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Tauberian theorems for vector-valued Fourier and
Laplace transforms

by
RALPH CHILL (Ulm)

Abstract. Let X be a Banach space and f € L] (% X) be absolutely regular (i.e.
integrable when divided by some polynomial). If the distributional Fourier transform of
f is locally integrable then f comverges to 0 at infinity in some sense to be made precise.
From this result we deduce some Tauberian theorems for Fourier and Laplace transforms,
which can be improved if the underlying Banach space has the analytic Radon-Nikodym
property.

0. Introduction. In the last decade Tauberian theorems for vector-
valued Laplace transforms attained much attention because of the intimate
relation with the asymptotic behavior of Cauchy problems in Banach spaces
{[1]-[6], [20], [21]). A typical Tauberian theorem, essentially Ingham’s theo-
rem, says the following: Let f : By ~» X be uniformly continuous {(where X
is a Banach space) and assume that the Laplace transform has a continuous
extension to Cy. Then lim; .o f() = 0 (cf. [4, Thm. 3.5]).

The proof in [4] uses a tricky contour argument from Korevaar [18],
which has been exploited in most of the cited papers. In the first section
of this paper we present a new approach to Ingham’s theorem via Fourier
transforms. Qur proofs are not more difficult, and moreover, this approach
allows us to relax the Tauberian hypothesis considerably and to go beyond
the most recent results even for asymptotically almost periodic functions.
To give an example, under suitable ergodic conditions on f it suffices in In-
gham’s theorem to suppose a continuous extension of the Laplace transform
to the imaginary axis minus a closed, countable set. This Tauberian hy-
pothesis arises naturally in Volterra equations (4]). In particular, our result
answers a problem asked in the introduction of [2].

In the second section we derive a Tauberian theorem in a similar way
to Section. 1, but for a larger class of Laplace transformable functions (than

1991 Mathematics Subject Classification: 47A35, 44A10, 34C28.
Key words end phroges: Tauberian theorem, Fourier transform, Laplace transform,
asymptotically almost periodic, analytic Radon-Nikodym property, Cauchy problem,

el
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the uniformly continuous ones). The price one has to pay is that one obtains
a weaker notion of limit. However, for the abstract Cauchy problem it can
be shown that this result leads to stable individual solutions even if the
underlying semigroup is not bounded. The semigroup version of this result
has recently been obtained in [15].

Tt is also surprising that under suitable assumptions on the geometry
of the underlying Banach space the Tauberian hypothesis can be further
relaxed. Indeed, in Section 3 we show the following: If the Banach space
has the analytic Radon-Nikodym property, then instead of assuming a con-
tinuous extension of the Laplace transform to the imaginary axis it suffices
to assume that the Laplace transform of f is bounded on bounded subsets
of C+.

1. Tauberian theorems for bounded or slowly oscillating func-
tions. We start this section with some notations, which we need throughout
the paper. By X we denote a Banach space. The spaces S(R) and D(0) (O C
R open) are the well known spaces of test functions from the theory of distri-
butions, whereas &' (R; X) = L{S(R); X) and D(0; X} := L(D(0); X) de-
note the corresponding spaces of (vector-valued) distributions. If ¢ € S(R),
then we define the Fourier transform Fi by

Fio(n) = [ e"Mp(t)dt  (n € R),
R
and we denote also by F the resulting Fourier transform on S&'(R; X} or
D' (R; X), where it is defined by duality.
According to the clpssical theory of distributions we will call a function
f € L .(R; X) absolutely regulor if

G 1t F(E)(1 4 £2)k/2

is integrable for some k& ¢ N. A function f is absolutely regular if and
only if fi is integrable for all ¢ € S(R) (the proof in [25, Theorem 1] goes
through in the vector-valued case). Every absolutely regular function defines
a tempered distribution T by

(Ty, ) = | f(s)p(s)ds  (p € S(R)),
R

and we identify T and f.
Throughout the paper we will consider L}, (R;; X) as a subspace of
LL.(R; X} in the canonical way. In the results of this paper we shall mainly
be confronted with functions defined on R, but for the proofs we need their
extensions to R as well (for example, all the convolutions in this paper are
understood as convolutions of functions defined on R). For f € L (Ry; X)
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we define the Laplace transform f by
oQ
Flz) = J e f(t)dt
0
for all z € C for which this integral exists.

