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Choosing ¢ € €[2",00)(H) with ¢, — 0 as. and {p,} orthonormai,

one can obtain (i) = (iv) A (v). Moreover, —=(i) (negation of (i)) = (j) =
() = ~(v) A=) =

[1]

(2]

[3]
(4]
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Minimal self-joinings and positive topological entropy IT
by

FRANGOIS BLANCHARD (Marseille)
and JAN KWIATKOWSKI (Torus)

Abstract. An effective construction of positive-entropy almost one-to-one topological
extensions of the Chacdn flow is given. These extensions have the property of almost
minimal power joinings. For each pessible value of entropy there are uncountably many
pairwise non-conjugate such extensions.

1. Introduction. In 1979 D. Newton {New| asked whether there exist
coalescent dynamical systems with positive metric entropy (& metric dynam-
ical system is said to be coalescent if all its endomorphisms are invertible).
This problem has not been solved so far. The analogous problem in topo-
logical dynamics had been solved by P. Walters {Wal] in 1974: he gave an
example of a topologically coalescent flow with positive topological entropy.
His example is not minimal; strictly ergodic topological Toeplitz flows with
positive entropy and trivial centralizers were constructed in [BuKw]. Of
course, they are topologically coalescent.

It turns out that there exist topological flows with positive entropy and
satisfying stronger conditions than having trivial centralizers. In the metric
setting D. Rudolph [Rud] introduced the notion of minimal self-joinings,
which is much stronger than coalescence and implies zero entropy. In topo-
logical dynamics the situation is more complicated. There exist several cor-
responding notions; the oldest is graphic flows [Mar]; later A. del Junco [delJ]
introduced a set of possible definitions for topological minimal self-joinings
using the orbit closures as an analogue of ergodic measures, among them
almost minimal self-joinings (AMSJ) and almost minimal power joinings
(AMPJ); the rather complex definitions are given in Section 2. The classes
of flows mentioned above are known to satisfy the following inclusions:

coalescent O trivial centralizer O graphic D AMSJ 2> AMPJ.
1991 Mathematics Subject Classification: Primary 54H20.
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Research of the second author supported by the KBN grant no. 2P30103107.



122 F. Blanchard and J. Kwiatkowski

In 1990 J. King [King| proved that there exist flows with the strong
property of minimal self-joinings (MSJ) suggested by del Junco; MSJ im-
plies zero entropy. In [BIGIKw] E. Glasner and the present authors proved
abstractly the existence of positive-entropy almost one-to-one extensions of
the Chacén flow (X,7). One result in [deld] shows that such a flow has
AMPJ. But we had no explicit example.

The purpose of this article is to give an effective construction of such
a How. In Section 3 we describe a class of almost one-to-one extensions
(2(w), T) of the Chacén flow. In Section 4 we give sufficient conditions for
(£2(w), T) to be strictly ergodic and to have positive entropy. Section 5 is de-
voted to constructing uncountably many pairwise non-conjugate extensions
(£2(w), T') having the same entropy; it is possible to do this for an unhounded
set of values of entropy. An arresting feature of the flow (O(w),T) is that
the Chacén flow is a topological canonical factor of each of them.

2. Definitions and background. We adopt here the topological view:
by a dynemical system we mean a compact metric set X endowed with a
homeomorphism 7. The pair (X,T) is also called a (topological) flow. A
dynamical system (Y, S) is a factor of the system (X,T) if there exists a
continuous onto map 7 : X — Y such that #7 = S (X,T) is called
an extension of (Y,5). Topological entropy plays an essential part in this
article; readers who want to be reminded of its rather long definition can
find it e.g. in [DeGrSi]. w is called a homomorphism of the flow (X,T) to
(¥,8). (X,T) and (Y, S) are topologically conjugate if 7 is one-to-one. The
sets 1(y), y € Y, form a partition of X into closed pairwise disjoint sets.

We say that the factor (Y, S} of (X,T) is topologically canonical if for
every homomorphism 7' : (X, T) — (Z,U) such that (Z,U) and (¥, S) are
topologically conjugate we have {7/~ *(2) : z € Z} = {m=Yy):y € Y}. By
the topological centrulizer of T we mean the set Cyop(X,T) = {5 : X —
X : §is continuous and TS = ST}. A flow (X,T) is called minimal if X
has no proper closed T-invariant subset. We say that (X,7) is uniquely
ergodic if there is a unique borelian normalized T-invariant measure 4 on
X. (X,T) is said to be strictly ergodic if it is minimal and uniquely exgodic.

