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STUDIA MATHEMATICA 128 (1) (1998)

On the dependence of the orthogonal projector
on deformations of the scalar product

by

ZBIGNIEW PASTERNAK-WINIARSKI (Warszawa)

Abstract. We consider scalax products on a given Hilbert space parametrized by
bounded positive and invertible operators defined on this space, and orthogonal projectors
onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar
products. We show that the projector is an analytic function of the scalar preduct, we
give the explicit formula for its Taylor expansion, and we prove some algebraic formulas
for projectors.

1. Introduction. One of the most important directions of modern math-~
ematical physics is the explanation of the role of compler objects and the
notion of kolomorphy in the description of fundamental laws of physics. It
is particularly well seen in quantum theories, where complex ob Jects appear
in the most natural way.

The notions important from the complex analysis point of view which
have been applied in quantum theories include, in particular, reproducing
kernels. They are a generalization of the Bergman function (see [1] or [2]).
They became the basis of models of quantum field theory described in [4]
or [5] (see also [10]). More precisely, we have in mind reproducing kernels
defined for the Hilbert spaces of all holomorphic and square integrable {with
respect to suitable measures and hermitian structures) sections of holomor-
phic vector bundles (see [8], [9] or [L0]). To be able to use perturbation
methods in such quantwm models, investigation of the dependence of the
reproducing kernels on deformations of measures and hermitian structures
is necessary.

In the simplest case of the trivial bundle over a domain in C*, both
the measure and hermitian structure are together represented by a weight
of integration (with respect to the Lebesgue measure). The dependence of
the reproducing kernels on the weight of integration was investigated in {7].
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2 Z. Pasternak-Winiarski

They were shown to depend on the weights analyfically. We recall that those
reproducing kernels are stmultaneously the integral kernels of the orthogo-
nal projectors of the space of all functions square integrable with respect
to a given weight onto the subspace of holomorphic functions. Therefore
an important step of the considerations in [7] was the investigation of the
dependence of orthogonal projectors on weights of integration.

To extend the results of 7] to general vector bundles (in the applications
to physics so far, only line bundles are needed) the dependence of suitable or-
thogonal projectors on measures defined on the base manifold of the bundle
and on hermitian structures defined on the bundle should be investigated.
It turns out that a description of that dependence can be obtained from
a general theorem on dependence of orthogonal projectors of an arbitrary
Hilbert space onto o fized subspace on scalar products. The main goal of our
paper is to prove that general theorem.

Section 2 recalls facts concerning linear and multilinear operators de-
fined on Banach spaces and positive definite operators on Hilbert spaces. It
includes some definitions and notation needed in the other sections. Section
3 contains the proof of the theorem on anolytic dependence of orthogonal
projectors onte a finite-dimensionol subspace on scalar products (Theorem
3.2). In this theorem an explicit formula for an appropriate Taylor expansion
is given. Most of the results of Section 3 are generalizations of the results
obtained in Section 4 of [7]. Some of the proofs are similar to those of [7};
however, they are included for the convenience of the reader.

The results of Section 3 are used in Section 4, where some olgebraic
formulas for orthogonal projectors (onto an arbitrary closed subspace of
the initial Hilbert space) are derived. They express orthogonal projectors in
terms of one fixed projector and positive definite operators determined by
scalar products (Thecrems 4.1 and 4.2). Those results have no equivalent
in [7].

In Section 5 we apply the algebraic formulas in the proof of a general-
ization of Theorem 3.2, establishing analytic dependence of orthogonal pro-
Jectors onto an arbitrary closed subspace on scalar products (Theorem 5.1).

In this paper no examples are given. They can be found in [4], [5], [7]
or [10].

2. Preliminaries. If X, Y are normed spaces then the standard normed
space of all linear bounded operators on X into Y will be denoted by
LIX,Y). If X = Y we write L(X) instead of L(X,Y). We use the sym-
bol F'o G for the superposition of arbitrary maps F and @, and the symbol
AB for the superposition of linear operators A and B.