DermiTION 1.1. Let f € Li (Ry.; X) be absolutely regular. We define
the spectrurn Sp{f) C R by setting for n € R,

1€ Sp(f) ¢ There exist a neighborhood U of n and g€ L*(U; X) such that
Jim FlE -+ = g in DU X).

REMARK 1.2. (a) From the definition it is clear that the spectrum Sp(f)
is always closed.
~ (b} Let U be a neighborhood of some point n € R. If the functions
Fle + i)y converge in LY(U; X) as £ — 0% then evidently n ¢ Sp(f). In
particular, if the Laplace transform f has an analytic extension to in, then

n € Sp(f).

The following proposition is fundamental for this paper. Although its
proof ig short, it has deep consequences in Tauberian theory.

PRrOPOSITION 1.3. Let f € Li (Ry; X) be absolutely regular. If ¢ € D(R)
satisfies (—supp ) N Sp(f) = 0, then fx Fp e Cp(R; X).

Proof. Let ¢ € D(R) be such that (—suppp) NSp(f) = 0. It is well
known that the convolution of a ternpered distribution and a test function in
S(R) is continuous, so it remains to show that limy,| e {5 (5 — t)Fe(t) di
= 0 (notice that the integral makes sense). Since supp ¢ is compact, the
assumption implies that there exist n; € suppe (1 < j < n), neighbor-
hoods U; of n; and functions g; € LY{(U;; X) so that suppp C Ui, U; and

Fle+i No, = g5 in D' (U_T,X) as £ — 0%, Choose test functions ¢; such
that suppy; C U; and 377, ¢; = . For every j and s € R we obtain, by

Plancherel’s Theorem,
Vfls = )Fps(t) dt = Jum. Ve ¥ f(t)Fpi(s —t)dt
R ™R
= lim | f{¢+in)e'™p;(n)d
E_l{gl_ré.f(fﬂn)e s (m) dn
= | gime™w;(n)dn
Uy

It follows from the Riemann-Lebesgue Lemma that f * Fip; € Co(R; X), so
that we have proved the proposition. »
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REMARK 1.4. Consider Ingham’s Tauberian theorem from the introduc-
tion. Changing the function f on a bounded interval we can assume that
£(0) = 0 and that the spectrum Sp(f) is still empty. It is not difficult to see
that for a uniformly continuous function f (now defined on R) there exists
M > 0 such that for all 5,t € R one has

(4 5) — FO)] < M(1L+ )2

Taking @1 € D(R) such that 2mey (0)
the inequality

I Feslt) = F(0) = | §7¢

= (g Fei(s) ds = 1, we deduce from

(t — sy — F(E)Fr( s)ds”
< [ M+ 22 Fga(s)] ds
R

and Proposition 1.3 that f is actually bounded. Put @ = 1(-/n}. Then
f* Fi,, converges uniformly to f and Proposition 1.3 yields f € Co(Ry; X).

For 7 € R and z € X we define the function e, ®z by €,®z(s) 1= ¢™"g
(s € R). Then we define the space of almost periodic functions by

AP(R; X) :=5pan{e, ®2z:ne R, z € X}

(the closure in BUC(R; X)) and AP(Ry; X) := {f|r. : J € AP(R; X)}. No-
tice that every almost periodic function on R4 has a unique almost periodic
extengion to R.

" Let f € AP(Ry; X) and set f,(t) := f(s+1t) (s,t > 0). By the Mean
Value Theorem. for almost periodic functions ([19, Section 2.3]) we know
that for all n € R, '

(1Y) My(fys) = Jim, €706+ im)

One has My (f, ) = e, ® M, (f,0)}, and moreover, all the means My(f,0) are
zero except, possibly, for 7 in a countable set E. The Uniqueness Theorem
[19, Section 2.3] says that if for f € AP(IR’; &) all the means arve zero, then
[ 18 zero itself,

The space AAP(R,; X) = AP(R+ X))@ Co(Ry; X) W111 be called the
space of asymptotically almost periodic functions. It is easy to check that
(1.1) also holds for all AAP-functions and all n € R,

We will say that a function f € L% (Ry; X) is uniformly ergodic on a
set E C R if (1.1) holds for all n € E (notice that the uniformity is with
respect to s > 0). If E = IR, then f is sometimes called totally (uniformly)
ergodic (see e.g. [2], [3]). <

