
obtain some new information about the second duals of various Banach al-
gebras. Some results and open questions are summarized at the end of the
paper.

We begin with the following trivial observations: (i) an amenable Banach
algebra is permanently weakly amenable; (i) a commutative Banach algebra
is permanently weakly amenable if and only if it is weakly amenable,

There is also one easy remark about the relations between m- and n-weak
amenability. ‘

PropPosiTION 1.2. Let A be a Banach algebra, and let n € N. Suppose
that A is (n + 2)-weakly amenable. Then 2 is n-weakly amenable.

Proof. Let D € ZYA,A™). Then D can be viewed as an element of
232, A +2)), and so there exists & € A+ with
Day=a-®—F-a (aeA).
Set A = P(®), where the projection P : A2 — 2A{") was described earlier.

Then .
D(a)=PD(a)=a-A—A-a (a€)

and so IJ is an inner derivation. m
We remark that a 2-weakly amenable Banach algebra % does not nece-
ssarily have the property that H* {2, 21) = {0}. For take G to be an infinite,

compact, non-abelian group. Then L'(() is amenable, and hence 2-weakly
amenable. However, take an element s € G which is not in the centre of G,

and define

D:ifrs fxdy~8,%f, LNG)— LY(G);
here (6% £)(t) = f(s™'t) and (f +8,)(¢) = f(ts~!) for t € G, noting that G
is unimodular. Then D is a continuous derivation, but it is easy to see that
D is not inner, and so HY(LY(G), L} &) # {0}.
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Let 2 be a commutative Banach algebra, let n € Z*, and suppose that
HLR, A2 = {0}. Take D ZY(2,24™), Then again D can be viewed
as an element of Z1 (2, A*+2)), Since A"+ is a symmetric A-bimodule and
since HY(, A"+2) = {0}, it follows that D = 0. Thus, in the case where
2 is (2n + 1)-weakly amenable for some n € Z*, 9 is permanently weakly
amenable. Also, if H* (2, 2(2™)) = {0} for some n € N, then H* (2, 2A) = {0}.
It follows that, if H1(2, %) # {0}, then 2 is not n-weakly amenable for any
n &N,

The converse to Proposition 1.2 is open. In particular, we do not know if
weak amenability always implies 3-weak amenability or if 2-weak amenabil-
ity always implies 4-weak amenability; these results are true in many special
cases.

A further easy remark, to be used later, is the following. For an algebra
2 and n € N, we write

Ql["]:{al...an:al,...,aneﬁl}, A" = lin A,
ProrosITION 1.3. Let 2 be a weakly amenable Banach algebra. Then:
(i) A? is dense in A, .

(i) there are no non-zero, continuous point derivations on .

Proof. (i) Assume towards a contradiction that A? is not dense in 2,

and take Ag € A’ with Ao|¥% =0 and Ag # 0. Then it is easily checked that
the map

D:aw(a,)glhg, A—A,

is a continuous derivation that is not inner, a contradiction of the fact that
A is weakly amenable.

(i} By (i), there are no continuous point derivations at ¢ = 0.
Assume towards a contradiction that d is a non-zero, continuous point
derivation at ¢ € ®y. Then the map

D:gr—d(a)y,

is certainly a continuous linear operator, and it is immediately checked that
D is a derivation.
Since % is weakly amenable, there exists A € 2 with

D(@y=a-A=X-a (a € 2A).

Take a; € % with ¢(a1) = 1, take az € kerp with d(a) = ;i, and set
ap = a1 + (1 — d(a1))az. Then p(ag) = d{ag) =1, and so

1= (do, DGO) = (ao, ag )\) - <CLO, A ao) = 0,

a contradiction. .m

A — A,
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Let % be a non-unital algebra. We denote by 27 the algebra formed by
adjoining an identity to 2, so that 2% = Ce & %, with the product

(o, 0){B,b) = (aB,ab+ Ba+ab) (a,6€C, a,be).
In the case where % is a Banach algebra, 2% is also a Banach algebra.
Define ¢ € A#* by requiring that {e,e’) = 1 and €'|% = 0. Then we have
the identifications
AF ) = Ce g A2 (neN),
el — ¢ g APt (ne Zh).

The module operations of 2A# on A#F(+L) are given by

(e +a)- (ve' +A) = {ay+ (@, ))e' +ar +a- A,

(ve' + A) - (ee + a) = (ay + (@, A)e' +aX+ - a.
Note that 242"+ is not a submodule of Y#(Zn+1),
submodule of Y#(20),

PROPOSITION 1.4. Let U be a non-unital Banach algebra, and letn ¢ N.

However, 2A* is a

(i) Suppose that A# is 2n-weakly omenable. Then A is 2n-weakly
amenable.
(i) Suppose that A is (2n — 1)-weakly amenable. Then A# is (2n ~1)-
weakly amenable.
(ili) Suppose that A is commutative. Then A¥ is n-weakly amenable if
and only if A is n-weakly amenable.

Proof. (i) This is immediate.
(i) Let _
D:a~ {a,Ae +D(a), «A—CeqaAlnb,
be a continuous derivation. We see that D : % — 2(>7=1) is a continuous
derivation, and so there exists A € 2(7~1) such that

Dig)=a-A-A-a {acd).
Let a,b € 2. Then we have
(ab,A) = (a, D(8)} + (b, D(a)) = {a,b- A~ A b + (b,a- A~ A-a) =0,

and so A|22 = 0. By Proposition 1.2, U is weakly amenable, and hence, by
Proposition 1.3(i), ¥* is dense in . It follows that A = 0, and so D = Dis
an inher derivation.

(iii) Suppose that %# is 2k-weakly amenable. Then 9 is 2kh-weakly amen-
able by (i).

Suppose that A# is (2k — 1)-weakly amenable. Then 2* is weakly amen-
able, and so 2? is dense in A by Proposition 1.3(ii). By [13, Corollary 1.3],
2 is weakly amenable, and so % is (2k — 1)-weakly amenable.
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Suppose that A is (2k — 1)-weakly amenable. Then %# is (2k - 1)-weakly
amenable by (ii).
Suppose that A is 2k-weakly amenable, and let

D:aws la, e+ Da), % — CeaA®),

be a continuous derivation. Again we see immediately that A2 = 0.
First, suppose that there exists ¥ € (2% \ {0} with

a-¥=0.a=0 (ac).

Then 2? is dense in %, for otherwise take ¢ € A’ with ¢|%? = 0 and ¢ # 0,
and note that a — {(a)¥, A — 2A?*) is a non-zero, continuous derivation.
Thus A = 0 and D is inner.

Second, suppose that, for each ¥ & 225 \ {0}, there exists o € 2 with
a-¥ % 0. For each a € 2, the map

b a D), A AGK

is a continuous derivation (since 2 is commutative, and hence 2(**} is sym-
metric), and so a-D{b) = 0 (a,b € ). By our supposition, D{b} =0 (b 2),
and so D = 0. Thus A# is 2n-weakly amenable. m

Let 2 be a non-unital Banach algebra. We do not know if 2 is weakly
amenable whenever A# is weakly amenable; this is true if 2 has a bounded
approximate identity (see [15, Corollary 2.2]), or, more generally, in the
case where 2 is H-unital. Also, we do not know if A¥ is always 2-weakly
amenable whenever ¥ is 2-weakly amenable.

We shall also consider the second dual A" of a Banach algebra 2 as
a Banach algebra; indeed, two products are defined on 2" as follows. Let
acW, A€, and $, ¥ € A”. Then & ) and A - & are defined in U’ by the
formulae

(1.1) (a, 8- A = (X a,8), (la, A -F)={a-)&)
Next, # 0¥ and & o ¥ are defined in A" by the formulae
(1.2) NEDW) = (W28, (\PoW¥)=(\-8,0).

Then 2" is a Banach algebra with respect to each of the products 0 and
o; these products are called the first and second Arens products on 2",
respectively. The algebra 2 is defined to be Arens regularif the two products
0 and ¢ coincide in /7. For the general theory of Arens products see [9]
and [26], for example.

The products & and ¢ both extend the module operations on 2, in the
sense that

- P=gad=ago¢

(e, 2eU").
P a=P0a=>Foa
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For a commutative algebra 2, we have $O0¥ =¥ o P (&, ¥ € Y"), and
so U is Arens regular if and only if (2", 0) is commutative.

We shall require the following standard properties of the Arens products.
Suppose that {a,) and (bs) are nets in 2 with a, — & and b; — ¥ in (A", 0),
where o = (", A') is the weak-* topology on 2. Then

@D!I’zlimligna,,bg and 95031?=1i§nli$1a765
¥

in (A”,0). Let §, — @ in (A", o), and let ¥ € A". Then ¢, 0¥ — FOV in
(A", ), but, in general, we cannot assert that ¥0®, — ¥O&. The following
result is [26, 1.4.11].