The normed space of all k-linear bounded operators on a Cartesian prod-
uct X; X ....x Xy of normed spaces into ¥ will be denoted by L*(Xj,...,
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X Y). If U is an open subset of X and T : U — Y is differentiable up
to order k then we denote its kth derivative at z € U by DT (z). We
consider it as a k-linear bounded operator on X* into ¥, i.e., D(’“}T(:c) €
LFX,....XY) . If X=X, X...x X, then Dy, T{z) is the derivative of
T at z € U with respect to the variable z; € X;, 1 <j < m.

In this paper we will consider analytic mappings between normed spaces.
We adopt the following definition of analyticity.

DErFINITION 2.1. Let U be an open subset of a normed space X and let
Y be a normed space. We say that a map F : U — Y is analytic on U iff
for any z € U there exists a ball B C X with center at 0 € X such that
z+ B C U and for aniy h € B,

o0
Flr+h)= F(z)+ m(h, ..., h),
(z+h) = F(z) Z m( )
=1 .
m times
where @, : X™ — Y is a continuous m-linear function for m = 1,2, ... and

the series on the right hand side converges uniformly on B.

Let X (or (X,{- | -}}) be an arbitrary Hilbert space (real or complex)
with the norm || - || given by the scalar product (- | -}. Let H(X) ¢ L(X}
denote the R-linear Banach space of all hermitian bounded operators on
X, S(X) the cone of all elements of H(X) which are positive definite, and
So(X) the set of all A € S(X) such that

i(A) := lEi]HlEl(m | Az} > 0.

For any A € So(X) and any z € X we have
(1) (o] Ag) 2 i(A)el’, zeX
It is known that any operator A € Sy(X.) is invertible. Moreover, (1) and
the Schwarz inequality imply that for any = € X,
fiAzll - Izl = (z | Az) 2 i(A) =,
Then for each y € X, |47 y|| < i(A)7}|y| and therefore || A~ < #(A)~ T,
In fact, one can easily prove the equality
1
1y o
) 14 = 7
We will identify elements of S(X) with scalar products on X by assigning
to any A & S(X) the scalar product
(@|y)a = (=] Ay),
Note that for any « € X,

lzll% = (o | Az) < [[4]] - [|=]*.

A € 5(X).

z,y € X.
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If A € §o(X) then combining (1) and the above inequality we obtain

@ sl < llela < Calial,
where
(@ Car = VI
and
1
(5) Cra:= m

Let us consider the dependence of i(4) on deformations of A € Sp(X).
If h € H(X) and {|h|| < é(A) then for any = € X such that [z = 1,

(@] (A+h)z) = (x| Az) + (z | ha} = i(A) — ||A]].
Hence
(6) i(A+h) > i(4) — ||r] > 0,

which means that A+ h € So(X).
For any A € Sp(X), define

{7} B, == Bux)(0,i(4)/2) = {h € H(X) : [[h]| <i(4)/2}.
If h € B4, then by (6),
(8) i(A+h) > i(A)/2>0.

Consequently, the ball A+ By = B x)(A,i(A)/2) C So(X), which implies
that So(X) is an open subset of H(X).

It is well known that A+ {- | -} 4 is a one-to-one map of S(X) onto the
set of all scalar products on X which are continuons on X x X with respect
to the initial topology defined by the norm || - || on X. A scalar product
(-] -4 is equivalent to {- | -) iff A € Sp(X).

Let us consider three maps: F : X x X x HX) — C, F, : HX) —
L(H(X), L(X)), and Fj : Sp(X) — So(X), where

(9) F(z,y,A):={(z | Ay), =z,yeX, Ac HX),
Fi(A)h = Ah, A e HX),
Fa(A)i= A", A€ SX)

The map F is C* as a bounded 3-linear form over B, | is linear and
bounded and therefore it is ¢°°. The map Fs is a C* diffeomorphism of
Sp(X). We have

DF3(Ah = —A"*hA™Y, A€ S(X), h e H(X).
We can now define the map M : Sp(X) — L(H(X), L(X)) by the formula
(10) M :=F o Py,
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i.e., for any A € Sp(X) and any h € H(X),

(11) M(A)h = A" h e L(X).