The following main theorem of this section then is a Taubenan theorem

exists uniformly in s 2 0.
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TrEOREM 1.5. Let f € L°°(Ry; X) be such that Sp(f) is countable. If
f is uniformly ergodic on Sp(f), then (f * ¢)lr, € AAP(Ry;X) for all
¢ € L'(R). _

Proof. Consider the following hounded operator:

K LM(R) — BUC(Ry; X)/AAP(R.; X) =: 2,
o (f*@)lry + AAP(Ry; X).
We will show that x = 0 by showing that the adjoint operator &' : Z' —
L*®(R) is zero. Let ¢’ € Z’ and p € D(R) be such that (—supp ) N Sp(f)
= {§. Proposition 1.3 ylelds
(F(s'2), ) = (K2, Fo) = (2, k(Fyp))
= {2 (f* Fo)lr, + AAP(R1; X)) = 0.

Hence, the support of the distribution F(x'z") is contained in — Sp(f). Let
¥ € L'(R). Observing that F(x'z’ + 9) = F(x'2')Fe, one can see that
the support of F(x'z' # ¢) is also contained in — Sp(f). Since w’z’ * ¢ is
bounded and uniformly continuous and since Sp(f) is closed and countable,
k' * 1 € AP{R) by Loomis’s Theorem (see e.g. [17, Ex. 7, p. 169] or [19,
Section 6.4, Theorem 4]). Equivalently, we can say that (k'z' %)Y is almost
periodic ancl that the support of its Fourier transform is contained in Sp( f)
(here and in the rest of the proof we put j(t) := g(—t)).

We show that for all € Sp(f) the mean M,({(x'2' * ¢)¥,0) is zero in
order to conclude that 'z # 4 = 0. Let n € Sp( f). Then one computes

Myl('s 5 )Y,

oo
0) = li —(EHmty o woap(—t) dt
) 5_1,%1+£§e K2 w (=)

- elijéh((m’z’ * )Y, 1, &e
', (Lg_ €elH7) « oh)

#,(f % (1 £eST) x))[r, + AAP(Ry; X)).
The second assumption implies that in BUC(R.; X), _
(12)  lim (¥ (le €, = My(f, I, € AAP(Ry; X).
Hence, M, (/2" %1, 0) = 0 for all n € R, so that x'2"xt) = 0 for all ¥ € LMR)

and all 2’ € Z'. This implies 'z’ = 0 for all 2’ € Z’, which completes the
proof. m

—(€+z‘n)-).

lim {x'z
£—0t

= lim {
g0+

We say that a locally integrable function f : Ry — X is slowly oscillating
if

1. : i
(13) t;.g% |17t + 6)

~ 1l =0.
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The following lemma shows that slowly oscillating functions are, in a sense,
uniformly continuous at infinity.

LemMma 1.6. A locally integrable function f: Ry — X is slowly oscillat-
ing if and only if f = go+ g1 where go € L, (B3 X), im0 g0t} = 0 and
g1 € UC(Ry; X).

Proof. The “if” part is evident. So let f be slowly oscillating. By (1.3)
we can find two monotone sequences (tn)n>0, (dn)n>0 C Ry such that ¢, —
00, 8, — 0 and

| f{t+ 8}~ fF(¥)|| € 1/n whenevert > ¢, and 0 < § < 6.

For every n > 0 choose a partition of the interval [t,,%,4+1] so that every
subinterval has length. smaller than ¢§,. We define the function g, to be
linear on every subinterval and equal to f at the end points of the subinter-
vals. On the interval [0,to] we can extend g; continuously. By construction
g1 € UC(Ry; X ) Putting gy := f — g1, we have the desired decomposition
of f. m

For slowly oscillating functions there is a refinement of Theorem 1.5.
Notice that the following corollary improves the Tauberian theorems in [3],
2], [5] and [6] in various directions.