ProPOSITION 1.5. Let U be a Banach algebra. Then the following are
equivalent:

{a} U is Arens regular;

(b} for each ¥ € A", the map & — ¥ 0P 13 continuous in (A", o),

() for each A € W', the map ¢ — X -a, A — A, is weakly compact;

{d) for each pair ((am), (bn)) of bounded sequences in A and each A € U,

lmlim(aymby, A) = imlim{a,b,, A)
m n " T
whenever both iterated limits exist. m

Closed subalgebras of Arens regular algebras and quotients of Arens
regular algebras by a closed ideal are also Arens regular.

Let 2 be a Banach algebra. For a € 2, we denote the left and right regular
representations of a by L, and R, so that L,(b) = ab and R,.(b) = ba for
b€ 2. The closed subalgebra 2| of (2", O0) is an ideal if and only if both L,
and R, are weakly compact for each e € 2. For example, L' (G) is an ideal
in ZY{G)" if and only if G is a compact group.

‘We shall also require the following remark, pointed out by B. E. John-
son [22].

PropoOSITION 1.6. Let % be a Bonach algebra. Suppose that A has a
predual X such that - A"+ A - A C (X)) in W'. Then A is Arens regular.

Proof. We shall verify that 2 satisfies condition (¢) of Proposition 1.5.
Fix A € 2. s ‘
Define P : U” — A as the adjoint of the injection of X in 2U, so that
P is an A-bimodule morphism. Let (a,) be a || - |-bounded net in 2 with
ay — a in (2, oA, X)). For each & € A", we have
(A ay, @) = (P(P), X-ay)
={ay, P(2)-A)

'l—"‘<a: P(Q) : A)

because A ay € A - A C o(X)

because P($) - A & 2 - A" C o(X)
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= (P(fﬁ), A a’)

= {\-a,P) because A-a € A -2 C (X)),
and so A-ay — A ain (A, o(@, A")}). Thus the map o — X a is weakly
compact, as required. =

Now let U be a Banach algebra, and let X be a Banach A-bimodule. We
recall a construction that shows that X* is a Banach (2", 0)-bimodule; we
must make some successive definitions. '

For Ae X" and A € X', define A- A € %' by

(1.3) (@, A-Ny=(\-a, 4) (acd).

For deA” and A€ X, defined- A e X" by

(1.4) A& -A={A-18 (heX)

Then a - A takes its previous value in the case where a € &% C 2”. Let

(ay) and (zs) be nets in A and X, respectively, such that ey — @ in
(A" o, A")) and x5 — A in (X", (X", X')). Then

(1.5) $. A= limli‘xsn% czg  in (X7, 0 (X", X).
¥

Next, for A € X' and z € X, define A-2 € A’ by
(1.6) la, \ zy={z-a, ) (ac).
For & € A" and A € X', define &+ ) € X’ by
(1.7) (2, 8- A= (A -z,8) (z€X),
so that @ - A agrees with its previous definition in the case where a € 2 C 21",
For A€ X' and & € A", define A- P € X" by
(1.8) MA-&=(2-M4) (AeX'),

s0 that A - o agrees with its previous definition. Let ¢, — @ and x5 — 4, as
above. Then

(1.9) A-lei(xsnlimma-am, in (X", o(X", X)),
v

We claim that X is a Banach (2", O)-bimodule with respect to the
maps ($,4) — - A and ($,4) — A- S from A" x X" to X". To verify
this, one can carefully check that the various associativity rules follow from
the definitions; alternatively, these rules follow from the analogous rules
that show that X is a Banach 2-bimodule, together with a limiting process
specified by (1.5) and (1.9).

Let 2 and X be as above, and let B = % &1 X as a Banach space, so
that .

(e, @)t = lall + |zl (2 €, @ &X).
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Then ‘B is a Banach algebra for the product
(a1,21) (a2, z2) = (a1a2,a1 - £2 + 21 - @2).

The second dual B” of B is identified with 2" @; X" as a Banach space,
and the first Arens product O on 8" is given by

(1‘10) (451, Al) O (@2,!12) = (@1 O @2, @, - Az + Al . Qz),

where the products & - Ay and A; - P, are defined by (1.4) and (1.8), re-
spectively. The algebra B is Arens regular if and only if 21 is Arens regular,
and

lign li;n Gy T§ = Ii%n lign Qy - T,

(1.11) o -
. hgnh_lyrm:g “ay = 1]%1111?1.?5 * Gy,

whenever (a,) and {z;) are weak-* convergent nets in 2" and X", respec-
tively.

PrOPOSITION 1.7. Let 2 be a Banach algebra, and let X be a Banach
A-bimodule. Suppose that D : U — X is a continuous derivation. Then

D" (QI.”,D) — X"
158 a continuous derwation.

Proof. Certainly, D" : 2" — X" is a continuous linear operator. Let
P, c ", say & = lima, and ¥ = limb; in (A", o{A",A)), where (a,) and
(bs) are nets in 2 with [a,| < (8] and [bs]| < [{¥]|. Then

D(0%) = D" iz lifn aybs) = lim lign D{abs)
¥ ¥
= limlign (ay - D{bs) + D(ay) - bs)
¥
—o-D"(@) + D'(®) ¥,

and so D" is a derivation. m

Let X be a Banach algebra, and let X be a2 Banach %-bimodule. By
applying the construction above to the Banach 2-bimodules X and X",
we may equip X' and X" with Banach (2”,0)-bimodule structures. (NB:
The Banach (1", 0)-bimodule structure on X" thus obtained should not be
confused with the (", 0)-bimodule structure on X" obtained by viewing
X" as a bidual bimodule over {1/, 0). For example, we may take X to be
the dual module 2 of 2; the (%", 0)-module structures on A" just defined
and the module structures on 24" as the dual module of (%",1) do not nec-
essarily coincide.) Certainly, the projection P : X" — X" is a morphism of
2-bimodules, but we should like it to be an morphism of (%", 0)-bimodules.
This is s0 in certain cases.
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PROPOSITION 1.8. Let 2 be a Banach algebra, and let X be a Banach
A-bimodule.

(i) The map P: X™ — X" is o left (A”,0)-module morphism.
(ii) Suppose that the map
P A-@, (@A oA, AN) - (X7, 0{X", X)),

is continuous for each fized A € X". Then P is also a right (2", 0)-module
morphism.

Proof. First note that P(}) = A (A € X, so that, for each a € ¥,

Pa-A=a-A=a-P(R) and P(X-a)=X a=P() a.

Now let & € " and A € X", and choose bounded netg (ay) in 2 and (As)

in X" with o, — @ in o(A", %) and As — A in o(X"", X""). Since P is
weak-* continuous, it follows from (1.5) that

P(¢ - 4) = limlim Plas - A)N) = lim lim a., - P(Rs) =& - P(A)
and, with the assumption in (i), that
P(4- @) = limlim P\ -ay) = lign lim P(2s) - ay
= lim P(s) & = P(A) - &.
Hence P has the specified properties.

Note that, in the case where X = 2 in the above result, the extra
hypothesis in (ii) is just the hypothesis that 2 be Arens regular.

THEOREM 1.9. Let 20 be a Banach algebra, let n € N, and let D : Y —
A2 be a continuous derivation. Suppose that U2 is Arens regular.
Then there is o continuous derivation D : (A" o) — (A1) 1)) such that

D@)=D(e) (ac),
where @ is the canonical image in AP ofa € A.

Proof. By Proposition 1.7, D" : (U",0) — 2A(®*2 iz a continuous
derivation. Set B = AZ"~2) By assumption, B is Arens regular, and so,
by Proposition 1.8, the canonical projection P : 8" — B is a (B", 0)-
bimedule morphism. Let & € A", and let (a,) be a bounded net in % such
that a, — & in o(A",%'). We have &, — & in o(B",B'), where & is
the canonical image of @ in 2™ = B”. Thus, with the identifications
B = A2 and B = A2 we see that P is an (A", 3)-bimodule
morphism. _ _

First note that, for n == 1, we may take D = >0 D", as in the note after
Proposition 1.8. In general the tuple ((%"”,0), P o D"} consists of a Banach
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algebra and a derivation satisfying the hypotheses of the theorem with n
replaced by n — 1 since the Arens products on iterated duals successively
extend previously defined Arens products. An easy induction argument now
finishes the proof. »

CoroLLARY 1.10. Let 2 be a Banach algebra which is Arens regular,
and suppose that H (A", A") = {0}. Then A is 2-weakly amenable.

Proof Let D € Z* (2, 2"). By the theorem, there exists D € Z1(2A", A")
with D(@) = D(a) {a € %). By hypothesis, there exists ¥ € %" such that

D@) =600 -Fnd (FeU’).