Let Oz, T) = {T"(z) : i € Z} be the orbit of x € X. For a finite set F
with #E =k and 1 : B — Z let T*' denote the self-map ®;. 5 TH¥ of X*.
An off-diagonal on X* is a set of the form T A, where A is the diagonal in
Xk ie. A= {(z,...,z) € X*: 3 € X}. APOOD (product of off-diagonals)
is a product of such sets; it is a closed T*!-invariant subset of X* and its
projection onto each coordinate is equal to X. (X,7T) is called coalescent
if any topological endomorphism is an automorphism, and graphic if it is
totally minimal and X2 contains no minimal T2-invariant subset except the
off-diagonals [Mar].
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A flow (X, T) has almost minimal power-joinings (AMPJ) if it is totally
minimal and there is a dense T-invariant G's set X* in X such that whenever
E is finite with cardinality k, [ is a map from F to Z\ {0} and ¢ = (2;)icx €
(X*)*, then O(z,T*') is a POOD [delJ]. An equivalent condition is that
for each # = (#:)ier € (X*)* such that x; and z; are on different T-orbits
whenever {(4) = I{5), one has O(z, T*!) = X*.

The flow (X, T) is said to have almost minimal self-joinings (AMSJ) if
it satisfies the condition defining AMPJ for I = 1 only (i.e. I(i) = 1 for
each 1 € k). A natural strengthening of AMPJ and AMSJ would be the
requirement that X™ = X. J. King has proved that there is no topological
flow having AMPJ with X* = X [King]. But he constructed a flow (X, T)
having minimal self-joinings (MSJ), in the sense that

(i) every non-zero power of T is minimal,
(ii) for any pair of points z,y € X not in the same orbit, O(r, y) = X x X.

Some Toeplitz flows are coalescent without being graphic and there are
graphic flows without SAMPJ (a property stronger than AMPJ, see [deld,
Prop. 11]). MSJ flows have zero entropy, while there exist AMPJ flows with
positive entropy [BIGIKw]. A map 7 : (X,T) — (¥,5) is said to be an
almost one-to-one extension if there are dense G5 sets ¥/ C ¥ such that «
is one-to-one on 7~ !(Y). The formally weaker definition, when only ¥” is
assumed to be dense, is equivalent when X is minimal [BIG1Kw, Lemma 1],
which is the only case we consider in this article.

All examples in this paper are symbolic, so a few definitions are in order.
Given a finite alphabet A, let A* be the set of finite sequences of letters of A.
The elements of A* are called words or blocks over A. The set A% of doubly
infinite sequences is endowed with the usual product topology together with
the shift homeomorphism T. A subshift X is a closed T-invariant subset
of A%; it is completely determined by the set L(X) C A* of all words that
appear as blocks of coordinates in its points. Let B = (B[0],..., Blk—1]) be
a block over 4. The number & is called the length of B and denoted by |B|.
If ¢ € A% and B is a block then x[i, 5], B¢, 5], 0 £ i < s < k—1, denote the
blocks (z[d], ..., z[s]) and (Bi],..., B[s]) respectively. The concatenation of
B and C = (C[0],...,C[m— 1]) is the block

BC = (B[0],...,Blk~1],C[0],...,Clm — 1]).

Let @, (n) be the number of different blocks of length n of X. The entropy
of (X,T) is given by the formula

1
h(X,T)= Jim P log @x(n},

and since this limit exists one can take it also along a subsequence.



124 F. Blanchard and J. Kwiatkowski

3. A class of almost one-to-one extensions of the Chacén flow

3.1. The Chacdn flow. We start with the construction of Chacén’s ex-
ample [Cha, delJKe]. Define a family of words (B, ¢ € N) on the alphabet
{0, 5} by Bg = 0 and the induction formula

§t+1 = EtEtSEt

B, is called the #-block. Putting d; = | B;| one has

dy = 5(3*“rl -1), t=0.

The formulas
ﬂ:[—dt,dt - ].] = B—tﬁt and I’[—dt,dt} = EtSEt

define two two-sided infinite sequences = and z’ on {0, s}. The Chacdn sub-
shift is defined as X = O(z) C {0, s}%, endowed with the shift T. The points
belonging to O(z) U O(xz') are called exceptional. The remaining points of
X can be constructed by the nesting block procedure [del]]. We now de-
scribe a non-standard version of this procedure which is adapted to our
requirements.