CoroLLARY 1.7. Let f € L®(Ry; X) be slowly oscillating. If the spec-
trum Sp(f) is countable and if f is uniformly ergod:'c on Sp( F), then there
exists h € AP(Ry; X} such that limy oo || F(£) — A(

Proof. By Lemma 1.6 there are go € L*(Ry; X) and gy € BUC(R;; X)
such that limy o0 g90(t) = 0, 91(0) = 0 and f = gy + g1. Since Sp(f) is
countable and since f is uniformly ergodic on Sp(f), Theorem 1.5 implies
that (g1 * ¢)|r, € AAP(R.; X) for all ¢ € L'(R).

For every n > 1 we put ¢, = nlp1/m). Then g1 * ¢, converges to g
uniformly on R, so that g; € AAP(R,; X). This completes the proof. =

REMARK 1.8. We remark that in Corollary 1.7 it was not necessary to
suppose f to be bounded. In fact, since f is a slowly oscillating function that
is uniformly ergodic at 0 or for which 0 & Sp(f), it is necessarily eventually
bounded.

In order to see this, one has to prove first that there exist constants
M >0 and ty > 0 such that for all t > 5 and all s € R with ¢ + & > t one
has

| If(E+3) = F@I < M1+ 672
Shifting the function f, we can assume that ¢, = 0.
In the case 0 ¢ Sp(f) one can proceed as in Remark 1.4 to show that

f is bounded. The case 0 € Sp(f) and f uniformly ergodic at 0 is treated
similarly.
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2. A Tauberian theorem for functions with absolutely regu-
lar Fourier transforms. Whereas in Section 1 we restricted ourselves to
bounded, slowly oscillating or absclutely regular functions; we now consider
arbitrary locally integrable functions and study their asymptotic behavior.

‘We will do this with the help of the Fourier transfopm which is also
defined on D'(R; X). The Fourier transform of a distribution T € D'(R; X)
is an element of L(Z(R); X), where Z(R) is the image of D(R) under the
Fourier transform. We say that the Fourier transform of a function fe
Lloc(]R X)) is absolutely regular if there exists an absolutelyregular functmn

g € Ll (R; X) such that
(2.1) S f(8)Fp(s)ds = SQ(S)VJ(S) ds for all p € Z(R).
R id

The function g is uniquely determined and we identify g-and Ff.

PROPOSITION 2.1. Let f € L, (R; X) be such that its Fourier transform
is absolutely regular. Then f* ¢ € Co(R; X) for oll ¢ € D(R).

Choose o 2 0 such that {; |Ff{9)[[(1+ s*)~%/?ds < co. Then the func-
tion fxp converges to 0 as |t] — oo, uniformly for  in each subset A C D(R)
for which FA, == {s— (1+s )"‘/2.7-‘(,0( )1 € A} is bounded in Cop(R) and
uniformly equicontinuous.

Proof Let (5(¢))ien and (g(i))tem be the right-shift groups on L* (R; X)
and Cy(R), respectively. We choose o > 0 so that g(s) := (1+5%)~/2F f(s)
defines an integrable function and we put ¥(s) := (1 + s?)*/2F~1p(s). In
a similar way to Proposition 1.3 we obtain, using the Riemann-Lebesgue
Lemma in a more explicit way {in the first inequality),

IxEnrory
jid

Agemsrorsre] () - o

I
<5 (o)l 3l (0a) 4],
<l |S(F)e-v) +5)5(F)s o], - 1¥lew

Now, let A be a subset of D(R) such that F.A, is bounded in Cp{R). Then
the second term on the right hand side converges to 0 as {t| — oo, uniformly
n ¢ € A. Moreover, FA, is uniformly equicontinuous if and only if the
right-shift group (S(t))ser is uniformly continuous on F.A,. Hence, we can
conclude. w
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~Also in this section we are mainly interested in a Tauberian theorem for
Laplace transforms. In order to relate the Fourier transform of a function
f e L} (Ry; X) toits Laplace transform we introduce the space Hy (Cy; X)

of all holomorphic functions f: C,. — X with the following two properties:
(i) There exists ¥ € N such that for all £ > 0 there exists C¢ > 0 with

IF(2}]| < Ce(l + |2])*  whenever Rez > €.

{ii) The functions f(E +i+} converge in the sense of tempered distributions '

as £ — 0t,

~ The following lemma is then a special case of a more general result in
the scalar case ([7, Thm. 2.7, Chapter 2]). We give an easy proof of it.