In particular, D(a) = a-¥ — ¥ -a (a € 2), and so D € N'{
is 2-weakly amenable. =

;A" Thus %

COROLLARY 1.11. Let A be & commutative Banach algebra which is Arens
regular and such that A" is semisimple. Then A is 2-weakly amenable.

Proof. The Banach algebra 2" is commutative and semisimple, and so,
by the commutative Singer-Wermer theorem (see [3, 18.16], for example),
we have Z1 (2", 2A") = {0}. =

COROLLARY 1.12. Let U be a Banach algebra such that AR™ s Arens
reguler and HYH(AR+2) A2 +2)) = 0} for each n € Z*. Then 2 is 2n-
weakly amenable for ench n € N,

Proof. By Corollary 1.10, 2 is 2-weakly amenable.

We now show that 2 is (2k + 2)-weakly amenable under the assumption
that every algebra with the stated properties is 2k-weakly amenable,

Let D € Z1(2A, %(?*+2)). By Proposition 1.6, D" € Z4(A", AZk+4)), Let
P ; i26+4) _, 9((2%+2) be the natural projection; by Proposition 1.7, P is

an 2"-bimodule morphism. Set 5 = P o D”, so that

D € Zl(Qi”, 2k+2)) — ZI(Q[", Q[n)(%))_

Since A" satisfies the stated properties on 2, A" is 2k-weakly amenable, and
so there exists A ¢ A2F2) with

_ D@)=06-A—A-® (8cU").
Clearly, D{a) = a- 4~ A-a (a € %), and so D € NL(2, 2A(*+2)), Hence

HHQL, APR+2)) = {0} and U is (2k + 2)-weakly amenable.
The result follows by induction.

‘We note that there is a commutative, semisimple, Arens regular Banach
algebra 2 such that 2" is not Arens regular ([28]); however, it may be that
the above corollary holds under the hypotheses that 2 is Arens regular and
that H(RAET2) 9(2r+2)) = (0] for each n € Zt.
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We have remarked that a commutative, weakly amenable Banach algebra
is permanently weakly amenable; for general (non-commutative) Banach
algebras, we have the following partial result under a special hypothesis.

PROPOSITION 1.13. Let 2 be a weekly amenable Banach algebra such
that 2 is an ideal in (A", 0). Then A is (2n + 1)}-weakly amenable for each
neZr.

Proof. For n € Z*, we regard A(2**2) a5 the second dual of (Ql(zn), o),
taken with the first Arens product 0, and, for m < n, we regard (A®™,0)
as a subalgebra of (A(®™), 0); the deﬁmtions of a-® and & @ are consistent,

Fix n € N. For each a € %, the operators L, and R, on U are weakly
compact, and so the operators L&°™ and R2™ are weakly compact on 2127
Thus o - &, &-a € A2 for g € U and & € A, Further, ay...ay - @
and 9 a1 ...a, belong to & for ay,...,a, € A and & € ACY, Let AL be
the space of functionals in 2"+ which annihilate ¢(%). Then

A = ) o U+
as Banach 2-bimodules, and so
HMR, AP = 1, W) @ WU, AL).
By hypothesis, H'(2(, ") == {0}, and so it suffices for the result to show
that H* (2, ALY = {0}
Let D € 21(2, AL), and let a,b € A, For each & € AR,
(®, D(ab)) = (%, D(a) - b) + {a, - D(b))
o =<b-¢,D(G)>+(¢-G,D(b)>:O,

and so D(ab) = 0. It follows that D|A*™ = (. By Proposition 1.3(1), %*" is
dense in 2, and so D = 0. Hence H* (2, A+) = {0}, and the result follows. =

CoroLLARY 1.14. Let U be a Benach algebra such that Rl is an ideal in
(A",0). Then the following are equivalent:

(a) A is weakly amenable;
(b) A is (2n + 1)-weakly amenable for some n € Z;
{c) & is (2n + 1)~weakly amenable for each n € ZT. u

We shall see later that there are Banach algebras % such that: (i) 2
is an ideal in (A”,0) and 2 does satisfy the equivalent conditions (a)—(c)
(Corollary 5.4); (i) # is an ideal in (U* ), and yet 2 is not n-weakly
amenable for any n € N (Example 3.8)..

We continue this introduction with a remark on how n-weak amenability
passes from an algebra to a closed ideal in the case of commutative Banach
algebras. Let I be a closed ideal in a weakly amenable, commutative Banach
algebra 2{. Then, by [13, Corollary 1.3, I is weakly amenable if and only if
I? ig dense in I.
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ProposITION 1.15. Let I be a closed ideal in a commutative Banach
algebra 2, and let n € N. Suppose that 2L is 2n-weakly amenable. Then the
following conditions are equivalent:

(a) I is 2n-weakly amenable;
(b} either 1% is dense in I or I - 1®"=1) is dense in I(?"~1),

Proof. (b)={a). Let D € 2}(I,I™)), and let j be the embedding of I
into 9. From [13, Theorem 1.1] we see that the map

z + 5% (D(abz) — D{ab) - z), oA — AL,

is a derivation for every fixed a,b € 2. Since U is assumed to be 2n-weakly
amenable, and since j(*™ is a monomorphism, it follows that

D(abc) = D(ab)-¢  (a,bc€ ),
and therefore ab - D(c) = 0 (a,b,¢ € I). If either of the conditions in (b)
hold, then DD = 0. Thus I is 2n-weakly amenable.
(a)=(b). Let B be any Banach algebra, and let X be any Banach B-
bimodule. Any map D : B — X' admitting a factorization

B —3F >3 /B2

Di ., g

X' (B-X+X B)*
where @) is the quotient map and 7 is the embedding, is trivially a deriva-
tion. With 9 = I, X = I®*~1) and both conditons in (b) failing we may

choose T, and hence D, to be non-zero. Therefore I cannot be 2n-weakly
amenable. w

Finally in this section, we shall give two results on the calculation of
HM, X') that we shall use.

Let B and F be Banach spaces. Then E® F denctes the projective tensor
product of £ and F.

Let 2 be a Banach algebra, and let X be a Banach /-bimodule; we
consider the standard complex

Lo ABUARX B AR X I X o,
where the maps di and dz are specified by the formulae:
(acf, zeX);
(a,be A, =€ X).

This complex is discussed in [20} and [19]; the first of our two results is
essentially [20, Corollary 1.3] and [19, I1.5:29)].

difa@z)=a-z—z-a

(1.12)
Be®bRz)=bQc - a—ab@zr+a®b z
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PrOPOSITION 1.168. Let 2 be ¢ Banach algebra, and let X be a Banach
A-bimodule. Then H1(A, X") = {0} if and only if both imd, is closed in X
and imds 48 dense in kerd;. wu

Let 2 be a Banach algebra. A bounded approzimate identity in U is a
bounded net (e,) in % such that epa — o and ae, — o in U for each a € 2L

ProrosITION L.17. Let 2 be a Bonach algebra with o bounded approzi-
mate identity, and let X be a Banach A-bimodule. Let D € Z' (2, X"), and
suppose that there ewists Ay € X' such that

{a-z-b,D(c)) ={a -2 -bc-A—Ao )
Then D € N (%, X').

(g, bcef, z e X).

Proof. By replacing D with D — §,,, we may suppose that
(1.13) {a-z-b,D(c)h=0 (a,bcel, zecX).

Choose a bounded approximate identity (eq) in 2 such that the iterated
weak-* limit A = lim,, limg(eaD(eg) — D(eg)eq) exists. Then, for ¢ € X and
a € 2, we have, using (1.13),

{z, D(a}) = limlim{z, D(eaaep))
= limlim{z, D(ea) - ags + eaa - D(eg))
= lim(z, D(eg) @+ a- Dieg))
= limlim{z,a- (e * D(eg) — D(es) - ea))
— limlim(z, (e« - D{es) — Dleg) - ea) - a)
= (z,0-A=A-a),

where we have used several times the facts that a - D(b) - ¢ =0 (a,b,c € )
and that bounded norm limits are interchangeable with weak-* limits. Hence
D ig inner. =

2. C*-algebras. We shall first discuss the class of C*-algebras; in this
case the situafion is clear.

Recall first that, by a very deep theorem of Connes ({5]) and Haagerup
([18]), a C*-algebra is amenable if and only if it is nuclear; ot all C*-algebras
are amenable, and, in particular, the C*-algebra B(H) is not nuclear, and
hence not amenable, in the case where H is an infinite-dimensional Hilbert
space. However, every C*-algebra is weakly amenable {[18]).

Let A be a Banach algebra with a continuous involution *. Then * defines
a continuous linear involution on A”; we have
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(BOP) =0 B ($,¥ec A",
and so the map * is an involution on A" if and only if A is Arens regular.
THEOREM 2.1. Every C*-algebra is permanently weakly amenable.

