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Almost sure approximation
of unbounded operators in Ly(X, A, i)
by

RYSZARD JAITE and ADAM PASZKIEWICZ (L6d3)

Abstract. The possibilities of altnost sure approximation of unbounded operators in
La(X, A, p) by multiples of projections or unitary operators are examined.

1. Introduction. The purpose of this paper is to discuss a kind of
approximation of unbounded operators in Lo(X, A, ).

Throughout the paper, we assume that (A4, 1) has the following proper-
ties:
(1.1) p is separable and o-finite

and

(1.2)  there exists a sequence {¥,} C A with u(V,) > 0 and u(Y,) — 0.

The above assumptions imply, in particular, that the Hilbert space H =
Ly(X, A, j4) is infinite-dimensional, separable and (by (1.1) and the martin-
gale convergence theorem)

(1.3)  there exists an increasing sequence {P,} of finite-dimensional or-
thogonal projections in H such that P, — I strongly and P, f — f
p-almost surely, for each f ¢ H.

Moreover, by (1.2),

(1.4)  there exists a sequence {Z,,} C A of mutually disjoint sets such that
Y
3on 1(Zn) < oo and the projections 1z, are infinite-dimensional.

Here and in the sequel we adopt the following notation. For a set Z € A,
xz will stand for the characteristic function (indicator) of Z, and 1z denotes
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104 R. Jajte and A. Paszkiewicsz

the orthogonal projection cnto the subspace of functions with supports in
Z. Always,

(1.5) Vie)={fe H: u{z:|f(x)] > e} <=}

In the whole paper, we analyse the following kind of convergence. Let
A be a linear operator, unbounded in general, acting in H, and let {4,}
be a sequence of bounded linear operators in H. We say that A, converges
almost surely to A (A, — 4 as.) iff

(*) Anf— Af p-almost surely, for each f € D(A) = the domain of A.

This paper is a continuation of [1; 2] where almost sure approximation of
contractions in H has been considered. It should be stressed here that all
the results in [1; 2] are valid for H = La(X, A, 1) satisfying conditions (1.1)
and {1.2) though they are formulated for H = La(a, b).

This paper is devoted to almost sure approximation of an unbounded
operator A by operators of the form A, P, or A\,U,, where B, are orthog-
onal projections and U, are unitary operators (with positive coefficients
An /" 00). In particular, we show that an approximation A,U, — A as.
(A, /" oo} is possible for every unbounded closed and densely defined op-
erator A. The operator A admitting an approximation A, P, — A a.s. can
be characterized as “essentially unbounded” (see Definition 4.1}. It is worth
noting here that weak approximation in the sense that A\, U, f — Af weakly
for each f € D(A) or Ap Py, f — Af weakly for each f € D{A) is not possible
for any unbounded operator A (see Section 5). Thus almost sure approxi-
mation seemns to be important not only from the probabilistic but also from
the functional-analytic point of view.

A sketch of some results presented here can be found in [4].

2. Convergence of subsequences. Let us start with the formulation
of a classical result of Marcinkiewicz.

THROREM A (Marcinkiewicz [6]). If {ypx} is an orthonormal sequence in
L5(0,1), then there exists an increasing sequence {n(k)} of positive integers
such that the subseguence of partial sums

n(k)
n(k m) = Z a;ipi(x
converges almost surely on (0,1) for each sequence {ax} with 3 pe |ox|* <oo.

In [1; 2] the generalization of Theorem A presented below has been
proved. A short and elementary proof of that generalization was given in [4].
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THEOREM B. Let {A,} be a sequence of finite-dimensional operators
acting in H = La(X, A, ). Suppose that A, — A strongly. Then there exists
an increasing sequence {n(i)} of positive infegers such that A, — A a.s.

The proof of Theorem B heavily depends on condition (1.3). In the above
theorem, the assumption that the operators A, are finite-dimensional cannot
be omitted {in Theorem A of Marcinkiewicz, this assumption for A, =
Sor_1{ pr)er is satisfied automatically). Namely, as. shown in [2], there
exists a sequence {P,} of orthogonal projections in Lg(0,1), increasing to
the identity and such that, for any increasing sequence {n{k)} of indices,
one can find a vector f € H such that P, f does not converge a.s.

As a consequence of Theorem B we prove the following result which,
together with Theorem B, will be an important tool in our further consid-
erations.

2.1. THEOREM. Let A be closed densely defined operator in H. If ||Anf—
Af|l — 0 for some finite-dimensional An ond all f € D(A), then Apy — A
a.s. for some increasing sequence {n{k)}.