This map is O as a superposition of C® maps. If h € H(X) is fixed then
we have

(12) Dao(M{AR)Ry = —A7 A7 R, A€ 85(X), b € H(X).
Moreover,

13 M| = AR < 4~ - ) = 2RI
(13) [ M(A)R] = [|A™ Rl < AT - iR Ay

3. Orthogonal projectors onto a fixed finite-dimensional sub-
space. Let (f;) be an arbitrary (finite or infinite) sequence of linearly in-
dependent elements of a Hilbert space X. Denote by (e;(A4)) the sequence

obtained from (f;) by the orthonormalization proceduré with respect to the
scalar product (- | -} 4, where A € Sp(X). We have

__h
UL
(14) e;(A) = fi = Simi (ei(A) | £i)aei(4)

15 = SiZi{e(4) | f3) aee(4)]la
LEMMA 3.1. For any j € N the map e; : So(X) — X given by the formula
(14} s C°. Moreover, for every A & Sp(X) the range of the operator De;(A)
is contained in the subspace of X spanned by the vectors fi,..., f;.

Proof. One can easily prove the first part of this lemma by induction.
The second part is an immediate consequence of the fact that for every .
J €N, ej: So(X) - span{fy,..., f;}. We leave the details to the reader. m

Let V be an arbitrary but fixed closed subspace of X. We now examine
the analyticity of the map

So(X) 3 A s P(4) € L(X),

where P(A) is the projection of X ontc V', orthogonal with respect to the
scalar product {- | -)4. To do this we first consider the finite-dimensional
case. :

LemMa 3.2, Let V be a finite-dimensional subspace of X (dimV = m
< 00). Then for any x € X the map

S5(X)2 AT (A)=PA)lz eV CX
is C™. Moreover, for any A € So(X) and any h € H(X),
DT (AYh =[P(4) o (M(A)h) o (I — P(A))ix,
where M is given by (10) and I is the identity operator on X.
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Proof Fix z € X and some basis f1,..., fm in V. Let e1(A), ..., em(4)
be given by (14). Then
m m
To(A) =Y (e;{A) | Z)aes(A) = Y Fle;(A),x, Aje;(4),
=1 i=1
where F is defined by (9). Hence the smoothness of Ty, follows from Lemma
3.1. Now fix Ay € Sp(X). For any A € 5p(X) we have

Te(4) = P(A)z = P(A)[P(Ag)z + (I — P(Ao))a] = P(Ao)z + P(A)zo,

where zg 1= (I — P(Ap))z. Since the first term does not depend on A we

obtain

DT, (Ag)h = Da[P(-)zo]{Ao)R

= i F{(De;(Ap)h, za, Ap)e;(An)

i=1

+ ZF(EJ(AD)-:wD: R)e;(Ag)

+
ME T

F(e;(Ag), xo, Ag)De;(Ao)h

il
-

h € H(X).

F(e;j(Aa), mo, h)ej(Ao),

g=1

We have used the fact that zg is orthogonal to V' with respect to {- | -) 4,
and De;{Ap)h € V for j = 1,...,m. Hence

DT, (Ag)h = ZF(eJ(AO) zg, Ag Ay The;(Ag)

ta,
Il
-

m

(e5(Ao) | (A5 R)mo) aces(Ao)

.
il
b

I
Ma

(e5(A4o) | (M{Ag)h)zo}ace;{Ao) = P(Ag)[M(Ao)h]zo

o,
It
B

= [P Ao) ] (M(Ag)h) a (I - P(Ao))}:z: n
Lemua 3.3. Under the assumption of Lemma 3.2 the map P is contin-

uous, More precisely, for any A € So(X) there exists a constant Kyq > 0
such that for every h € Ba (see (7)),

(15) IP(A+ k) — P(A)|| < KallR|.
K4 does not depend on V.

icm

Deformations of the scalar product

Proof By Lemma 3.2 for every z € X and h € B4,
|1 P(A+ h)z — P{4)a]

é%(Tm(Aﬂh))dtH

1

< VIP(A + thy (M1
0

A+ thYR)(I — P(A + th))]z|| dt.

Note that by (3),
I[P(A -+ th)(M (A + th)h)(I — P(A +th))]z|

< Crasen|[iP(A + th) (M(A+ th)h)(I — P(A + th))]z || a4en
< Croaven||M(A+ th)h|aten |zl 44en,

where we have used the fact that for any ¢ € [0; 1],

(16) |1P(A + th)|| aten = [T — P(A+ th)lla4en = L.