Proof. Let % be a C*-algebra. It is standard that each C*-algebra is
Arens regular and that the iterated duals 2(®") are also C*-algebras; indeed,
they are von Neumann algebras, A" being the enveloping von Neumann
algebra of 2 ([4], 3, 38.19]). Also, H}(™B,%B) = {0} for each von Newmann
algebra B ([30, Theorem 4.1.8]). Hence it follows from Corollary 1.12 that
A is 2n-weakly amenable for each n € N.

We now show that 2 is (2n - 1)-weakly amenable under the assumption
that each C*-algebra is (2n — 1)-weally amenable. Let D € Z* (2, A~ +1),
Then D is, in particular, a continuous linear operator from 2 into the pre-
dual of the von Neumann algebra 2(27+2); by [1, Corollary 11.9], D is weakly
compact, and so the range of D" is contained in A"+ clearly, we have
D" e Z1 AP Since A” is (2n — 1)-weakly amenable, there exists
A e A4B*D guch that

D'&)=F-A—A-8 (P,
and again D € N, A7+ as required. It follows by induction that %

is {2n + 1)-weakly amenable for each n € Z*.
Hence each C*-algebra is permanently weakly amenable. m

COROLLARY 2.2. Let H be an infinite-dimensional Hilbert space. Then
B(H) is permanently weakly amenable, but not amenable. w

3. Commutative Banach algebras. Let (2, - ||) be a commutative,
sernisimple Banach algebra with character space the locally compact space
{2 = Pyy; we regard A as a subalgebra of Cy(12), so that ||f|| = |f|s, where
| - |2 is the uniform norm on f2. In this case 2 is a Banach function algebra
on (2; 2 is a uniform algebra in the case where || - || is equivalent to | - |¢.

THEOREM 3.1. Let 2 be a uniform algebra. Then 2 is 2n-weakly amen-
able for each n € N.

Proof. Set 2 = Py. Then A" C Cp(£2)" as a cloged subalgebra; Co(£2)"
has the form C(ﬁ) for a compact space §2, and so 2 is an Arens regular
uniform algebra on C (f)) Continuing, each 2(**) is an Arens regular uniform
algebra on a compact space for each n € N. Again by the Singer~Wermer
theorem, H1(AC™), A)) = {0} for each n € N. .

It follows from Corollary 1.12 that 2 is 2n-weakly amenable for each
neN m ‘

COROLLARY 3.2. Let & be o uniform algebra. Then the following condi-
tions are equivalent: o
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(a) A is weakly amenable;
(b} 2 is permanently weakly amenable;
(c) A 4s (2k + 1)-weakly amenable for some k€ Z™. =

Suppose that 2 is a uniform algebra that is not weakly amenable. Then %[
is 2n-weakly amenable for each n € N, but 2 is not (2n+-1)-weakly amenable
for any n € ZT. It is conjectured that, for a uniform algebra 9l C C(12), &%
is weakly amenable if and only if 2 == C({2); this question is open, but we
note that it is a theorem of Sheinberg ([32]) that 2 = C(£2) if and only if 2
is amenable. '

Let D = {z € C : |2| < 1}, the open unit disc, and let A(D) be the disc
algebra. It follows from Theorem 3.1 that A(D) is 2n-weakly amenable for
each n € Z. We show this directly by an elementary argument.

For k € N, the map T} : A(D) — A(D) defined by

(Tuf)(z) = 2*f(z) (f € A(D), z€ D)
is an isometry. Thus the 2nth adjoint, T,SZ") , of T, is an isometry on A (D)),
Let D € Z1(A(D), A(D)*). Then
D(ZF) = kZ*1 . D(Z)
and so, for each k € N,

ID()] = ITEY (D) = |12 D(2)]| = ID@EH)] < £1D1.

Thus D{Z) =0, and s0 D =0.

In particular, A(D) is a 2-weakly amenable Banach function algebra

which is not weakly amenable. In a similar way, the maximal ideal

M ={f € A(D): f(0) = 0}
of A(D) is 2-weakly amenable. This shows that, for a 2-weakly amenable
commutative Banach algebra I, it is not necessarily the case that A2 is
dense in 2 (cf. Proposition 1.3(i)).

We next consider some Banach function algebras which are not uniform
algebras. We have in mind, in particular, Banach function algebras 2 on a
compact space 2 = Py which are dense in (C(£2),] - [n).

The algebra C(1)(I) consists of the continuously differentiable functions
on the unit interval I = [0, 1]; C*)(I) is a Banach function algebra on I with
respect to the norm :

£l = 1f+ 1 (F e CH@).
Certainly, by Proposition 1.3(i), ¢1)(1) is not weakly amenable.

PROPOSITION 3.3, The Banach function algebra C11)(I) is Arens regular,
but it is not 2-weakly amenable.

Proof. We set 2 = CW(D).

(k € N),
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We first define B == C(I)@; C(I) as a Banach space with respect to the
norm

(£l = Ifle+lgh (.9 € CT).

A product in B is defined by the formula
(F1,91)(f2,90) = (fife, gz + o) (fr, Foa 1, 92 € C(L)).

As in §1, B is a Banach algebra, and B is commutative. The map

fe5f), %A—3,

is an isometric embedding of # in B; we regard % as a closed subalgebra
of B,

The dual space of ‘B is M @ M, where M = M () is the space of regular
Borel measures on [, and the second dual space of 8 is

B = M & M.

Since C'(I) is Arens regular, it is easily seen that 8 is Arens regular, and
that multiplication in B” for each Arens product is given by
(3.1) (&1, 91)(D2, ) = ($1B3, §172 + U1 B3),

where & is the Arens product of &, % € C(I)" = M'. It follows that 2 is
Arens regular, being a closed subalgebra of an Arens regular algebra.
‘We next define an element ¥ of M’ = C(I)" b

Wo(p) = u{{0}) (ue M)-
Clearly, (0,%) € B” and % = 1.
We claim that (0,%) € 2”; for this, we must show that (0, ¥p) belongs
to the weak-* closure of U in B
‘Take f € 2l to be such that f(¢) = ¢ for ¢ € [0,1/2], f(1) =
and |f|y <1, and then, for n € N, define

fult) = (nt)/n (0<t<1/n),

" (I/n<t<1).

It is immediate that f, € 2, that supp f,, C [0,1/n], that |f.|r < 1/n, that

falt)=1for t € [0,1/2n), and that |f.} = |f'|i. For each u € M, we have
| | < (fnluflel] — 0

and so fr, — 0 weak-* closure in M’. We further see that

|(Fr 1) = ([0, 1/ (2n)))] < |l ([1/(2n), 1/m])
' = lpl([/(2n), 1/n])  (u € M),

Since u([1/(2n},1/n]) — 0 and w([0,1/(2n)]) = ©({0}) as n -— oo for each
g€ M, we have f/ — Wy wealex in M'. Tt follows that (fn, f2) — (0,%)
weak-* in B”, and so indeed (0, ;) € A”.

fj(l) =0,

as 1 — 00,
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We define a map D : 21 — " as follows. First D(1) =
D(Z) = (O’WO)J

where Z is the coordinate functional Z : ¢ — t on I. Then D is extended to
be a derivation on the subalgebra C[Z] of polynomials: for each p € C[Z],

D(p)=9p"-D(Z}= (¥',p")(0,%) = (0,p'F).

(0,0) and

We see that

1D = [Pl < Ip'I1%oll < llell:  (p € CI2]).
Thus D is continuous on (C[Z],]| - ||l1), and D has a continuous extension
to a derivation D : 2 — A", Since D(Z) = (0,¥;), we see that D # 0.
It follows that H* (A, ") # {0}, and so A is not 2-weakly amenable. m

It follows from Proposition 1.2 that C)(I) is not n-weakly amenable for
any n € N.

The main relation involving n-weak amenability for commutative Banach
algebras that is open so far is whether a 2-weakly amenable algebra is 4-
weakly amenable; we cannot answer this guestion, but the following example
gives some new information. 7

Let K be a compact metric space with metric d, and take o such that
0 < o £ 1. Then Lip, K is the space of complex-valued functions f on K

such that #e) W
flz)— fly
pol) = e {

is finite. For f € Lip, K, set

[Flla = £l + Palf)-

Then (Lip, K,|| - |lo) is a Banach function algebra on K. A function _f
belongs to lip, K if

@)~ fW)
diz,y)>
lip, K is a closed subalgebra of Lip, K. For studies of these Lipschitz al-
gebras, see [33] and [2]. Tt is shown in [2, Theorem 3.8] that, in the case
where o < 1, (lip, K)” is isometrically isomorphic as a Banach space to
Lip, K, and that the two Arens products on (lip, K)" coincide with the
given product in Lip,, K; in particular, lip, K is Arens regular.

1x,y € K, w#y}
as dfz,y) — 0;

PROPOSITION 3.4. Let K be an infinite, compact metric space, and let
€ (0,1). Then:
(i) lip, K is not amenable;
(ii) in the case where o < 1/2, lip, K is permanently weakly amenable;
(iii) lip, K is 2-weakly amenable.