Proof. Let |4] = S[Ow Ae{d)\) be the spectral representation of |Al
and let B = S[ ymin(1,1/A) e(dA). Then f € D(A) iff f = Bg for some
ge H. Consequently, A.B — AD strongly, A, B being ﬁmte-dlmensmna.l

By Theorem B, for some increasing sequence {n(k}}, Ang)B — AB a.s.,
Apgyf — Af for any f € D(A).

3. Approximation by a sequence AU,

3.1. THEOREM. For any unbounded closed densely defined operator A
and any increasing sequence {A,}, there exist unitary operators U, such
that A\ U, — A a.s.

The proof of the abave theorem is based on the following two results.

3.2. PROPOSITION. For any closed densely defined operator A {bounded
or not) and any sequence A, / oo, there exist finite-dimensional partial
isometries Vi, such that \,V, — A a.5.

Proof. Observe that
(3.1) A, — A a.s. for some finite-dimensional A,.

Indeed, this is obvious for A € B{H) by Theorem 2.1. For unbounded A,
let |A| = S y Ae(dA) be the spectral decomposition and let Py, , be finite-

dimensional pI‘OJeCthllS satisfying Ppm / e([n —1,n)) as m — oo, for
n=1,2,... Then the operators

=AY P

n=l
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satisly || Amf — Af|| — 0 for f € D(A) and consequently, by Theorem 2.1,
we have A,y — A a.s. for some increasing sequence {m(n)}. Indeed, for
f € D(A) and € > 0 one can find mg and then m; such that

Z n?lefn—1,n)f|* < e
and
|A(e[n —1,n) = Bam)fl® <&/mo  forn=1,...,mo; m > my.

Then, for m > ma:x(mg,ml) we have

(A ~ Am)fII? = Z Alefn — 1,n) — P ) fII?
+ Z IACeln ~ 1,) ~ Pom) f®
n=mp-k1
+ 2 lldefn — 1,m)f|?
>

0o
£ 2 2
< el + E dn’lle[n — 1,n) f|l* < Be.

n=rmp+1
Moreover, taking the sequence
Ay Ay Agy Ay

ny terms g terms

instead of {A }, we can assume that, for the operators A, in (3.1), we have
lAn]| < A for n > mng.

Let ¢}y, be a finite-dimensional projection satisfying Qndn.@n = A, and
let S35, = Qn, @n L S5} € 1g, for 2, satisfying (1.4) and for partial
1sometr1es Sp,n=1,2,... Then

Vnm/\;lAn‘i“Sn\/ Qn_/\;:ziAnlza n > 1y,

are also partial isometries and Sp,g, — 0 as. for any g, € H. Thus
AnVp — Aas u

3.3. LEMMA. Let A be a closed densely defined unbounded operator with
domain D(A). Let P, and Q, be orthogonal projections in H such that P
and QF are finite-dimensional. Then, for any sequence A, " 00, there
exist partial isomefries W, such that WIW, = P, W,W» = Q, and
AnWif — 0 a.s. for each f € D(A).

Proof: Obviously, one can find infinite-dimensional mutually orthogenal
projections Ey, = ¢(¥,,) with Y, mutually disjoint and ¥;, C [A2, c0), where
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e(-) is the spectral measure of [A|. Then, for each f € D(A), we have

DB =D00
n=1 n=1

< | X% e(@n I < oo
[0y00)

§ e@n]
Ya

The assumption that dim P} < oo and dim @ < oo implies the exis-
tence of projections F, < E, and Gy, < 1z (with Z, satisfying condition
(1.4)} such that F, VG, < P, A @, and

dim(P, — F,) =dimG,, = dim{Q,, — G,) = dim F,.
It is enough to put W, = S, + T}, for any partial isometries §, and T,
satisfying
S =FPp —Fn, 5,5, =Gn, TpT,=F, Tyt =Qn— Gy

Indeed, support(A, Snf) C Z, with u{Z,) — 0 and, for each f € D(A), we
have

il o0
SRS € 3 A f|? < 0. m
n=1 n=1

3.4. Proof of Theorem 3.1. For partial isometries V,, asin Proposition 3.2,
let P+ = V*V, and Q; = V,V.* and let W, be taken as in Lemma 3.3. Then
the operators U,, = V,, + W,, have the required properties.

Let us adopt the following definition.

3.5. DeriNITION. For A, € B(H) and a closed densely defined A4, we
say that A, converges in measure to A iff

() Anf — Af in measure p for each f e D(A).

3.6. THEOREM. Let A € B(H) and let Ay /' co. Then there is no
sequence {Un} of unitary operators such that AU, — A in measure.