LEmMMA 2.2. Let f € L (Ry; X) be Laplace transformable and assume

that the Laplace transform f has an analytic extension {also denoted by f)
to the right half plane Cy. and that f € Hy (Cy; X). Then the distributional

limit T of the functions f(f +1) as £ — 07 is the Fourier transform of f.
Proof Let ¢ € D(R), £ > 0 and g > abs(f), where abs(f} denotes

the abeissa of absolute convergence of the Laplace integral of f. Then by
Plancherel’s Theorem we obtain

| e f(a)p(s)ds =

J
R Ry
J Flu+ & +im)F (e )(n) dn.
R

e"(“+f)”f(s)e”3<p(3) ds

i

Note that for every ¢ € D(R) the Fourier transform Fy is an entire func-
tion. Changing the path of integration and using the assumption that fis
polynomially bounded in every strip away from the imaginary axis, we then
obtain by the Paley—Wiener and Cauchy Theorems (see {21, Section 4.3] for
a similar argnment)

[ e f(s)p(s)ds =
Ry

F(& +in)FY (e @) + iu) dn

-

(€ +im)F 2 o(n) dn.

[ N R R ]

Letting £ — 0 on both sides of the equation, we obtain

| #()p(s)ds = (T, F1p) for all p € D(R). =
Ry ‘
Proposition 2.1 and Lemma 2.2 obviously yield the following Tauberian

theorem for Laplace transforms, in which we do not state the uniformity of
the limit again.
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TuROREM 2,3. Let f € Lll% (R..; X) be Laplace transformable and assume
that the Laploce transform [ has an anelytic eztension to the right half
plane Cy, that f € Hy(Ci; X), and that for some k € N the functions
- f(g + in) (L 4 12)"*/2 converge in Li(R; X) as € — 0F. Then fxype
Co(®; X) for all p € D(R).

The novelty of this theorem is that one only assumes f to be a Laplace
transformable function, but no other growth conditions are imposed. Of
course, we cannot obtain strong convergence of f, but a convergence that
seems to be closely related to the B-convergence discussed in [4] and [10].

Theorem 2.3 has the following consequence for the linear Cauchy prob-
lem. Let A be the generator of a Co-semigroup (T'(%));>0 on the Banach
space X. Assume that for some 2 € X the local resolvent R(-, A)x has an
analytic extension F' to the open right half plane €, (for example, one could
assume that the spectral bound s(A) is less than or equal to 0). Assume,
furthermore, that F' € H, (Cy; X) and that F(£+i-) converges in Ll _(R; X)
to some absolutely regular function as £ ~» 01,

Theorem 2.3 then yields that for all ¢ € D(R4) one has

oG

(22)  Jim {7t + 8)ap(s) ds = Jlim T(2) | T(s)zeo(s) ds = 0.
R 0
Therefore we have found stable solutions for initial values of the form
[ o]
S T(s)rp(s)ds € D(A>).
0

Using the second part of Proposition 2.1, one can obtain an even larger class
of initial values with corresponding stable solutions (see [11] for details).
This semigroup version of Theorem 2.3 has already been obtained before
in [15]. We only remark that in [153] the extension of the function F' onto
the imaginary axis is slowly increasing. In Theorem 2.3 we only assume an
absolutely regular extension, which is a slightly weaker condition.

To end this section we show that the introduction of the space H,.(Cy.; X)
was necessary in Theorem 2.3, For this, let (J(¢))¢xo be the Riemann-
Liouville sexnigroup on L#(0,1), given by ’

a
1)) = s | (@ -0 F )y (F € LA(0,1), £20),
)3 . ‘ i
and let (@ denote its generator (see [14, Section 23.16]). It is proved in [14,
Section 23.16) that ¢ has empty spectrum and that iG generates a Co-group.
Choose w € R such that for B := w + iG the resolvent R(:, B) is bounded
on {z € C:Rez < 1} and let (S(t))ser be the group generated by B. If the
assumption F € H,.(C.;X) in Theorem 2.3 were not necessary, we would
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deduce (using the fact that the analytic extension of R(-, B)x is bounded on

iR for every z &€ X} that

Jlim S(ty =0 forallyeY = { | S(s)ze(s)ds s e X, pe D(IEL)}.
e DO o

But then R(-, B)y would be a bounded entire function, which would imply
y = 0. This is a contradiction, because Y is dense in L2(0, 1).