38 H. G. Dales et al.

Proof. (i) This is [2, Theorem 3.9].

(i) By [2, Theorem 3.10], lip, K is weakly amenable, and hence lip, K
is permamnently weakly amenable.

(iii) The algebra lip, K is Arens regular, and (lip, K ) is semisimple,
and so this follows from Corollary 1.11. w

We obtain a further result in the case where K = T with the usual
metric.

PROPOSITION 3.5. Let & € (0,1). Then:

(i) in the case where a < 1/2, lip, T s permanently weakly amenable;
(i) in the case where a > 1/2, lip, T is not {2k + 1)-weakly amenable
for any k € Z%.

Proof. (i} This follows from {2, Theorem 3.13].
(i) By [2, Theorem 3.11], lip, T is not weakly amenable. =

PROPOSITION 3.6. (i) Let K be a compact metric space, and let o € (0,1].
Then Lip, K is Arens regular.
(i) The algebra (Lip, 1) s not semisimple.
(iii) Lip, I is not n-weakly amenable for any n € N.
Proof. (i) Set A = Lip, K, and define
A={(zy) e KxK:2z=y}, V=(KxK)\A
We consider the Banach algebra X = C®(V) of bounded, continuous func-
tions on V with the uniform norm | - |y (so that X = C(8V)).
For F € C(K) and G € X, define
(F-G)(z,y) = F2)C(z,9), (G- F){z,y) =Glx,y)F) (@) €V)
Then F-G, G-F € X, and X is a Banach C(K)-bimodule for the operations
(FF)—F-G (FG)—G-F.
Form the corresponding Banach algebra
B=CK)d X

as in §1; we note that B is not commutative. Since C(8V) is Arens regular,
it follows that condition (1.11) is satisfied. Also C'(K') is Arens regular, and
so B is Arens regular, with the product in B given by equation (1.10).

Now let F € %, and define F € C®(V) by the formula
= F(y) — F(z)

P V.

Floy) = — 07 ((z.y) e V)

Then the map ‘ T

§:F— (F,F), %A B,
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is clearly an isometric linear map. Further, for F,G € U, we have
Ao F Fly) - F(z)
F.-G+F -G)(z,y :13( ) - ()) ( v
( o) = F)( Z e ) + (T Jow)
_ (FOr) ~ (FG)()
d(z,y)°
= (FO)z,y) (=) €V),

and so # is a homomorphism. Thus we may regard 2 as.a closed subalgebra
of B.

It follows that 2l is Arens regular.

(ii) Let 2 be as in (i). Clearly, rad " = {(0, %) e A" : ¥ € X"'}.

Consider the special case of this construction in which K = I. For k € N,
set o = 2721 and yx = 272%. Define F, for n € N by requiring that

Fo(ye) =270M0% (5 >n), Fu(z) =0 (keN),

and that F, be linear on all intervals between the points at which it has been
defined (with F,(0) = 0).For each n € N, we have F), € % with | Fp|l« <€ 2,
||y = 27 @ntla and Fo(zkyx) = 1 for k > n. Further, [Folla — ©
as n — oo, The sequence ((F,,F,) : n € N) has a weak-* accumulation
point, say (%o, %), in &". For each p € M(I), [(¥Fu, )| < [|Fnllallpll — 0,
and so o = 0. Take p € SV \ V to be an accumulation point of the set
{(#x,yx) : k € N}, and define

ey : G Glp), C(BV) - C.

Then (Frn,ep) =1 (n € N), and so (¥, ep) = 1. Hence (0, %) # (0,0).

Since (0,%)? = (0,0) and " is commutative, (0,%) ¢ rad A", and so
2" is not semisimple.

(iii) By [33], there are non-zero, continuous point derivations on 2, and
so, by Proposition 1.3(ii), 2 is not weakly amenable.

Define

D:F (0, F(py), 2A—2,
where p and ¥y are as in (ii). Then D is a continuous linear operator Clearly,
F @y = F(0)W, for F e %l and

FG(p) = F(0)G(p) + F(p)G(0)
for F,G e, andso Disa derivation. _
Let Fy be as in (ii). Then Fi(p) = 1, and so D(F;) = (0,%) # (0,0).
This shows that D is not wero, and hence that 2 is not 2-weakly amenable.
By Proposition 1.2, ¥ is not n-weakly amenable for any n € N. »

Thus, in the case where o < 1/2, lip,, T is 4-weakly amenable, although
(lip, T)"” = Lip,.T is not 2-weakly amenable. We do not know whether or
not lip, K is always 4-weakly amenable. ‘
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We record a related result. For a function f € L*(T), the associated

Fourier series is (F(r) : n € Z). For a > 0, the associated Beurling algebra
A4(T) on T consists of the continuous functions f on T such that

Iflle = 3 IFmIL + n)) < oo.

ned
ProposSITION 3.7. Let o > 0. Then:

(1) A(T) is Arens regular;

(i) Ax(T) is weakly amenable if and only if & < 1/2;
(iii) An(TY is not semisimple;

(iv) Au(T) is 2-weakly amenabdle if and only if o < L.

Proof. (i) Thisis [6, Corollary 2].

(if) This is [2, Theorem 2.4].

(iii) This is [25, Theorem 2.1.7].

(iv) This is [25, Theorems 3.1.1 and 3.1.3]. =

We conclude this section with an example promised after Corollary 1.14
of a Banach algebra which is an ideal in its second dual, and yet is not
n-weakly amenable for any n € N.

ExAMPLE 3.8. First observe that, as we remarked after Proposition 1.2,
a commutative Banach algebra 2 such that 1 (2L, ) # {0} is not n-weakly
amenable for any n € N.

Let V be the Volterra algebra, i.e., ¥V = L'(0,1), with the convolution
product

a
(f *9)(= S (z—tigit)dt (f,g€V, ve(0,1)).

Then H(V, V) # {0} ([24]), and so V is not n-weakly amenable for any
n € N. For each f € V, the operator

g—fxg, V-V,

is compact (see {11, Theorem 1]), and hence weakly compact. This shows
that V is an ideal in its second dual, and so V is a Banach algebra with the
desired properties.

We remark that it follows from [12] that the Volterra algebra V is not
Arens regular.

4. Group algebras. Let G be a locally compact group. We have noted
that L'(G) is amenable if and only if G is an amenable group, and that
LY(G) is always weakly amenable; we shall extend this latter result. Note
that L' (G) is not Arens regular unless G is finite (see [36]).
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THEOREM 4.1. Let G be a locally compact group. Then LMG) is (2k+1)-
weakly amenable for each k € ZT.

Proof. Set % = L*(G). Then 2 contains a bounded approximate iden-
tity (ey) with |le,|| < 1 for each . Thus there exists F € %" such that
|E| =1 and E is a right identity for (A”,0) ([3, Proposition 28.7]).

Let M(G) be the Banach algebra of all measures on G, with convolution
multiplication; it is standard that 2 is a closed ideal in M(G), and so (", 0)
is a closed ideal in (M (G)”,0). The map
M(G) — (%", ),
is an isometric embedding. We write B, for £ 00 §, when s € @, sc that
By = E B, (S:t € G)

Our proof is now a development of the argument in [7] that 2 is weakly
amenable. The result in 7] establishes the case where k = 0, and so we may
suppose that k € N.

Set X = A2F+2) Then X' is the underlying space of a commutative von
Neumann algebra, and hence it is an L°°-gpace; we have the standard notion
of the real part of an element in X’. The real-valued functions in X’ form
the space Xj; Xp is a complete lattice in the sense that every non-empty

subset of X which is bounded above has a supremum. It is immediately
checked that, for each s € G and 4 € X",

(4.1) Re(E, - A) = E,

Let D € Z*(A, X"). Then D" : (A",
by Proposition 1.7. For s,t € G, we have

D,,(Est) = D”(Es) ’ Et + Es - DI’(Et)a

B pr By,

-{Re A).

0) — X" is a continuous derivation

and so
{4.2) Eigyy— - D"(Bg) = Ep-1 - (By—1 - D"(Ey)) - By + By - D"(E,).

We next show that, for each r € G and each bounded subset A of Xﬁ,
we have

(4.3) E.sup{BE, - A: Ac A} =E, sup{E-A: A A}.