Proof. Assume that, on the contrary, such a sequence exists. Fix an
increasing sequence {n{k)} of positive integers such that

(3.2) Angia1) > 257 A ey

Without loss of generality we may assume that u(X) > 1. Denote by A
any function satisfying h ¢ V(1) and put g5 = U;(i)h. As always, V(e) =
{f e H:p{z: |f{z)| > e} <&} '
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Define by induction a sequence {fi} by putting f1 = g1 and

_ [t if (Ao Untetr1y — Angey Uniy ) o & V(1/2),
fets Ju+ )\;(lkﬂ)gk“ otherwise.

For f = lim f,, we have, by (3.2),

o0
ey Uny (f = £l S I0llAngry 3 Andy < 27*IIA]-
L=kl
Since An(rs1)Un i) Fots — An(e)Uniiy fo & V(1/2) for any k= 1,2,. .., the
sequence A, U, f does not converge in measure. w

4. Approximation by a sequence A,P,. In this section we discuss
almost sure approximation of an unbounded positive selfadjoint operator A
by a sequence A, P, where 0 < A, /" oo and P, are orthogonal projections
in H. In contrast to the case analysed in the previous section, it is not always
possible to construct sequences {A,} and {P,} so that A, P, — A a.s. Such
a possibility heavily depends on the structure of the spectral measure of A.
To clarify the situation, consider an arbitrary unbounded selfadjoint positive
operator A with spectral representation A = S[o, o)y A E(dA).

4.1. DEFINITION. The operator A is said to be essentially unbounded iff

(4.1) for any £ > 0 and A > 0, there exists a normalized vector f € H
such that f € e{A, o0)(H) and p{z : |f(z)| > e} <e.

Condition (4.1) gives a complete characterization of those unbounded
operators for which an approximation A,F, — A a.s. exists. Let us remark
that most of the well-known selfadjoint operators are bounded or essentially
unbounded (see examples in Section 6). It should be stressed here that a
selfadjoint positive unbounded, but not essentially unbounded, operator can
be constructed (see Theorem 6.5).

The main result of this section is the following

4.2. THEOREM. Let A be any positive selfadjoint operator in H (bounded
or not) and A= 0. Then the following conditions are equivalent:
(i) A is essentiolly unbounded,;
(ii) there exists o sequence {P,} of orthogonal projections and positive
coefficients A, /7 oo such that ApnFPp — A a.s;
(iii) there exists a sequence {Pr} of orthogonal projections and positive
coefficients A, 7" oo such that A Py -+ A in megsure.

In the condition (i) (er (iil)) the projections P, can be taken finite-
dimensional,
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It is enough to show that (i) implies (i), and (iii) implies (i} (see Sec-
tion 4.9).

3. (I)=>(ii). Let A = Sw’m) Ae(dX) and let R, be finite-dimensional
projections such that R, ,/eln—1,n)ask — oo forn =1,2,..., and
let Rn = Y.p_; Rnk. Then the operators A, = R,AR, are selfadjoint,
finite-dimensional and [[A,f — Af|| — O for f € D(A4). By Theorem 2.1,
there is an increasing sequence {n(k)} such that A,y — A a.s. Moreover,
0 < Angry < n(k)e[0,n(k)).

Putting By, = Apgyy, we can write
k)

Byf = Z M7, £ k)

where ( f k) fff()k) is an orthonormal system, 0 < A < n(k) and
® e e[O,n(k))(H) for s = 1,...,m(k). Take v¥ = Af/n(k) and let

(cp:(l ), e ,gagfgk)) be an orthonormal system orthogonal to (fl(k), ) (k))
Then we can define a projection Py by putting

mik}
(4.2) Pof = > uFi(f, s £10)
8=1
m(k)
+E 1—V f:lps )‘pgk)
gzl
m(k)
2V v (1 - D) (£, o) 110
m(k)
(k) (k) Y, FRy k)
= Tr](_k) + 7r + 71'3 <k).
By (4.1), we can fix ((,01 ,...,cpfﬂ(k)) in such a way that, for any k and
s=1,...,m(k),
(4.3) n(k)p® € V(2 m(k)™)
according to (1.5), and
(4.4) o) € e[Ay, 00)(H)
where Ay is taken large enough to satisfy
o
(4.5) > " n(k)*m(k) 452 < oo.

k=1
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Since

(F o8 < (eldr,00)f, FY £ 457 | N (eldN) ], ) S AP NAFI%

[Akroo)
we get, by (4.5),
& o]
(4.6) 3 ln(k)r$?|1? < co.
k=1

Moreover, since f' € V(e), f € V(¢') imply f'+ f" € V(¢'+¢"), condition
(4.3) implies n(k)xl" € V(27%) for k = 1,2,... Consequently,

Z,u,(n(k)'rrgc) >27%) < iZ_k < o
k=1 k=1

and we get

(4.7) k)T -0 as.

For the same reason

(4.8) n(k)rd? 50 as.