Assume that 1 < ky < ky < ...

are positive integers and let

= 1
pn=k0+---+kn, Bn:Bp.n,s lnszn|m§(3PW+l_l)’ 'nZD.

Then By, is a concatenation of 3%+t copies of B, and of E(3hnt1 1)
times the letter s in suitable order.

Suppose we are given two integers ng > 0 and A, such that 0 < X, <
by =1 and Bpg[An] = s if ng > 1, and a sequence a = (an)n>n, With
0<an<3’“n+1—1

We define another sequence A{a) of integers by letting

(1) An+1(a) = An(a) +lnan + g,

where g is the number of occurrences of s in By, _, between p,-blocks and to
the left of the a,th occurrence of B, (see Fig. 1). Then 0 < Ay <l —1
and we can define

nZ”Oa

(2) y—Anyln = Ap — 1] = B, forn > ng.
Anyr{a)
- — . @nth occurrence of B, in Bnyi
f {} 19} {= = - = = === i |
' I
| !
= An{a) 5
Bra
Fig. 1
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If an > 0 infinitely many times and an < 3F~+1 — 9 also infinitely many
times, then A,(a) — oo and so does (I, — An(a) ~ 1}. Then y = y(a, Ang) I8
completely defined and y € X. The set X consists of all y(a, An,) and the
exceptional sequences in O(z) U O(2').

3.2. Some extensions of the Chacdn flow, Now we are in a position
to construct almost one-to-one extensions of the Chacén fow (X, T) on the
alphabet A = {1,2,...,3% s}. We define a sequence A, of families of blocks
on A such that all blocks of Ay, have the same length ,; put #.4, = m,,.

Let o belong to the set I7{3%) of permutations of {1,2,...,3%} and

define B by substituting successively o(1),(2),...,o(3%) for the occur-
rences of 0 in By,. The letter s stays unchanged.
Set

={BM : ¢ e I{3*)}.
We have
li = %(3"““*’1 —1) and my = (3’“”)'
Now assume that A;,...
ko < ... < ky, satisfy
(3) 3% 2> my_y, i=1,...,n
Let

, A, are constructed and that the numbers 1 <
my = 0.

={B™,...,BM1.

Fix two different blocks L, F,, € A,, and choose kp41 =
(3) with ¢ == n + 1. Let # = £, > 1 be such that
(4) tmy, < 3% — 2 < (t+ D).
Let o belong to the set &, of maps from {1,...,tm,} to {1,...,m,} such
that #o~1(i) =t foreachi=1,...,my. Put & = tinp1 = 3° — 2 —tm, > 0.
Define a block B"™) by substituting L, for the first w + 1 pa-blocks of
By; and F, for the last one, then replacing the jth of the fm, remaining
Pn-blocks of By, by B‘T(J j=1,...,tm, (see Fig. 2). We do not change
the occurrences of s between Pr-blocks of By11.

k € N satisfying

u+l copies of Ly,

T
A1
4

i

)

)
“

Ly, Ly g™ gin) F,
o "(1) (tmn}
B,(,“*'”
Fig. 2

Define
Ap1 ={BIY .o e &,).
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One has
(mntn+1)!
m. = P, e~
(5) n-+1 # n (tn+1!)mﬂ

The blocks B( ), i=1,...,My,are called n-symbols. Note that each (n4-1)-
symbol B i 5 concatenation of 35+ n-symbols and 1 — 135+
occurrences of the letter s between some of the n-symbols.

Recall that

(6) Inst = [Baa| = [ B = HE
foreach 4 == 1,...,Mn41.

Finally, define a two-sided infinite sequence w over A by putting
(7) w[_zn:ln - 1] = L,

and the subshift 2(w) to be O(w) endowed with T". Observe that w and
therefore 2(w) are well defined once (k,), (Ln) and (Fy,) have been chosen.