3. The analytic Radon—-Nikodym property. In the Tauberian theo-
rems for Laplace transforms of both Sections 1 and 2 the convergence of the
functions f(£ +4-) in appropriate spaces of locally integrable functions was
an important condition. In fact, it was a sufficient condition for the existence
of a locally integrable Fourier transform. In this section we show that there
are weaker conditions, provided that the underlying Banach space has the
analytic Radon—Nikodym property.

For the moment g : C,. -+ X will be an arbitrary analytic function (not
necessarily a Laplace transform). Let I/ ¢ R be a bounded interval and
consider the following condition:

(3.1) ligmf]gpﬁ lg(& + in)lidn < oc.

U
PROPOSITION 3.1. With the above notations the following two assertions
are frue:

(i) The functions g(é + i-)|y converge in L*(U;X) as € — 0% if and
only if they converge almost everywhere.

(i) If the Banach space X has the analytic Radon-Nikodym property (see
Definition 3.3 below), then the functions g(¢ + ¢){y converge in L*(U; X)
as £ — 07F.

In view of Sections 1 and 2 the second statement of Proposition 3.1 is of
great interest. It will give us a weak condition for the existence of a locally
integrable Fourier transform. This idea in Tauberian theory is worked out
in detail in [10] (however, with different proofs); the basic theory of Hardy
spaces and the analytic Radon-Nikodym property can be found in [8], [9],
[12] and [23].

An analogue of Proposition 3.1 is well known on the unit dise D. Let
f:D — X he an analytic function. We set

£l = S 5 S || f(re®)|| a8,

and we denote by Hy(D; X) the space of all analytic functions f: D — X
with || f||; < co. Equipped with the norm || {1, this space becomes a Banach
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space, called a vector-valued Hardy space. The following result from [12] is
well known, even in the vector-valued case.

THEOREM 3.2. Let f € Hi(D; X). Then the following two assertions are
equivalent:

(i) There is a measurable function f: [0,27] — X such that
F10) = lim F(re®)  for almost all 6 & [0, 2.
e
(i) There is a function f'e LA([0,27; X) such that
2

lim. | 117(re®) - F(9) d6 = 0.
o

In the scalar case X = C each of the statements of Theorem 3.2 holds for
all functions f € Hy(D; X), but for arbitrary Banach spaces this is no longer
true. Take for example the Banach space ¢y and the function f defined by
f(2) = (z")nzo. Then f € H)(D;cg) but it does not admit any radial (or
nontangential) limit on the unit circle. This example motivates the following
definition, first given by Bukhvalov (see e.g. [8]).

DEFINITION 3.3, A Banach space X has the analytic Radon-Nikodym
property it for every function f € Hy{D; X) one of the equivalent statements
in Theorem 3.2 is true.

One can show that a Banach space X hag the analytic Radon-Nikodym
property if and only if every function F' : [0,27] — X of normalized
bounded variation, whose Fourler-Stieltjes coefficients Sg" e~ dF(t) van-
ish for n < 0, admits a Radon-Nikodym derivative. Since such a function
is absolutely continuous by a theorem of F. and M. Riesz (see {24]), the
Radon-Nikodym property implies the analytic Radon-Nikodym property.
Hence, every reflexive space and every separable dual space have the ana-
lytic Radon-Nikodym property. Moreover, a Banach lattice has the analytic
Radon-Nikodym property if and only if it does not contain a subspace iso-
morphic to ¢q ({9, Theorem 1]). This shows that L' has the analytic Radon—
Nikodym property, whereas it fails to have the Radon-Nikodym property
in general (every finite~dimensional space and the space I* have the Radon-
Nikodym property, but L'[0, 1] does not).