By (4.2, (4.6), (4.7) and (4.8), we obtain n(k)P, — A as. =

4.4. LemMA. For any projections P, @ and € > 0, there exists a partition
P =P 4+ P P P" ¢ Proj H, satisfying the conditions:

(4.9 for any f € P'(H) with ||f|| = 1, there emists g € Q(H) with
lgll =1 and {{f —gll < 2e,

(4.10)  for any f € P"(H) with ||f]| = 1, there exists g € Q-(H) with
lgl| < 1/e* and Pg = f.

Proof. For some decomposition H = Hy @ Hy® Hy D Hy @ Hs, one can
write

P=l1loladalel, Q=0dlelaleds,
and P5, Qs have a generic position in Hj [3; 9, V, 1*; 7]. This means that

H=KoK,
& se 1 0
PSW{SC 82]’ Q5“"|:0 0j|

for some operators ¢,5 > 0in K with kerc =kers =0 and ¢® - % = 1. It
suffices to define

' _ Ec? FEsc
P—OeBleDeaoe[Esc Esz],
Etc® FElsc
"o
P —I@OGBO@OGB[ELSC -ELSE]

icm
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for E = ¢((0,)) defined by the spectral measure of s = {5 ;) Ae(dA) in K.
Indeed, every vector f € P'(H) with ||f]] = 1 can be written in the form

f=0sf 60808 [z:]

for some ki, ks € K satisfying
k= E(Czlﬂl + SCk'g) = ck, kg = E(Sckl + S2k2) = sk,
with & = E(ck; + sk2) € E(K). Observe that

M+ Mlkal)? = § Hle@Vkal?+ | lle(dA)kel?

(0,1) (0,1)
= § 10 =23+ 2% le(@nk|® = [Ik]1%.
{0,2)

Thus |[k|* = [|f]I* - [ f2l|* < 1 and

lall < § Aeldni] <,
(02)
b —kall =] § (= VI=N)e(@k]| <=
(0,£]
and we have (4.9} for

0

Analogously, every vector f € P”(H) with ||f|| = 1 can be written in
the form

g=00f00000 [k}

sk
with k € B-(K). Define & = §, ;,(1/A) e(dA)E. Then || < |i&|l/e and, for

f= 8000806 [Ck]

0
g=H®0H0806® [%] € QL (H),
we have f = Pg and ||g||? < | ful/24-||k]2/2? < | fI?/e? = 1/€*. Thus (4.10)
holds. m
The following lemma generalizes the idea used in 3.5.

4.5. LeMMA. For sequences {An} of bounded operators and {yn} of nor-
malized vectors, and for a number § >0, suppose that
' | , Antpn & V(3)
forn=1,2,..., and let v, /" 00. Then vpAnfo does not converge in mea-
sure for some fy in the closed linear span of (Y1, v, .. .)-
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Proof. Obviously, vnga1y > 250y [[Angy|| for some increasing se-
quence {n(k)}. Define by induction f; = 1, and

fia = { B E UnGnAngerny = Vo Angn) fi € V(8/2),
Ju + ¢n(k+1)/vn(k+1) otherwise.
For fo = limg_.e0 fx, we have

e Aniky (fo = F)ll < vy || Ang | Z Lvmgy < 27F,
l=h+1
Vn (k1) An (k1) ot 1 — Vn(r) Ay fugey & V(6/2)

for k=1,2,... In consequence, {#, A4, fo} cannot satisfy the Cauchy condi-
tion in measure. m

4.6. LEMMA. Let cyp; — h # 0 a.s. for weakly converging vectors v; — g,
vihhg€ H, |lg;| =1, ;€ C,i=1,2,... Then g = h and /ey — B.
Proof. Take sets Z, € A such that u4(X\Z,) — 0 and ;X z, tends to
hxz, uniformly as ¢ — oo, for s = 1,2,... For any 1 € H with ] = 1, we
have
<a’-i§9'i:'l;bxz,> - (ha'ﬁf’XZ;q) as i — oo.
Thus cysx 7, — hyg, weakly and wixz, — g9xz, weakly as i — oo and
g#0 implies o; —a, h=ag for some 0 £ € C,
g=0 implies o; — oo,

The lemma, is proved. m

4.7. LEMMA. If (f,h) # 0 and M\{f, 0n)prn — h in measure Jor some
Ao /oo, fohon € H with o] =1 fork = 1,2,..., then pp — 0 weakly.