Indeed, set o = sup{E-A: A€ A} and 8 = sup{B,-A: A € A}. Then
E.-A< E, o, and so E -3 € E, - o. For the reverse inequality, we have

a=sup{E,-1 E, E-A:Ac A} <E.-.-E§,
and so E, -« < E - 8. Thus (4.3) holds. Similarly, we have
(44 - sup{BE,-A:AcA}-E=sup{E-A: A€ A} E,.
Define . ‘
& = sup{E,-1-ReD"(E,;}: s € G},
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the supremum being taken in the complete lattice Xj. Let t € G. Then it
follows from (4.1)—(4.4) that
E-¢.E=E; & E;+ B -ReD"(E) E.
Hence
E-ReD"(E) - E=E;- - E-FE - ¢ -E,.
A similar result holds for the imaginary part of D(Ey), and so we see that
there exists ¥ € X' such that

E-D'E) E=E - E—E- V- B (te@).
Tt follows that, for each discrete measure » € £1(G), we have
E.-D"Eov)-E=(Eov)-%.-E—E ¥ v.E.
Now let f, g € 2, and recall that E is a right identity of (%", 0); we have
(4.5) f D' Euv)-g=(f*v) - ¥-g~f -F-(vxg).

Next, take h € . Then there is a net (vy) of discrete measures such
that ¥, — h in the (two-sided) strong operator topology on 2L, that is,
lim., (f % 1y) = f % h and lim., (v * g) = h* g for each f, g € 2. Let f,g € 2.
Then

liffnf -D'"(EQuw,)-g= li’l;n(D”(f ¥vy) g~ D"(f) (vy % g))

= D"(f+h) g—D"(f)
== .f D”(h’) "4
and so, from (4.5),
f-D'(h)-g=(f*h)- ¥ g—f ¥ (hxg)
—f-(h- TP g
Let P: X" — X' = A1) be the natural projection, so that P is an
2U-bimodule morphism. We have D = P o D”. Set Wy = P(¥). Then
f-DY-g=f-(h-B—W-h)-g (fig,he),
and so
(f-z 9, Dh))y=(f -z g h-By—Y-h} (f,g,held weX)

It now follows from Proposition 1.17 that D € N1(%, X’), and so 2 is
(2k + 1)-weakly amenable. »

We should next discuss the 2k-weals amenability, and especially the 2-
weak amenability, of L*(G) in the case where G is non-amenable. Unfortu-
nately, we cannot resolve this question for any non-amepable group G. In
‘particular, we cannot resolve the question whether or not £1(F;) is 2-weakly
amenable, where Iy is the free group on two generators. The space £1(F,)" is
naturally identified with M(SF;), the Banach space of all measures on the
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Stone—Cech compactification SF, of Fa, with the induced module actions
from £1(IFy); we are asking whether or not

M (Fa), M(BF2)) = {0}.

Let £*(8F2) be the submodule of M (8F;) consisting of the discrete measures.
Then it is true that H*{€*(F2),£*(8Fz)) = {0}; this can be proved by an
application of Proposition 3.7 of [20], taking the auxiliary uniformly convex
norm p on £1(8Fs) to be the relative norm from £2(8F,).

5. Algebras of operators. We shall consider certain Banach aigebras
which are subalgebras of the Banach algebra B(E) for a Banach space E.

So far, we have no counter-example to the possibility that a weakly
amenable Banach algebra is permanently weakly amenable; for example,
the implication holds for commutative Banach algebras; all C*-algebras are
permanently weakly amenable; it is possible that all group algebras are
permanently weakly amenable. However, we shall shortly exhibit a Banach
subalgebra of B(E) which is weakly amenable, but not 2-weakly amenable.

Let B and F be Banach spaces. We denote by F{E, F) the linear sub-
space of B(E, F) consisting of the continuous, finite-rank operators. Then
F(E,F) is identified with F ® F'; the rank-one operator corresponding to
y® A (where y € F and A € E') is the map

y®A:ize (z, Ny, E—F

In particular, F ® E’ is identified with F(E); the corresponding product in
E® F' is defined by

(1 ®@ M) (z2@ A2) = {T2, M) T1 ® Az,

The completion K ® E' of E® E' in the projective norm || - || is the tensor
algebra of E; the tensor algebra is a Banach algebra ([19, IL 2.20]).

The natura) identification of FQ E’ with F(E, F) extends to a continuous
linear map R : ' ® E' — B(E, F); the range of this map, with the quotient
norm, is the Banach space (N(EB, F), || - |l&) of nuclear operators from E
to F. Let § € N(E,F), and let G be a Banach space. If T € B(G, F),
then § o T € N(G,F) and ||So Tlnx < |SInITI; if T € B(F,G), then
SoT e N(E,G) and |T o 8||x < [|SInIIT].

In particular, R : E & E' — N(E) identifies the nuclear operators on
E as a Banach algebra; the map R is an injection (and so N (E) is isome-
trically isomorphic to the tensor algebra E ® E') if and only if E has the
approximation property (AP). The Banach algebra (M(E), || - o) is a Ba-
nach B(E)-bimodule. We note that E has AP when E’ has AP. For further
details concerning these remarks, see [26, 1.7.10/11].
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Let E be a Banach space. For T € B(E'), define T € (E ® E’) by the
requirement that

Tz®N =T =<k, AeE).

Then
T T, B(E)-(BEEY,
is an isometric linear homomorphism. The linear functional corresponding
to the identity operator is called the canonical trace on E@E' and is denoted
by tr. For details, see [26, 1.7.11].
A Banach algebra A is simplicially trivial if H"(A, A') = {0} for each
n € N; in this case A is weakly amenable.

THEOREM 5.1. Let E be ¢ Banach space. Then the tensor algebra E® B'
is weakly amenable.

Proof. It is a theorem of Selivanov {[31], [19, IV.5.11]) that F & E' is
biprojective. Every biprojective Banach algebra is weakly amenable; indeed,
such an algebra is simplicially trivial. = “

THEOREM 5.2. Let E be an infinite-dimensional Banach space with E'
having the approzimation property. Then the weakly amenable Banach alge-
bra E® E' = N(E) is not 2-weakly amenable.

Proof Set A =E & E' = N(E), and set X = ' = B(E') (with the
above identification). It is easily seen that the module actions of 2 on '
are given by

§-T=ToS, T -§=80T (Se9, TeX).
We shall prove that (2, 2") # {0} by showing that imd; is not closed
in X, where d; is the map defined in equation (1.12); the result will then
follow from Proposition 1.16.

In the present notation, the map dy : A ® X — X is defined by the
condition that

di:S®TmToS —5 0T, AFX — X.
To obtain a contradiction, assume that d; has closed range in B(E').
We first note that imdy C N(E’). For let I € A& X. Then we can write

U= E:O=1 Sp®T,, with S, €, T, € X, and }::’:1 [Sall w1 Tll < oo. But
then

oo oG
2 I8n o Te = ThoSyllw <23 [1SnlwiTall < oo,

n=1 n=]
and so d1(U) € A(E'), as required.
Consider the map & : A& %A — B(E) given by

PESR®U)=8eU~-UoS (5Uc).
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Clearly, {4’ : A € im&} C imd;. We want to show that im @ is closed in
B(E). Towards this, take {A,) in im@ such that 4, — A in the operator
norm on E. Since im d; is closed by our assumption, and since the map

Tw—T, B(E) — B(E"),
is an isometry, it follows that A’ is nuclear. But then 4 is nuclear since E' has
AP (8, Theorem 7, p. 243]. Since tr A = tr A’ = 0, it follows that A € im &.
To see this, we write A = R(} £, @ An), where the map R : E® E' — N(E)

was defined at the beginning of this section. Choose z¢ € F and My € B’
such that (o, Ag) = 1. Then

A= QS( 3 R(z0 ® Xo) @ R{zo @ ,\,,,)) cimd.

Thus im @ is closed. Since E' has AP, and therefore E has AP, we may
suppose that im& 2 F(E).

It now follows that there is a continuous linear functional A on B(E)
such that Alim® = 0 and A|F(F) # 0. But then A is a non-zero bounded
trace on F(E). This is a contradiction of [27, Theorem 1.14].

We deduce that im d; is not closed in B(E"), and so N'(E) is not 2-weakly
amenable. »

REMARK. Suppose that E' fails to have the approximation property.
Then the map .
di:N(E) & B(E") = N(E")
is surjective. To see this first note that, since E’ fails to have Ali, there
exists up € B’ ® B such that R(ug) = 0, but trug # 0. Let u € B’ ® B be
arbitrary, and define

tru

trig
Then R(v) = R(u) and tro = 0. Write

v=>3 J®4n (MneE, A, €E"),
and then choose zg € F and A\g € E' such that (o, Ag) = 1. Then
v=> ((An ®Z)(A ® 4) — (A0 ® 45)(An ® Fo)),
[l

vV=Uu— Ug-

so that R{v) € im d;. There are infinite-dimensional Banach spaces for which
all approximable operators are nuclear {27, Theorem 10.6]. Thus it seems
that the hypothesis that B’ has AP cannot be essentially relaxed.

We can obtain somewhat stronger results if we assume a little more about
the Banach space E. :
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PrOPOSITION 5.3. Let E be a Banach space.

(1) Suppose that E = F' for a Banach space F, and suppose that E has
AP and the Radon-Nikodym property. Then N(E) is Arens regular.