Proof of Proposition. 8.1. Let g : C4 -+ X be an analytic function and
U a bounded interval. If g satisfies condition (3.1) then Tonelli’s Theorem
implies

1 1
§§ llgte + im) il dnde = | §1|g(€ + in) | d€ dn'< o.
oU o
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Hence, for almost all B € U the integral S; lg(€ -+ n)| dé is finite. Let n; <
72 be two such points, and consider the rectangle 2 = {z € C : 0 <
Rez < 1 and m <Imz < n}. Then there exists a sequence (I%,)n3o of the
boundaries of rectangles in {2 which converge to 042 in the sense that they
eventually surround each compact subdomain in 2, such that

(3.2)

sup | [lg(2)] |d2| < co.
20

=¥,
Now, choose a conformal mapping ¢ : D — 2. By the theorems of Carathéo-
dory and Riesz—Privalov [23, pp. 18 and 126], ¢ has a continuous extension
to the closed unit disc and the extension is absclutely continuous on the unit
circle. Moreover, gog € H;(D;X) because of (3.2) and [12, Thm. 10.1] (that
theorem is also true in the vector-valued case). Since ¢ is angle preserving
on the boundary, the existence of a radial limit almost everywhere of go ¢
on the unit circle is equivalent to the existence of a limit almost everywhere
of the functions g{¢ + i)y, ,n,)- Since this is true for almost all ny, 72 € U,
"Theorem 3.2 implies the statement (i).
The second statement is just a consequence of the definition of the ana-
lytic Radon-Nikodym property and of part (i). m

One aim of this section is the following Tauberian theorem, which is a
variant of Corollary 1.7. The condition on the spectrum Sp(f) in Corol-
lary 1.7 i replaced by a considerably weaker condition. Notice that in this
theorem the Laplace transform f has to be known in the open right half
plane Cy only.

THEOREM 3.4. Let X be a Banach space with the analytic Radon—Niko-
dym property and let f € L (Ry.; X) be slowly oscillating. Let O C R be
open such that B =R\ O is countable. Assume

(i) for every € O there exists € > 0 such thot
n+e N
lim sup § 117+ i) dn' < o0, and

band ?’]'—E'

(3.3)

(il) f 4s uniformly ergodic on E.
Then there exists h € AP(Ry; X) such thot limye.o || f(£) ~ h(£)|| = 0.

Proof. One only has to observe that Sp(f) is contained in F by assump-
tion (i) and Proposition 3.1. The conclusion follows from Corollary 1.7. m

There is also a variant of Theorem 2.3 which is valid in Banach Spaces
with the analytic Radon-Nikodym property. It reads as follows.

THEOREM 3.5. Let X be a Banach space with the analytic Radon-Niko-
dym property and let f & L} (Ry; X) be Laplace trangformable. Assume

icm
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that fha.s an anolytic extension to C.., fe H.(Cy; X) and for some k € N
one has

liznsup | [| 7€ -+ in) | (1 + 1) ™*/2 dn < oo,
-0t W

Then f * ¢ € Co(IR; X) for all p € D(R).

Proof. Nutice that for every k € N the factor (14 n?)~*/2 is strictly
positive on bounded sets. Proposition 3.1 and (3.4) then yield that the func-
tions F(£ + i-) converge in L (R; X) to an absolutely regular function as
¢ — 0%, The assertion now follows from Theorem 2,3. w

ReMARK 3.6. (a) The conclusion of Theorem 3.4 is in general false if X
does not have the analytic Radon-Nikodym property. Define the function
f : R+ b &) by

f)y=Mn+1—=te,+ (t—n)eps1 whenever t € [n,n+ 1),

where the e, are the canonical unit vectors in cp. Then f € BUC(R.;¢q) and
fis uniformly bounded on C,., but f is not asymptotically almost periodic.
In fact, since fis uniformly bounded on €., all the means of f are 0, but
clearly f does not converge to 0.

(b) Since C has the analytic Radon-Nikodym property, Theorems 3.4
and 3.5 are true in arbitrary Banach spaces if one replaces the limits by
weak limits,

(c) Let X be a separable Banach space and let f € Hy(D;X'). Then
there exists a weak* measurable function f : [0, 2r] — X’ such that for all
n> 0 and all z € X one has '

2

{an,2) = | ™8 ((6),) df,
0

where the ay, are the Taylor coefficients of f ([8, Theorem 2.3]). By a remark

from Pisier [22], the Riemann-Lebesgue Lemma is true in the strong sense

for weak® meagurable and integrable functions if and only if X does not

contain {*. Hence, if I* ¢ X, then lim,.e0 [|@n] = 0. Since the essential

part of our Tauberian theorems was only the Riemann~Lebesgue L(_emma

(see Propositions 1.3 and 2.1), the above theorems might also be true in the

duals of separable Banach spaces not containing I*. Since we do not know -
any example of such a Banach space without the analytic Radon—Nikodym

property, we omitted this study.