Proof In any subsequence {or@} C {wr} we choose a subsequence
{enny} C© {prn)} weakly converging to some g € H and satisfying
An(t)(fa @n(i))‘)on(i) —+ h a.s. By Lemma 4.6, g = [h, (/\'n.(z) (fa Wn(i))}_l —f.
If g £ 0, then we would have An@){f)®n(s) — 1/8 € C. On the other hand,
{(£ieney) — (f.g) = B{f,h) and this contradicts Ak /" 00. We have thus

proved that g = 0, and that @, — 0 weakly by the arbitrariness of the
subsequence {@g;)}. =

4.8. LEMMA. If @, — 0 weakly, ¢, € H, on Z V() for somee > 0,
no=12,..., then for any sequence {v,} c C, UnPn cannot converge in
measure to a vector h € H, h £ 0.

Proof. Assume that v, - h in measure, k 5£ 0. For ¢ = (e/(2||n]]))%/2,
we have cvnip, — ch in measure and ch € V(e/2). Thus cvpip, € Vie)
and | < 1/c for n large enough, by the assumption ¢, ¢ V(e). By the
elementary properties of integration, the relations Unton, —h — 0 in measure

icm
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and vy — h 0 weakly imply ||vn@y — bl — 00 In H and |u,| /' co. The
contradiction obtained ends the proof.

4.9. (iii)=-(i). Assume that, on the contrary, 0 # A > 0, A is not essen-
tially unbounded, P, € Proj H, A, .~ oo and A\, P, — 4 a.s. According to
Definition 4.1, there exist £, A > 0 such that

(4.11) Y eQUH), pl|=1 imply ¢ ¢V(e)

for

(4.12) Q=¢((rx), A= | Xe(dy),
[0,00)

and A can be chosen so large that {f,h) # 0 where h = Af for some
f€Q-(H) with ||f| =1

By Lemma 4.4 (with £3/2/25/? instead of £}, for some decomposition
Py =B+ Py, @n € Fy(H), pn] = 1imply |lon — ¢l < (6/2)%/* for some
tn € Q(H) with fjiin|| = 1; then ¢, — 9, € V(e/2) and, by (4.11),

n € PL(H), |lgnll =1 imply ¢, ¢ V(e/2).
Moreover, by (4.10),
(4.13) @, € P!(H), |len]l = 1 imply @, = P.gn for some g, € QH(H)
with ||gn| < 25/¢%.

By Lemmas 4.7 and 4.8, A, P.f cannot converge in measure to h such
that {f,h) s 0. Thus A, P} f cannot converge to 0 almost surely. Choose
§ > 0 and an increasing sequence {n(k)} in such a way that
(4.14) An(k)P-::(k)f ¢ V(6)-

Writing, for the moment, ¢g = Pp) f/ | Pniry fIl, we have

Mgk (F> @100k = Ay Prginf ~ b
in measure, h = Af. By Lemma 4.7, v — 0 weakly, which means that
oy f — 0 weakly. This implies || Py f|l — 0 and
(4.15) | Py £l = O

Set now g = P;:(,rc)f/HP;:(k)f” and ¥ = gr/||gr|| where pr = P (r) 9k
according to (4.13). Condition (4.14) can be written in the form Apepy, &
V(4) for

Ag = )\n(k) “Pa:f(k)f” ’ ||ngPn(k)-
Moreover, (4.15) and |\gu]| < 25/&® tmply v = ([P, fII - flol) ™" /" o0.
The assumptions of Lemma 4.5 are satisfied, and My Priy fo = veArfo

does not converge in measure for some fy € (closed linear span of 11, 1o, . . .)
C Q*+(H) C D(A) by (4.12). =
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Modifying the arguments in Section 4.3 and applying the Naimark di-
lation method one can obtain almost sure approximation for a sequence of
(in general) unbounded, positive selfadjoint operators. We start with the
following simple

4.10. REMARK. Let 0 < A < 1 be an operator acting in some Hilbert
space Hy, and let P : Hy @& Hy — Hy @ Hy be a dilation of 4, ie. Pisa
projection such that Qp, P(h1 @ ha) = Ahy where Oy, : H1 & Hy — Hy
is the canonical projection. If Hj is isomorphic to H; (with isomorphism
T : Hy -~ Hy), then Py defined by

Po(hy @ hy) = Qu, P(h1 & 77 {h3)) + 7Qu, P(h1 ® 7 (Rha))
is also a dilation of A.
Proof. A simple check. m

4.11. TuroreM. Let AM, AR | be positive selfadjoint unbounded op-
erators in H. Assume that one of them, say A™Y), is essentially unbounded.

Then there ezist o sequence 0 < A, /" oo and a matric {P-,—(;i)}-g,n=1’2,m of
findte-dimensional projections such that, for every n, P,E,l),P,(f), . OTE TRU-
tually orthogonal and AP f — AW f a.s. for each f € D(AD)YND(AD),
i=1,...,m.