4. Properties of the flows (£2(w),T'). In this section we are concerned
with commen properties of these flows; we can drop the argument w in
2(w). Denote by 7 : (£2,T) — (X, T) the natural homomorphism collapsing
all letters 1,...,3" to 0. We now describe the fibers of . First observe that
the sequence v’ defined by

Wi=ln,ln) = Fasly, n20,
is a point of 2 = O{w). Since 7~} {z) = w and 7~ (z') = ', we also call
the points of O(w) U O(w’) C 2 esceptional.
The remaining part of §2 is obtained by a nesting procedure analogous

to the one in Subsection 3.1: fix a sequence a = (Gn)npny, & NOD-negative
Ang < Ing — 1 and define a sequence (A,) by (2). Additionally assume that

blocks B(n) € A, are given in such a way that. B,f ) is the a,th n-symbol of

BE”:;U Then define a point z = 2(@ Angs {B(”}} of £2 by putting

(8) H=Anyln — An — 1] = BT

for each n > 0. Then {2 is the union of O(w) U O(w'} and the set of all z's
of the form (8). Finally, one has w{2(a, An,, {B(")})) = y(a, An,) as defined
in 3.1.

PROPOSITION 1. (2, T) is an almost one-to-one extension of (X,T); if
tn — OC ¥t 18 sérictly ergodic.
Proof. Let C be a block over A and let fr(C, B™) be the average

frequency of C in Bgn). The letters of an (n + 1)-symbol BJ(-M”I) can be
divided into 2 families: '
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(i) the subset I consists of all letters belonging to the first u + 1 occur-
rences of L, and to the last occurrence of F,, and of the letters s between
the n-symbols; put K = #1;

(ii) the subset II consisting of the remaining letters of B; (D) they
correspond to tm, occurrences of n-symbols.

We have @

K< (ut 2 +u+2 < (mn+2)(In + 1)

If C occurs in I then € can be contained in Bg'”) for some 14, or be at the

junction of blocks B™ BI™ or B{™sB{™. In the second case ' can occupy

at most (|C| + 1}tm.,, positions. Thus we have

9) fr(C, BI"Y) = Zfr ¢,y + 2,
n+1 = ln+1
where
R(j C|+ tmy, nt2){ln +1
G) o 1+ Dbmn | (mn + D 1) oy
L1 Ins1 bna
Since
tn+1mnln < ln-l—l
one gets

R(j Cl+1 2 1 1 C
L A S YA SN E= SO
lny1 ln My, In} tnia In tny1

Then by (9),

(10) (0, B ™) — (€, BITY)| < 26, — 0

for every 5,1 = 1,...,mny1. The unique ergodicity of 2 results from (10)
and the constructzon of w.

To prove the minimality of 2 note that if C' appears in w then it appears
in some BJ(- , and hence in any Bl(n+1). Thus every fragment of w of length
3lp+1 contains C.

To prove that 7 is an almost one-to-one extension note that

#r7Hy)
1 itfye X'={y € X : an < unq infinitely many times or
= g = 3%+l _ 1 infinitely many times},
continuum.  in the remaining cases.

and X' is a dense G in X.
CorovLaRy 1. The flow (2,T) has AMPJ.

Proof. By [deld, Prop. 3.2}, (X,T) has AMPJ and by [BIGIKW, Theo-
rem 2.3] every almost one-to-one extension of an AMPJ flow has AMPJ. =
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Put 7, = (1/1a) log mn, n > 1.
PrROPOSITION 2. If

S 2+ mn
(11) 27; 3?0.,1 2 Z 3k"+1
then
21 24+m
(12) R(2,T) > 1 [1 - 221 i Z 3,%1”} =: H > 0.
n=

Proof. It follows from (5) and (6) that

ln+l > 3k0+m+kn+1a ln+1 < 3kn+1 (ln + 1)1

(13) 1 11 . 2. 1.2
I, e otethn 2 - -
nyion T 8 ghtg > gl

A direct consequence of Stirling’s formula is the inequality

(14) nlog(n) —n <log(n!) <nlog(n), n>1.

As before let
k= kny1, £=taey.

Using (3)~(5) and (14) we get
(15) 10 (M 41) = 10g((mmt)!) — mn Iog(2!)

= mptlog(mpt) — mut — matlog(t)
(mnt)log(my) — mut
> (35 = 2 = my)log(my) — 1
> 3% log(my,) — 3° — (2 + m) log(m,,).

Ii is easy to check that 741 < 7, henee 7, € 7y for n > 1. This, together
with (13) and (15), yields

i

1
Tt = log(myp41)
T

3k 24+ mny
> 71 980mn) ~ SEITEETE T w7 108(Ma)
1 11 1 2+my 3 1
> E::log(mn) "L log(my) ~ = — e log{tmy)
>.rn_iﬁm}___m.§ﬁ

Summing up the above inequalities, passing to the limit and noticing that
1 < 3 1
ln ~ 2 8kn
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one gets

— 1 2+ e 1
hanZﬁ[ gf““z 3kn2n_T_lZ3Tn}

ne==] n=1
o
>n {1 ~2>° 3k
n=1

24 my,

- 52 3kn+1 } = H:
n=1

which, by {11) and the easily checked fact that 7 increases with ko, starting

from 7, = (log 6)/4 for ko = 1, implies

limr, > H > 0.