Since for any & € X, any B € Sp(X) and any h € H(X),

4B el = (57 | BE0) <5721 il

P < TPl

- 5 7 ChalkPlety =
(see (2) and (3)) we obtain
1A
) IM(B)hls < 5

Hence for any h € Ba,
[P(A + th)(M{A + th)h)(I — P(A + th))]z||
i || Al
< CI,A+th,m“)“||$||A+th < WGAH?L,IWH

< VAT A el < \/HAI + | Adll|A] 2

= TiCA) — tln])*72 (i(4) —i(4)/2)>?
< YIAL+4A)/ thi“ 1
((A)/2)37

and therefore

(P(A+ h) — P(A)x] < {Kalbll - ] dt = Kallh]| - |z,
0
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where

Ky o= YA A2

(i(4)/2)3/

THEOREM 3.1. Let V be a finite-dimensional subspace of the Hilbert
space X. Then the mapping P which assigns to any A € Sp(X) the projector
P(A) of X onto V (orthogonal with respect to the scalar product (- | -)a) is
differentiable. Moreover, for any h € H(X) we have

(18) DP(A)h = P{A)o (M(A)h) o (I — P(A)),
where M(A) is given by (10).

Proof. It is enough to show that for any A € Sp(X) there exists a num-
ber N4 > 0 which has the following property: for every finite-dimensional
subspace V of X and any h € Ba,

(19)  |P(A+h)~ P(A) = P(AM(A)h)I - P(A))]| < Na|lh|*.
Fix A € Sp(X). For every h € B4 and every z € X,
(20)  |I[P(A + 1)~ P(A) - PA)(M(A)h)(I - P(4)))=]|

1
= || DT+ thih — PLAYMAR - P(4))a]
0
< VIP(A+h)[(M(A + th)h)(I — PA+ th)) — (M(A)R)(I ~ P(A)]e] dt
0

+{I(P(A +1th) — P(A)(M(A)R)I — P(A))a| di.
0

Note that by (3) and (16),
(21)  ||P(A+th)[(M(A+th)h)(I — P(A+th)) — (M(AR)(I —~ P(A)))z||
< Craten||[[M(A + th)h — M{A)h|z
+ [(M(A)h)P(A) — (M (A + th)h) P(A + th)]z|| 41en
S Craten{|[[M(A + thih — M{A)h]z]| aten
+ [[(MAYR)P(A) ~ (M(A + thYRP(A + th)]al asen)
=:a(A,t h, ).
Since
NIM(A + 8h)h — M4l = [[(A+th)~*h — A~ 2hla]|
< (A+th)"th — A™MR) - (||

icm
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and
(A +th)"th — A=1h| —H | DI A+sth)hhds”
)3
< (A + sth)=*h(A+ sth)"*hl| ds
0
1
< VI + sth) " 2 |1hl)? ds
0
1 1 4
2 2
4 2
< WII |

(see (12) and (8)) we obtain
(22)  [[[M(A+ th)h - M(A)h}fcl]mm

< Curonryr gz WPall < S E 2 el = NPl
where
AT
Yor= T oaE

Then we have
HIM(A+ th)h — M(A)hlo | aren < CrareNallhi*llel ave
and consequently
UM (A +th)h — M{A)A | aren < CrarenNaa|B]*.
By the above inequalities, by (13) and by Lemma 3.3,
I [(M(A)h)P(A) — (M{A+ th)h)P(A + th)|z|| aven
< Castn il [(M(A)R)(P(A) — P(A + th))lz|
+ |[(M{AYh — M(A + th)h) P(A + th)lz| aten
< Cageng|| M(AR] - |[P(A) — P{A + th)]z|
+ [[[M(A)h — M(A +th)h]|| a+en|z]l a+en

< Cavnr|h]
T i(4)