Proof. By Theorem 2.1, there exists a matrix {Ag)}i,nml,z,_,_ of positive
finite-dimensional operators such that Agf‘ 10 as., % = 1,2,... Let
An = max;<ic, nl|AY || and put B = 1A i=1,...,n. Then BY >0
and E?=1 B,gf) < 1. Moreover, Bq(f) are finite-dimensional. Let ran BS) C H,

for ¢ = 1,...,n, where H, is finite-dimensional. For every n, there exists
a dilation of B,(f), 1 = 1,...,n, that is, there exist mutually orthogonal
projections r(f), i=1,...,n, acting in H, & H, for some finite-dimensional

H,, such that QP Q% =B, i =1,...,n, where Q, : Hy, ® Hy, — H, is
the canonical projection.

Define v{n) = dim H, +dim I?n. By the essential unboundedness of Al
one can find a subspace K, C H with dim K, = v(n) satisfying

(4.16) weV(@E™ foaowpekKa |lell=1, Kp<eA2" 00)(H),

e being the spectral measure of A(). For the orthogonal projections S, T
defined by

S(HY=H,, T(H)=K,,
we have (see [8, 44)) T —T A S+ ~ S — § AT+ where ~ denotes unitary
equivalence. In consequence, dim(T A S1)(H) > dimT(H) — dim S(H) =
dim ;.. By Remark 4.10, we can assume that I?Tn C K. Moreover, Ay, T(f) =
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(@n + én))\nPS)(Qn + én) where én c H, D f[n — ﬁn is the canonical
projection. Thus we have

AP = AR+ 0nraPQuf
+ QuAaPPCn ] + Qura PP Q0
Put additionally P =0 forn < i By (4.16), we casily see that, for f € H,
G POQnf >0 as,i=1,2.._,

i=1,...,m

and
QA PPQ f—0 as,i=1,2,...

(compare (4.7), (4.8) in Section 4.3). Since APF o ADF as for f €
D(A(i)l, it is enough to show that QuA, PV Qnf — 0 as. for f € D(AD),
Since Qn < €[An2", 00}, we have
3 1@ PPQufZ <3 a@afIP <302 | [le(do) I

n=1

n=1 n=] [Ap27,00)

o0 o0 1
<47 | o2 le(dn)fI? = S IADF|? < oo m
n=1 0

As an immediate application of the previous theorem we can get the
following

4.12. THEOREM. Let T be an unbounded normal operator in H with |T'|
essentially unbounded. Then there exist 0 < A, " o0 and four sequences
{P,gk)}, k=1,2,3,4, of orthogonal projections, mutually orthogonal for any
fized n, such that A, (PT(LI) - Pr(lg) -I—i.RgS) — iP,Sf)) —T a.s.

5. Weak approximation of unbounded operators. It is worth while
completing our reasonings by some comments concerning the following weak
convergence for operators acting in any separable Hilbert space H. We say
that A4, tends to A weakly, 4, — 4 weakly (A, € B(H), A unbounded in
general), iff A, f — Af weakly for any f € D(A).

5.1. REMaRK. For 0 < X\, / oo, U, unitary, P, orthogonal projections,
A densely defined, neither the approximation A, U, — A weakly nor A, P, —
A weakly is possible.

Proof Let (f, g) = o # 0 for some f € D(4), g = Af. Assume that,
on the contrary, AnPuf — g weakly. Then |(APnf, F)| =Anl{f, on)|® — |
for o, = P f/|| Pnfll, and H)\nPn.fH = Anl(f, (Pn)l — limp o0 \[X;\/a = 00,

Each of the assumptions A\, U, — A weakly, A, P, — A weakly (A, " o0)
contradicts the Banach—Steinhaus principle.
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5.2, REMARK. Approximations
(5.1) AlPuf gy — (Alf.g)  for f,9 € D(A),
(5.2) AlUnf, gy — (Af.g)  for f,g € D(A),

where 0 < A, /" oo, U, are unitary, and P, are orthogonal projections, are
always possible for any A densely defined, unbounded and closed.

Proof. We only sketch the proof of (5.1). Let Em(k A (5 k))fgck)
— |4 Weakly where (f1 - ,f(

(k) = A /Ak A = MAX] < g <m(k) /\s

) are orthonormal systems. Putting

*) and writing down formula (4.2),

it is enough to take i) & €[28\y, 00)(H) where e is the spectral measure
of |A|.

5.3. PROPOSITION. For any densely defined, closed and unbounded oper-

ator A and 0 < A, /7 0o, there exists a sequence {V,,} of partial isometries
such that AV, — A weakly.