(ii) Suppose that F is o reflezive space with AP. Then N (E) is a closed
ideal in (N (E)",0).

Proof. Throughout, set % = N (E). ‘

(i) Let A{F) denote the Banach algebra of approximable operators on
F. Under the stated conditions on E, A(F)' is identified with A (E) (see [8,
p. 248]): the duality is “trace duality”, given by

(8,1 =1x(T8) (S € AE), T e,
where tr denctes the trace. Also, 21’ is identified with B(E'), so that A(F)"
is identified with B(E').

We apply Proposition 1.6, taking X to be the canonical image of A{F) in
B(E'). The embedding of A(F) in B(E') is just the map T — T € A(F"),
and so certainly - A’ 3- A" - % C X. Hence, by Proposition 1.6, 2 is Arens
regular.

(i) As we remarked in §1, A'(E) is an ideal in (NV(E)”,0) if and only
if both the maps Ly : § + T'S and Ry : § — ST from 2 to 2 are weakly
compact for each T' € 2. Since F(E) is dense in (%, || - | &) and the set of
weakly compact operators on a Banach space ¥ is a closed ideal in B(Y), it
is sufficient to show that Ly and Ry are both weakly compaét in the case

where T' is a rank-one operator, say T = xo ® Ay, with zp € E and g € F'.
We note that

(zo ®)\0)OS:$0®S’(}\0), So(zg® Ao) = S(za) @ Ao

for S € B(E).

Let () be a bounded net in N'(E).

First, (5%(A0)) is a bounded net in E’, and so, by passing to a subnet,
we may suppose that Si(Xo) — Ay in (B', o(E', E)). For each U € B(E'),

{zo ® §5(X0), U) = (2o, US,,(A0)) = (U'z0, L, (Aa)} — (U'wo, M),

noting that U’ € B(E) because E is reflexive. Thus Ly, g, is weakly com-
pact.

Second, (S,(zo)) is a bounded net in E, and so we may suppose that
Sy(mo) — A; in (B, o(E, E')). For each U € B(E'),

(8 (20) @ Ao, U} = {8y (20), U (M0)) — (41, U{Mo)).

Thus Reog, 18 weakly compact.

It follows that A'(E) is an ideal in N(E)". w

The next statement combines some ‘previous results; the result con-
trasts N (E) with the disc algebra A(D), in that the Banach algebra A'(E)
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is k-weakly amenable precisely in the cases where A(ﬁ) is not k-weakly
amenable.

COROLLARY 5.4. Let E be a reflexive space with AP, Then:

(i) N(E) is Arens regular and N(E) is a closed ideal in (N (E)",0);
(ii) N(B) is (2n + 1)-weakly amenable for each n €. 7T,
(i) M(E) s not 2n-weakly amenable for any n € N,

Proof. Again, set % = N (E).

(i) Each reflexive space has the Radon-Nikodym property, and so % is
Arens regular by Proposition 5.3(i). The second part of the statement is
Proposition 5.3(ii).

(ii) By Theorem 5.2, N(E} is weakly amenable. The result now follows
from (1) and Corollary 1.14.

(iii} Since F is reflexive and has AP, E’ also has AP. Hence 2 is not 2-
weakly amenable by Theorem 5.2. The result follows from Proposition 1.2. m

Thus, for special Banach spaces B, N (E) is 3-weakly amenable; we do
not know if this is the case just under the hypothesis that ' has AP.
‘We make one further remark about N'(E): for each Banach space E,

HYN(E),N(B)) = B(E)/(N(E) + CIx).

This is a special case of [19, II1.4.19].

We shall now give some results on the Banach algebra of approximable
operators A(E) on a Banach space E. Recall that A(E) is defined as the
closure of F(E) in (B(E), || - ||}, and that the dual A(E)" is identified with
the space of integral operators Z(E') on B’ by means of trace duality:

(F,T) = tz(F'T) (FeF(E), TeI(EY)

The integral norm |||z of T € I(E') is the norm of T" as a bounded func-
tional on A(E). (For details, see [26, 1.7.12].) Apart from the cases where
A(E) is actually amenable [17], little is known about the weak amenability
of A(E). We start by giving some instances where A(F) is weakly amenable,
but not amenable.

We let W(E) denote the space of weakly compact operators on E; W(E)
is a closed two-sided ideal of B(E).

LEMMA 5.5. Let E be a Banach space such that E' has AP. Then there
is o natural isometric embedding of W(E) into A(E)"; this embedding is o
Banach algebra homomorphism when A(E)" is equipped with either of its
Arens products.

Proof Let T € A(E) = I(E'), and let W € W(E). Then W' € W(E").
By [8, Lemma 8 and Corollary 9, pp: 250-251], there is a reflexive space ¥
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and a factorization

B

A

A close inspection of the proof shows that |W'|| = inf{|\4]]- | B||}, where the
infimum is taken over all such factorizations. Since the map B has its range in
a reflexive space, BT is nuclear by [8, Theorem 8, p. 175]. Furthermore, the
nuclear and integral norms coincide: [|BT||x = HBTH (This is essentially
the argument in [8, p. 252].) Since E’ is assumed to have AP the application
of tr is valid. Using this, we see that

|te(W'T)] = [tr(ABT)| < || A|| | BT||lx = Al BT ||z < [|AI § BTz,

so that [tr(W'T)| < ||W| ||IT||z. It follows that W defines a linear functional
of norm not exceeding ||W/| on A(EY . By applying W to a rank-one opera-
tor, we see that the norm of the functional defined by W is at least |W/||. We
have thus shown that the embedding of W(E) into A(E)" is an isometry.

To show that the above embedding is a homomorphism when A(E)"
has either of its Arens products, take V,W € W(E) and T € Z(E’), and let
(Fa), (Gg) be two nets in A(F) converging in the weak-+ topology of A(E)"
to V and W, respectively. Then

hml}.m(T F.Gg) = hmhmtr(G (F" ) = licrxnlién(F;T, Glg)

= 11;n(FE',T, W) = lim tr(W/F.T)
= 1ii11tr(F;TW’) = lign(TW’,Fa) '
= {TW' V) = to(V'TW') = tr(W'V'T)
={T\ VW) = lién tr(GpV'T)
= lin tr(V'(T'G)) = im(T'Gp, V')
= limlim(T'Gp, Fa) = b lim(T, FaGi).

We have here several times used the fact that, if 7: B’ — E’ is integral and

U:E — E'is weakly compact, then UT and TU are both nuclear, and

therefore tr(RUT)} = tr(UTR) and tr(RTU) = tx(TUR) for any bounded
operator B : ' — E'.

By the formulae in §1, VW = V OW = V ¢ W, and so the embedding is
indeed a homomorphism. m

THEOREM 5.6. Let F be a Banach space such that E' has the approzima-
tion preperty, and let D : A(E) — A(E)' be a derivation. Then there ezists
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o derivation D : W(E) — W(E)' and a commutative diagram
A(B) &L W(E)
D D
A(B) <L W(BY
In particular, A(E) is weakly omenable in the case where W(E) is weakly
amenable.

Proof. To keep track of the various dual spaces involved, we stipulate
the following versions of our notation. The canonical projection from .4 (&)
onto A(E)" is P : A(E)" — A(E), whereas ™ : A(E) — A(E)" is the
canonical embedding. The isometric embedchng given by the prevmus lemma
is 5 : W(E) — A(E)". Note that P = i’ o' and that P(\) = A (A € A(E)).

By Proposition 1.7, the map D" : A(E)" — A(E)" is a continuous
derivation when A(E)" has the (A(F)",0)-module structure given in (1.5)
and (1.9). We start by examining the module multiplication when it is re-
stricted to F{W(E)). Let F,G € W(E) and let A € A(E)"”. Choose (aqa)
in A(E) and (Ag) in A(E) such that an — j(F) in o(A(E)", A(E)) and
Ag — A in o(A(E)Y", A(E)"). Then

((6),4(F) - 4) = 1w Iim(aas, 7(G) = I (G - 0oy Ao
= lm(G- ay, 4) = Iim(G - @q, P(A))
= (P(4),5(G) 0 §(F)) = (P(4),§j(GF)),
where the application of P follows because G-a, € W(E)-A(E) € A(E), and

the last step follows because j is an algebra homomorphism into (A(E)", o).
Similarly, we have

(§(G), 4 5(F)) = timlim{Asaa, 5(C))
= lim(he,§(F) 05(G)) = (H(FO), 4).

It follows that P o D" o § : W(E) — A(E)' is a derivation when A(E)" has
its natural W({E)-bimodule structure arising from the fact that A(E) is an
ideal in W(E).