Kallh - =] + Cr, a+enNai| Bl *Casen 1l
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Since
Casen, IKA \/ |A+th V”A” +i(A)/2K
i(A) i(4) i(A)
and
A+ith 2| Al + A
Cra+thNanCatinr = 1/;|'j(‘A+—th;NA'l S/ %QNAJ

we obtain

(23) [[(M(AYR)P(4) ~ (M(A+ H)R)P(A + th)la] asen < Nag|ihl|cl,
v o VIATF A2

where
[2]| Al +3(A)
A2 = 'L(A) K4+ ’L(A) NA,j_

Setting (22) and (23) in (21} we obtain
(24)  a(A.t,h,z) < Cratm(Nag + Nag)|Ih|?]z

Rﬁt—m(NM + Na)[rllzll < Naallkf? =]l

U (NA1+NA2

Moreover, by {13), (15) and (16),

P(A)(M (A - P(A))z < —— (A) ~LIRET

Setting (24) and (25} in (20) we obtain (19), where

where

(25)  (P(A+1h) -

Ka
Na:=Nag~+ - A)

LEMMA 3.4, Let X,X1,..., X, and Y be normed spaces over the same
feld K (=R or C) and let Q@ : X x X3 x ... x Xy — Y be o bounded
(k + 1)-linear map. Then the map Q° : X1 x ... x X — L{X,Y) given by
the formula
QO(.’L'l, ‘e 'awk)m = Q(mamla e -.:mk)a

is k-linear and bounded. w

z e X, (l:cl,...,mk)eXlx...xXk,

THEOREM 3.2. Under the assumptions of Theorem 3.1 the mapping P
is analytic on So(X). More precisely, for any A € Sp(X) and h € B4 (see
(7)) we have :

icm
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A)+ Z (1P
and the series on the right hcmd szde converges uniformly in b on each ball
Byx)(0,7), where r < i(A)/2.

Proof. First we prove that P is C*. Define Q : L(X)® — L(X) by

Q(T,T]_,TQ) =T10T ol T.1,T EL(X)
Let Q° : L{X)? — L(L(X)) be defined as in Lemma 3.4. Then Q" is C*°,
being a bounded bilinear map. Moreover, by Theorem 3.1 we have
DP(4) = Q°(P(A), I — P(A)) o M(A).

Suppose that P is of class C*. Then DP is also C* as a superposition of
C*-maps and bounded bilinear maps. Now we can use induction. Since by
Theorem 3.1, P is of class C° we see that it is C*°.

We now show that for any h € H(X),
(27) DWW PA)RH = (—1)* T RIP(AN(M(AR)(I - P(4)),
where

(26)  P(A+hy=PF P(A)(M(A)R)H(T — P(A))

B®) = (h,... k) € H(X), A€ So(X).

ktimes

By (18) it is true for k = 1. Assume that (27) holds for £ = m. We have
Da[P(A)(M(A)h)]h
= P(A)(M(A)h)(I - P(A)(M(A)h) — P(A)A™ b AT h
= P{A)A"'hi A~ h ~ P(A)A"*hi P(A)A™ h — P(AJA™ ' A7 R
= — P(A) A b P(A)A™ R,
where h, hy € H(X) (see (12)). For h = h; we obtain
DA[P(A)(M(A)h)h = ~[P(A)(M(A)h)].
Then
D(m+1)P(A-)h(m+1}
= D{(-1)""'m!{P(A)(M(A)R)]™(I - P(A))}h
= (=17 m{ D[ P(A)(M(A)h)["h}(I — P(A))
+ (—1)™m[P(A)(M(AR)™ P(A)(M(A)R)(I - P(4))
= (=1)"mIm[P(A){M(A)n)]™ (I ~ P(A))
+ (—1)"ml[PA)(M (AR ™I = P(4))
= (=1)™(m + WP(A)M(AR]™ (I - P(A)).
We conclude that (27) helds for every natural k.
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Fix A € 83(X). If h € B4 then for any m € N,

=1
= P(A)+ :ED(’“)P(A)h(’“)
k=1""

(28) P(A+R)

(-
+ TD(m+1)P(A + th)R™+Y) gy
2 !
(the Taylor formula, see [6]). Since for each x € X,

1 L-}D(P)P(A + th)hfm]z

< Oy vl {[P(A + th)(M(A + th)R)P(] — P(A + th))}el| asen
< Cravenll(M(A +th)R|G 2l aven