Proof. Let A, -+ A weakly for some finite-dimensional operators A,
with polar decomposition
k{n)
(5.3) An=talAnl,  An| = Z pd e gy

for some orthomormal systems {f\™,.
| 4]l < An- Let (0™, .

orthogonal to { fln -
enough to put

"fk(n)) Choose the A, so that
o rpk(n)) be an orthonormal system in e[2™A,,, 00)(H),

k(n)) where e i3 the spectral measure of |A|. It is

k{n)

V, =t Z ('”')

=1

for %™ = (MM + /1= WP 0020, In fact, for p, =

Zf_ﬁ_’i)(v,fi(n))fi(n) and g, = Ef£ )( ,LPE ))cpg ), it is clear that Vi, (pn + ¢n)
= Vo, Vabn = A, and 3 |Vagn Fll < 3 |l€f27An,00) fl| < oo for any
7 € D(A).

6. Comments and examples. The leitmotive of this section is a clari-
fication of our concept of essentially unbounded operators. It turns out that
most of the classical unbounded operators in Ly (00, o) are essentially un-
bounded (Examples 6.1-6.3). What is important, the property of essential
unboundedness depends on a given realization in Ly of an operator and is
not inherent in the pure geometric structure of the spectral measure. The
existence of such realizations can be described precisely (Theorem 6.5). We
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also give several conditions equivalent to essential unboundedness (Theo-
rem 6.6).

6.1. ExaMPLE. Let A = 3 o0 An(, 9n)on Wwith 0 < XA, ' o and an
orthonormal basis {¢,}. For any A > 0,

(e[A, 00)) Z

n= 1
An
is a finite-dimensional projection and condition (4.1) is a rather immedi-
ate consequence of the infinite-dimensionality of the projections 1z, with
#(Zn) — 0 given by (1.4). Thus A is essentially unbounded.

6.2. ExaMPLE. The position operator (Qf)(z) = zf(z) acting in
L3 (0, 00} is essentially unbounded because of the form of its spectral measure
Q(Z) =1z.

In this case an approximating sequence A, P, can easily be constructed
in a direct way. Let v, be a linear function satisfying v, ([0, n]) = [n2,n2 +
1/n). Then Uy : f{z) — nf{v; () xpm (v7 () is a partial isometry with
UnUn =1p ), UnlUpy = Ypns n2gi/n), = 1,2,. .. Then the operators

A A
Po= | Z1m+ | (1 - —> Lyany
n n
[0.n] [0.n]

A A
+ S "(1 - _) (Un]«d)\ + (Unld)\)*)
pa VN T

are projections and nP, — 0 a.s.

Proof. Let f € D(Q), i.e. {5 o 2If(3))[> dA < co. Then

A A
f4/2 (1 = —)( ndan)”
n n
[0.n]

o=l

2,

n=1

2
S Uadap)"f
R

Hl[n"‘,nﬁ—}-l/n]f” < oo,

The rest is obvious. =

6.3. ExaMpLE. Let P = S(_m’m) Ae(dA) be the momentutn operator,

=td/ds, i = /=1, in La(—o0c,00}. Then |P| as well as its positive part
Pt = S[D o0) Ae(dA) are essentially unhbounded.
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Proof. Take \,e > 0 and f € V(e/2) with ||f|| = 1. The spectral
measure e(-) of the momentum operator is given by the Fourier transform
e(Z)=F1zFt,  Z C(—o0,),
and thus |le[}, co)(f(z)e*®)| = |e[A — v, 00} f(z)||. For v > 0 large enough,
we have ||f(z)e™® — fi(z)| < (¢/2)%? for some fi € e[, 00)(H) with
| f1] = 1. Obviowsly, f(z)e™™ — fu(z) € V(e/2) and condition (4.1) 18

proved. »

6.4. ExaMPLE. The operator 4 = Y oo n{,7a)rn given by the
Rademacher functions 7, (), z € (0,1), is not essentially unbounded in
L5(0,1).

Proof. It is enough to prove the existence of a constant ¢ > 0 such that

(6.1) Za’nrn ZV(c) forany a, € C with }: \aﬂ|2 =1.

n=1 n=l
Assume that, on the contrary,
o0

(6.2) k) =3 a¥r, —0 in measure
n=1

for some coefficients satisfying 3>, |o¢,(ff°)|2 =1 k=1,2,... Let 1afijz),c)| =
maxn>1 |a$1k)| for each & = 1,2,... The functions 5x = s — ag?k)rn(k) are
symmetrically distributed. In particular,

p(Re(Bi/o%),) > 0) = p(Re(5k/alvy) < 0)

and both sides of the equality are at least 1/2. Here u is the Lebesgue
measure on (0, 1). The random variables 8% and rpy on ((0, 1), p) are inde-
pendent and

(sl > (01 D ((ruy = 1)1 (Re 5/l 2 0)
U ((ragy = —1) N (ReSx/aly, <0)).