Now, as above, let F,G € W(E) and A € A(E)'. Then

(B, 4G N) = (§(F),G X =lim{ae, G- )

= (M G(FYQHG) = (FG, 5 (A)).
(GF, J (A )) We have shown that the map
A(BY —W(BY,

Similarly, (F, §'(X- G)) =
A g ()\),
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is a W(E)-bimodule map. The map given by

D(F) =7 ((PoD" 0 j)(F)™) (FeW(E)

is therefore a derivation satisfying ¢’ o Doi=D.n
We now give a condition ensuring that W(FE) is weakly amenable.

PROPOSITION 5.7. Suppose that the Bamach gpace E i3 reflevive and
has the form E = £,(Y) for some (reflexive) Banach space Y and that
1< p<oo. Then W(E) (= B(E)) is simplicially trivial.

Proof. Since B 2 £,(F), we may copy the proof of [35, Proposition 5]
for the case where F is a Hilbert space to show that the Hochschild homology
H(W(E), W(E)) = {0} for n € ZT. The conclusion now follows from [20,
Corollary 1.3]. m

COROLLARY 5.8. Suppose that B, in addition to satisfying the hypotheses
of Proposition 5.7, hos the approzimation property. Then A(E) is weokly
amenable. m

ExampLE. Let Cp, p =0 or 1 < p < 0o, be one of the spaces defined by
W. B. Johnson [23]. These spaces have the property that every approximable
operator between Banach spaces factors through Cp, ie, if §: E — F is
approximable, then there are approximable operators Ty : £ — (), and
Ty : Cp — F such that § = T, o 7}. Furthermore, for 1 < p < oo, G
satisfies the hypotheses of Corollary 5.8. As in Example IV.11 of [16] it
then follows that all Banach algebras A(E @ C,), where E' has the bounded
approximation property and p = 0 or 1 < p < o0, are Morita equivalent. In
particular, they are all weakly amenable. Note that A(C}) is not amenable
for p= 0,1 ([17, Question 7.7]).

We now turn to the 2-weak amenability of A(F). First we seek a descrip-
tion of H!(A(E), A(E)'). We start by a description of N(E)' in the case
where E may lack the approximation property. Let Kg be the kernel of the
canonical map R : E& E' — N(E). Then

N(EY =Kg ={T e B(E"): (u,T) =0 (Ru = 0)},
a closed subspace of B(E'). We note that A(E") € Kz. To see this, let A@ A
be a rank-one operator in B(E'), and let u € Kg, say u =3 @, ® An with
>z, An)zn =0 for all z € B. Then
AR A) = (Tn, A {An, 4) = 0.

It follows that, for § € A(E) and F & A(E'), the trace tr(S’ o F) is well-
defined. '
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THEOREM 5.9. Let i : N'(E') — I(E') be the canonical embedding. Then
YA, A(B)") = B(E")/(i'(A(E)") + Clgn).

Proof. Consider the dual map ¢ : I(E') — N(E') of ¢, formed by
taking restrictions. We make the isometric identifications A(E)" = T(E')
and N(F') = Kg, = B(E"), so that ¢’ is regarded as a map from A(E)"
into B(E").

Let De ZY(A(E), A(E)"), and take T€ A(E) =
Then

I(E") and F,Ge A(E).

(T,D(FoG)) =(T- F,D(G))+{G - T, D(F)).
Since A(E) - I(E') +Z(E")  A(E) C N(E"), it follows that
(I, D(F o G)) = tx((T F) o i"(D(G)) + t:({G - T)' 0 "{ D(F)))
= tr(T' o ¢'(D(F o G))).
However, operators of the form F o @G, where F,G € A(E), form a dense
subset of A(F) because every finite-rank operator [/ can be expressed as

U= PoU for a finite-rank projection P. It follows that the range of i/ 0 D
is contained in A(E") and that

(T, D{F)) = tr(T" o i' (D(F)))
Using this, we see that
| D(F)| = sup{|{T, DIF) : [Tt|z(z) = 1}
= sup{|tr(T" o #"(D(F))! : | T2z =1}
sup{|tr(T" o (I"(D(F)Y| : ITllz¢m) = 1}
= [l (DN
for the last equality, we have used the fact that the map T — T is an isom-
etry from Z{E'} to Z(E"). It follows that we may regard D as a continuous
derivation from A(E) into K C B(E"), and this we shall do.
As in the proof of the Kaliman~Selivanov theorem [19, Proposition

I11.4.18 and Theorem II1.4.17], we see that E’ is a projective right mod-
ule over A(E). Hence E” is an injective left module, so that

H™(A(E), B(E")) = ExtT 5 (B",B") = {0} (neN).
In particular, it follows that there is an element U € B(E") such that
(T,D(F)) = tx(T' o (F" o U - Uo F")) (T € I(E), Fe AR)).

Conversely, each U € B(E") defines & continuous derivation from A(E)
to A(E)" by the above formula. Such a derwatmn will be inner precisely
When U [ ?JI(A( )”) -+ CIEH ]

(T € Z(B"), F € A(E)).



52 H. G. Dales et ol

COROLLARY 5.10. If dim Km > 1, then A(E) is not 2-weakly amenable.
If dimKg <1 and E' has the Radon—Nikodym property, then A(E) is
2-weokly amenable.

Proof If dimKz > 1, then Kz + Clgs # B(E"). Since we have
' (A(E)") € Kz, the algebra A(E) cannot be 2-weakly amenable. If B’ has
the Radon—Nikodym property, then N (E') = Z(E’) isometrically, and so we
have i/ (A(E)') = K. =

6. Summary. Let us write “n-WA” as an abbreviation for “n-weakly
amenable”. We have been concerned with the relations between m-WA and
n-WA for Banach algebras in particular classes, where m,n € N. We briefly
summarize our results and the questions that we have left open.

It is always the case that, for each n € N,

(n+2)-WA = n-WA.
in the case where 2 is commutative,

1-WA = n-WA foreachn e N

In the other direction, the disc algebra A(D) is a uniform algebra which
shows that

2-WA # 1-WA,
and the algebra N'(E) for certain Banach spaces E shows that
1-WA # 2-WA

{cf. Theorem 5.2). In fact, A(ﬁ) is n-WA if and only if n is even, and N'(E)
(in the case where E Is reflexive and has AP) is n-WA if and only if n is
odd.

The algebra CM)(I) is an Arens regular Banach function algebra which
is not n-WA for any n € N; the Volterra algebra V' has the same property,
and V is an ideal in its second dual.

We do not know whether or not 2-WA = 4 WA for an arbitrary Banach
algebra; in particular, we do not know whether or not this holds for each
commutative Banach algebra.

We do not know whether or not 1-WA = 3-WA for an arbitrary (non-
commutative) Banach algebra; the tensor algebra E@E' is 1-WA for each
Banach space F, and it is possible that it is not 3-WA for some Banach
space .

C*-algebras are n-WA for each n € N (but they are not necessarily
amenable); the group algebras L*(G) are n-WA for each odd n, but we do
not know whether or not I1(Fy) is 2-WA.
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Addendurn. A similar construction to that showing that X" is a Banach
(A”,0)-bimodule has also been given by F. Gourdean, Amenability and the
second dual of a Banach algebra, Studia Math. 125 (1997), 75-81.
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Tauberian theorems for vector-valued Fourier and
Laplace transforms

by
RALPH CHILL (Ulm)

Abstract. Let X be a Banach space and f € L] (% X) be absolutely regular (i.e.
integrable when divided by some polynomial). If the distributional Fourier transform of
f is locally integrable then f comverges to 0 at infinity in some sense to be made precise.
From this result we deduce some Tauberian theorems for Fourier and Laplace transforms,
which can be improved if the underlying Banach space has the analytic Radon-Nikodym
property.

0. Introduction. In the last decade Tauberian theorems for vector-
valued Laplace transforms attained much attention because of the intimate
relation with the asymptotic behavior of Cauchy problems in Banach spaces
{[1]-[6], [20], [21]). A typical Tauberian theorem, essentially Ingham’s theo-
rem, says the following: Let f : By ~» X be uniformly continuous {(where X
is a Banach space) and assume that the Laplace transform has a continuous
extension to Cy. Then lim; .o f() = 0 (cf. [4, Thm. 3.5]).

The proof in [4] uses a tricky contour argument from Korevaar [18],
which has been exploited in most of the cited papers. In the first section
of this paper we present a new approach to Ingham’s theorem via Fourier
transforms. Qur proofs are not more difficult, and moreover, this approach
allows us to relax the Tauberian hypothesis considerably and to go beyond
the most recent results even for asymptotically almost periodic functions.
To give an example, under suitable ergodic conditions on f it suffices in In-
gham’s theorem to suppose a continuous extension of the Laplace transform
to the imaginary axis minus a closed, countable set. This Tauberian hy-
pothesis arises naturally in Volterra equations (4]). In particular, our result
answers a problem asked in the introduction of [2].

In the second section we derive a Tauberian theorem in a similar way
to Section. 1, but for a larger class of Laplace transformable functions (than
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