To finish the proof note that A(f2,T) > lim,, 7,; in fact, by standard argu-
ments as in [Gri] one obtains A(2,T) = lim, 7,,. w

REMARK 1. It follows from (14) that

1 3he -
(16) = log(mg) 2 2y — 1) » 2D,
b I 3

We can select the numbers kg, k1, .. . in such a way that h(£2, T') is arbitrarily
close to 71, therefore arbitrarily large.

5. Non-conjugate elements in this class of examples. Recall that
w and the flow 2(w) are well defined once suitable integers (kn)n>o and
sequences (L,) and (F,) of words have been chosen.

Given (k,) and two sequences w, w corresponding to (k) but with dif-
ferent choices of L, F,, we give a necessary and sufficient condition for
(2(w),T) and (2(@),T) to be conjugate. Suppose that w is already con-
structed and IL;, Fi, A; are given (for @) for 4 < n. Let v : A, — A, be
one-to-one. We construct A1, Then we extend 7 to a one-to-one map from
A1 to A,y as follows: (B ("H)) is obtained from B(”H) by substituting
L., for the first u + 1 occurrences of Ly, F,, for the la.st occurrence of Fy,
and fy(B( ) for any other occurrence of B; () . Then put Int1 = v(Lnt1)
and Fop1 = y(Fpy1)- It is evident that v : An+1 —+ Apy1 is one-to-one. By
induction we can extend v to a one-to-one map from A, to Ap for every
p > n; for p > n -+ 1 we have L, = v(Ly) and F, = (Fp).

Now we can define a map f, : 2(w) — 2(w) in the following way:

f”r( ):E(Q>)‘nu!{B })

where 7 is defined as in (8) with ¢, Ay, and B§:) = fy(Bl(:)), m 2 n, and
A (Tw) =T,  f(TW) =T'%, i€k
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It is easy to see that f, is a conjugacy between (£2(w),T) and (2(z), T)
such that the diagram

2w) L= @)

b

X——X
commutes, where 7 : (12(w), ") — (X, T} is defined in the same way as 7 in
Section 4.

THEOREM 1. Assume w and I are determined by the same integers
(Bn)nzo ond by (La), (Fu) and (L), (F,) respectively and f : 2(w) — (D)
is a congugacy map; then there exisi n > 0 and ny € Z and o one-to-one
map v+ Ay — A, such that f =T™ o f,.

Proof. By the same arguments as in [BIGIKw, Prop. 13] we have the
following property for (2{w), T):
(17)  for any w as in (8), if U : ({Aw), T} — (Z,V) is a non-trivial factor
then there is a homomorphism o : (Z,V) — (X, T) such that 7 =
gol.

Using (17) with U = f and (Z,V) = (2(@), T) we get 7 = oo f for some o :
(), T) — (X,T). Applying (17) again with U = ¢ and (Z,V)} = (X, T)
we obtain T = § o o for some S belonging to the centralizer Clop(X,T).
Then it is easy to obtain 7o f = § o . It is well known [delJRaSw] that
Ciop(X,T) = {T" :n &€ Z}, hence § = T™ ,py € Z. Let fy = foT™™ (here
T : w) — 2{w)). Then T o f, = =, which means that

Fi(2) = 2(d, Ao, {BI D),

m

where 2 = 2(q, Ang, {BL™}) (see again (8)).

Thus m-symbols in Z are precisely at the same places as m-symbols in
z for each m > 1. However, f; is determined by a topological code ¢. Let d
be the length of ¢. Choose n such that I, > 2d 4 1.

Because every (n -+ 1)-symbol of @ has [, and F, as initial and final
n-symbaols it is evident that ¢ determines a map v : A1 — Jin.{_l. This
map is one-to-one because ﬁ is. Moreover, fl = fy. m

REMARK 2. The property (17) implies that (X, T") is a topological canon-
ical factor of (£2(w), 7). In fact, if ' : (2(w),T) — (X,T) is a homomor-
phism then 7 = Scn’ for some § € Ciop(X,T). Thus § = T™ for some n so0
S is a homeomorphism. This implies {7~ (z) : 2z € X} ={n'"': z & X}.