This means that pu(|sg| > |a£:“()k){) > 1/2. By (6.2}, iaif()k)i = Maxy>1 lagbk)|
— 0 as n — oo, and the matrix

agl)'rl, Cldgl)Tz,

Odg_z)‘r‘]_, 0!9)?"2,
of random variables satisfies the Lindeberg condition [4]. By the Lindeberg-
Feller central limit theorem, we have convergence to the standard normal
distribution:

plon <y) — B(y) asn— oo

for any y € {—o0,20). This contradicts s, — 0 in measure. =
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In any Hilbert space H, each positive unbounded operator A satisfies
one of the following conditions:

(6.3)  A=30"1 An{", @n)pn for some A, ” oo and an orthonormal basis
{‘Pn} in H;

(6.4) for some A > 0 the spectral projection e[0,A) of A is infinite-
dimensional.

For any unitary operation U : H ~» Lg(X, A, ), the operator UAU !
will be called a realization of A. Conditions (1.1}, (1.2) for (X, A, ) are
always assumed.

Our Example 6.4 leads to the following immediate generalization.

6.5. THEOREM. Let A be a positive unbounded operator in. o separable
infinite-dimensional Hilbert space H. If A satisfies (6.3), then each realiza-
tion of A in L2(X, A, 1) is essentiolly unbounded. If A satisfies (6.4), then
some reslizations of A in Ly(0,1) are not essentiolly unbounded, but essen-
tially unbounded realizations obviously ezist.

Proof. Let Q he an orthogonal projection on the closed linear span of
the Rademacher functions. If A = S[o o) A€(dA) satisfies (6.4), then Q =
Ue[), co)U~* for some unitary operator U : H —+ L3(0,1) and some A > 0.
By (6.1), the proof is clear. =

6.6. THEOREM. For an operator A = S[o o) A €(dX) with domain D(A),
acting in Ly, the following conditions are equivalent:

(i) A is essentially unbounded;
(i} for any numbers A, ./ o0, there exist orthogonal projections Pn such
that AP — A a.5.;
(iii) for any numbers A, /* co, there exist orthogonal projections P, such
that A, P, — A in measure;
(iv) D(A) C D(B) for some positive essentially unbounded operator B;
(v) for some orthonormal system {pn}, we have pn ~ 0 a.s. and
o0
S lfen)l <00 for f € D(4).
ne=l

Moreover, the following conditions are also equivalent:

(i) A is not essentiaily unbounded,;
(i) Q+(H) c D(A) and f & V(e) if only f is normalized in Q(H), for
some orthogonal projection @ and € > 0.

Proof. Operators A, > 0 with |A,|| < 1 satisfying A, 4, — 4 as. can
be found for any An 7 00, Thus (i)=>(ii) (cf. Section 4.3), and (1)< (i)« (iii).
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Choosing ¢ € €[2",00)(H) with ¢, — 0 as. and {p,} orthonormai,

one can obtain (i) = (iv) A (v). Moreover, —=(i) (negation of (i)) = (j) =
() = ~(v) A=) =

[1]

(2]

[3]
(4]
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Minimal self-joinings and positive topological entropy IT
by

FRANGOIS BLANCHARD (Marseille)
and JAN KWIATKOWSKI (Torus)

Abstract. An effective construction of positive-entropy almost one-to-one topological
extensions of the Chacdn flow is given. These extensions have the property of almost
minimal power joinings. For each pessible value of entropy there are uncountably many
pairwise non-conjugate such extensions.

1. Introduction. In 1979 D. Newton {New| asked whether there exist
coalescent dynamical systems with positive metric entropy (& metric dynam-
ical system is said to be coalescent if all its endomorphisms are invertible).
This problem has not been solved so far. The analogous problem in topo-
logical dynamics had been solved by P. Walters {Wal] in 1974: he gave an
example of a topologically coalescent flow with positive topological entropy.
His example is not minimal; strictly ergodic topological Toeplitz flows with
positive entropy and trivial centralizers were constructed in [BuKw]. Of
course, they are topologically coalescent.

It turns out that there exist topological flows with positive entropy and
satisfying stronger conditions than having trivial centralizers. In the metric
setting D. Rudolph [Rud] introduced the notion of minimal self-joinings,
which is much stronger than coalescence and implies zero entropy. In topo-
logical dynamics the situation is more complicated. There exist several cor-
responding notions; the oldest is graphic flows [Mar]; later A. del Junco [delJ]
introduced a set of possible definitions for topological minimal self-joinings
using the orbit closures as an analogue of ergodic measures, among them
almost minimal self-joinings (AMSJ) and almost minimal power joinings
(AMPJ); the rather complex definitions are given in Section 2. The classes
of flows mentioned above are known to satisfy the following inclusions:

coalescent O trivial centralizer O graphic D AMSJ 2> AMPJ.
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