< Cr, 444 Cagtn,1 ‘”‘M“— pHEH
oA “\ (4 +th)

[A+ehll (LBl \* 2]\ Al +i(A4) (2]l
z’(A+th)(z’(A+th)) Il < i(4) (Z(A)) I=I

(see (4), (5), (8) and (17)} we have
L (). e

2|4 + i(4)
i4)

”mD P(A+th)h®

where
Ly =

This gives
1 m

| a-gm f) DY P A + th)h(m+h) dtH
0

QHhH m+11 o M m--1
LA( (A>) ja - dts""(i(m) '

Since h < i{.A)/2 we see that the rermainder term in (28) converges to zero. w

4. Algebraic formulas for the map P. In this section we assume
that V' is an arbitrary closed subspace of a Hilbert space X and for any
A € 5y(X), P(A) denotes the projector of X onto V, orthogonal with respect
to the scalar product (- | -) 4.

THEOREM 4.1. For any A € Sy(X) and any h € B4 (see (7)),
(29) P(A+h) = P{A)I + A~ *h(I — P(A + ).

icm
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Proof. Assume that dimV < oco. By (26) we have
PA+h) = P(A){I + (M(A)h) {1 — P(4)

— 2 CDHPAM AR - Pla)] }
k=2

= P(){I+ (M(4)h) = (P(4)
- SR PA A - Pa))])
k=1

= P(A)I+ (M(AR)(I ~ P(A + h).

Suppose now that V is an arbitrary closed subspace of X. For a given
A€ 5(X), h € By and z € X denote by V; the subspace of X spanned
by the vectors P(A 4 h)z, P(A)z and P{A)A~*h(I — P(A + h))z. For any
B € 5p(X) let Py(B) denotes the projector of X onto V, orthogonal with
respect to the scalar product (- | } 5. Since Vj is finite-dimensional we have

Po(A + k) = Py(A)I + A™'R(I — Py(A + b))z

On the other hand, Vp C V, which implies Po(A + h)z = P{A + h)z and
consequently

Py(A)I + A7 (I — Py(A+ b))z
= Py(A)z + Po(A) A~ R(I — Py(A + B))z
= P(A)z + Po{A)A™ h(I — P(A + k)
— P(A)z + P(A)A™R{I — P(A+ k))a.
Then
P(A+h)z = P(A)I + A7 *h{I — P(A+h))iz.

Using the above theorem we will prove the next two algebraic formulas
for P(A + k).

THEOREM 4.2. For any A € 9p(X) and any h € By (see (7)) such that
IR < i(A)*2,

(30) P(A 4 k) = [I+ P(A)A A" P(A) (I + A h)
(see also Remark 5.1). If moreover |[h)| < % min{i(4),i(A)*/?} then
(31) P(A+h) = P(A)[I -~ (A+h) " h(I - PAN]L.
Proof. By (29) we have
P(A+h) = P(A)+ P(A)A " h — P(A)A"hP(A -+ h).
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Then
(32) (I+ P(A)A R)P(A + h) = P(A)(I + A71h).

Since [jh] < 3(4)*/? we obtain
IP(A)A R < P -HATHE - IR

< Oral P(A)La s I < sl < 1

g <
(see (5)). Hence I + P(A)A~1h is an invertible operator. Multiplying both
sides of (32) by [I + P(A)A~1h)~! we obtain (30).
Suppose now that ||A|| < & min{i(A),i(4)%/2}. We have
il
TA+R Cralil — P(4)|a
1 o
(A + h)i(AP/Z T (i(A) ~ [|A])i(A)1/*
(1/3)i(AP72 1
= (2/3)i(A)3/2 T 2
and therefore the operator I — (A + h)~*h{I — P{A)) is invertible. Thus the
right hand side of (31) is well defined. Since

I(A +R) " h(I - P(A))] <

JCA+h) 2 304 - [Rl) 2 5 25(4) = 5i(4)

-2 3
and ||-h| < % (A) we see that —h € B 44.4. Hence, by Theorem 4.1,
P(A)=P((A+h)—h)
= PA+R) I+ (A+h)"H~R)(I - P((A+h) —h)]
= P{A+h)T — (A+h)" h(I - P(A))],
which implies (31). m