. Acknowledgements. The author wishes to thank Prof. W. Aren_dt from
the Universitat Ulm for a lot of discussions and encouragement for this work.



68

(6]
71
(8]
[

{10]
1]

[12]
(3]

4

[16]

[17]
(18]

f19]
[20)
21]

(22]

R. Chill
References

W. Arendt and C. J. K. Batty, Tauberion theorems and stability of one-parameter
semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852,

—, —, Asymptotically almost periodic solutions of inhomegeneous Cauchy problems
on the half line, J. London Math. Soc., to appear.

—, —, Almost periodic solutions of first and second order Cauchy problems, J.
Differential Fiquations 137 (1997), 363-382.

W. Arendt and J. Priiss, Vector-valued Tauberian theorems and asymptotic be-
havior of linear Volterra equations, SLAM J. Math. Anal. 23 (1992), 412448,

"¢, I K. Batty, J. M. A. M. van Neerven and F. Ribiger, Local spectra and

individual stability of uniformly bounded Cg-semigroups, Trans. Amer. Math. Soc.,
to appear.

wmey ey wem - Tauberian theorems and stebility of solutions of the Cauchy problem,
ibid., to appear.

E. J. Beltrami and M. R. Wohlers, Distributions and the Boundery Values of
Analytic Functions, Academic Press, New York, 1966.

A. V. Bukhvalov, Hardy spaces of vector-valued functions, J. Soviet Math. 16
(1981), 1051-1059 (English transl.).

A.V, Bukhvalov and A. A. Damlewch Boundary properties of analytic and
harmonic functions with values in Banach space, Math. Notes 31 (1982}, 104-110
(English transl).

R. Chill, Taubersche Sitze und Asymptohk des abstrakten Cauchy-Problems, Dip-
lomarbeit, Universitét Tiibingen, 1995.

—, Stability results for individual solutions of the abstract Cauchy problem wvie
Tauberian theorems, Ulmer Sem. Funktionalanal. Differentialgleichungen 1 (1996),
122-133.

P. L. Duren, Theory of H?-Spaces, Academic Press, New York, 1970.

J. Esterle, E. Strouse et F. Zouakia, Stabilité asymptotique de certains semi-
groupes d’opératewrs et idéaus primaires de L1 (R4), J. Operator Theory 28 (1992),

203-227.

E. Hille and R. Phillips, Functional Anelysis and Semi-Groups, Amer. Math,
Soc., Providence, 1957.

S. Huang and J. M. A. M. van Neerven, B-converity, the analytic Radon-
Nikodym property and individual stability of Cp-semigroups, J. Math. Anal. Appl,
to appear.

A E. Ingham, On Wiener’s method in Tauberian thcmems Proc London Math.

Soc. 38 (1933), 458-480.

Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968.

J. Korevaar, On Newman's quick way to the prime number theorem, Math, Intel-
ligencer 4 (1982), 108115,

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential
Pquations, Cambridge Univ. Press, 1982,

Y. I Lyubich and V& Quoéc Phéng, Asymptotic stability of linear dzﬁerentml

" equations in Banach spaces, Studia Math. 88 (1988), 37-42.

J. M. A. M. van Neerven, The Asympiotic Behaviour of Semigroups of Linear
Operators, Oper. 'Theory Adv. Appl. 88, Birkhauser, 1996, _
G. Pisier, Une propriété de stubilité de la classe des espaces ne contenant pos i,

~C. R. Acad. Sci. Paris Sér. A 286 (1978), 747-T49.

icm

(23]
(24]

(23]

Touberian theorems 69

C. Pommerenke, Boundary Behaviour of Conformal Moaps, Grundlehren Math.
Wiss. 299, Springer, Berlin, 1992,

R.Ryan, The F. and M. Ricsz theorem for vector measures, Indag. Math. 25 (1962)
558-562. ’

Z. Semydt, Characterization of reqular tempered distributions, Ann. Polon. Math.
41 (1983), 255-258.

Abteilung Mathematik 'V

Universitit Ulm

89069 Ulm, Germany

E-mail: chill@mathematik.uni-ulm.de

Recejved Murch 18, 1997

(3856)
Revised version August 21, 1997