5. Orthogonal projectors onto an arbitrary closed subspace.
Theorem 4.2 alows us to prove Theorem 3.2 without the assumption that V'
i8 finite-dimensional. More precisely, we have the following

THEOREM 5.1. Let V be an arbitrory closed subspace of the Hilbert space
X. Then the mapping P which assigns to any A € Sp(X) the projector
P(A) of X onto V (orthogonal with respect to the scalar product {- | )a)

is analytic on So(X). For any A € So(X} and h € B4 we have the Taylor
ETPONSION

(33)  PlA+h)= P(A)(M(A)M]MT — P(4)),

+Z( 1)k 1

icm
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where the series on the right hand side converges uniformly in h on each
ball Br(x)(0,7) such that r < i(A)/2.

Proof. Assume that [jh|| < i(A)*2 ie. h € Byx)(0,7(A)), where
r(A) = min{i{4)/2,4(A)*/?}. Then we can use formula (30) from Theorem
4.2 and the equality

(o2}

> _(DMP(A)AT R,

k=0

where the series on the right hand side converges uniformly in A on any ball
x){0,7) with r < r{A). We obtain

(34) I+ P(A)A™ Nt =

i(—l)’“[P(A)A“lh]’“P(A) (I+ A'h)
k=0

= PAYI+ A7 h) + i(—l)’“
k=1

P(A+h) =

[P(A)AT h]"P(A)

[o,0]

+ (P4 AT

k=1

= P(A)+ P(A)A R+ i(—l)’“‘l[P(A)A’lh}k

k=2

(1 P(A) A A P(A)
k==l

P(A4) + E
i —1)FPA)A™ 1h}’“P(A)
k=1

mP(AH—Z

and the last series converges umformly on By(x)(0,7), r < r(A). This means
that P is analytic and (33) holds for 2 € Bgx)(0,7(4)). In particular,
equalities (27) hold for any k € N and therefore, using the same arguments
as in the proof of Theorem 3.2 (for the remainder in the Taylor expansion),
one can show (33) for each h € B4. =

REMARK 5.1. The assumption that ||| < i(A4)*/? in Theorem 4.2 is not
essential. It is not difficult to show (using (17) and arguments similar to the
proof of Theorem 3.2) that the equality (34) holds for any h € B4. Then
(30) also holds for any h € B4. We leave the details to the reader. m

* 1 PA)A R

1) HP(A) AT RIMI ~ P(4)),
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REMARK 5.2. For a given A € Sp(X)} let
F(h) := P(A)A'h(I + P(A)A™*A)™Y, heBa.

Since |[P{A)A™ h|| < % (see (2) and (7)) we see that the map F is well
defined and analytic from B4 to the Banach algebra L(X) and F(0) = 0.
Moreover, P(A) is idempotent and [F(0), P(4)] = 0. We can now refer to
the resuit obtained in [3]. Suppose that Theorem 1 in [3] holds with h € B4
in place of z € U ¢ C. Then we would have:

There exists an open neighborhood V' of 0 in Ba ond two analytic map-
pings Po(h) and R(R) of V in L(X) such that:

(1) Py(0) = P(A) and for all h € V, Py(h) is idempotent;

(i) for all h € V, [R(h}, P(A)] = 0;

(i) for all h € V, F(h) = Py(h) + R(h);

(iv) the pair of mappings (Po, R) is uniguely determined by properties (i)
to (iii). '

The map P, is given by the formula (2) of [3]. Using this formula we
obtain

(35) Po(h) = P(A) +[[F(h), P(A)], P(A)] = P(4) + F(h)(I — P(4))
=P(A)+ > ()" [PANM (AWM ~ P(4))
k=1

(we have [F(h), P(A)[F(h), P(A)], P(4)] = (F()(I ~ P(4)))? = 0). Note
that the last expression in (35) is identical with the right hand side of (33).
Then one can hope that it is possible to obtain Theorem 5.1 using (a little
modified) results of [3]. However, we do not know how to prove the equality
Py(h) = P(A + h), h € By, without using considerations contained in
Sections 2-4 of our paper.
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