Now we can construct an uncountable family of pairwise non-conjugate
flows (O(w), T') with the same positive entropy.
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Fix a sequence {k,}n>0 satisfying assumption (11). We will construct
L§°),L§1),Ff°’,F{” and collections Agf"""s“’l’l), g; = 0,1, of blocks over
{1,...,3%0, s} and blocks

L(Elv--»En—lao) Fletygn—1,0) Lg’flr-WEnHl;l)’FTS'Elw-;En—lal) € AlErsgn-)
k) T

T H T
for n > 2 such that
#A,,(,fl""’e"—l) = my,
and each block of ALTen=1) pag length I, for every n > 1 and every
(El7 v :511"—1)'
Recall that in order to define .ASfj_’l“"a") we need the family AFH =)

and L"(‘lal,...,sn) F'IS'E],...,E,,_) e AE-;E:L:”.’E“—]')
, .
We illustrate this situation in Figure 3.

Ag::lawvufn-l)

¢ e 1. [CXT —1.0)
L.:l En—1 ,Fn=1 En-1 A(El,...,&‘n-—lao)

/ n+41

A(Eir"af‘:n—i)
(=100 £n_1:1} (€140 18n—1,1)
\ L’n ﬂ iFn (E gremyEmem ,l)
Anil :
Fig. 3
Before passing to the construction of Ar,{fl""’e“‘l) notice the obvious

inequality
(18) My = Mp! > 2" forn=0,1,...

Start. Select L&O),Lgl),FfD) € A; in an arbitrary way. In this case there
is & permutation v of {1,...,3%} such that L(ll) = fy(L:(LO)). Then select
Fl(l) € A; such that Ffl) # 'y(Lgl‘)); by (18) such a block Fl(lj exists.

Induction step. Suppose that AL %=1 is constructed for each i < n

and each (e1,..., £1-1), &; =0, 1. Select L -en-10 pfgreomtd) pl00)
€ A%“""’E“"” in an arbitrary way. Use the symbol < to denote the lexico-
graphic relation in the set of all n-tuples (g1,...,e5), &5 =0, 1.

Assume that F,S,m’""”") is selected for each (m1,...,7m) < (€1,...,En).
Choose FiFi ) g AlErren=1) in gnch a way that

(19) FT(,’EL...,En) __’é ,-),(Fqgm,mmn)) for any (771, . :nﬂ) s (51, .. "En)
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if there exists a one-to-one map ¥ : AlErmeen) o Al n) guch that
= y(L{**)). The choice of FFrt) gatisfying (19) is possible
by (18) because the number of blocks of ALEr87) which we must eliminate

is at most 2™.
The families A&E“'”‘E"”‘), n > 2, and the blocks FT(fl""’S”), Lq(,fl““’s”),
n > 1, have the following property:

L‘Elm yeeesTIn)

(20) For each n there is no one-to-one correspondence -~y between
Algren) and AP such that

sy E1y0 i€
L&Wil sTin T]n+1) — ’Y(L'Eq,-:-,]_ En n+1))’

Fé’j}i"‘rnﬂann-}-l) o ,Y(Féili---ssnsfn+l))

whenever (£1,...,8p,8n+1) F (M, Ty Nat1 )
Now we can sum up our theoretical results in the following

THEOREM 2. There exist uncountebly many pairwise non-conjugate
strictly ergodic topological flows (2(w),T) having the same positive entropy
and the AMPJ property.

Proof. Take a sequence {k,} satisfying (11) and construct the families
Agfl,..‘,aﬂvl) and Lglsl,...,s,,)’F?S‘sl,m,sn) c Aa('LEI,”I’Enml) as above.

Let € = (en)n>1 be an infinite sequence of 0's and 1’s. Denote by w(e)
the sequence defined as in (7) with the help of the families AST"1),
n > 2, and the blocks F,Sfl"“’g"),Lgfl""’e”), n > 1. We obtain an uncount-
able family (£2(w(e)),T) of topological flows. It follows from Proposition 1
that each of them is strictly ergodic; their topological entropies have the
same value, since the numbers of their n-symbols are identical; this value is
positive by (15). Finally, Theorem 1 and (20) imply that (£2(w(e)),T) and
(£2(w(e")), T') are not conjugate whenever ¢ and &’ = (&}, }n»1 differ infinitely
many times. =

REMARK 3. Any two topological flows (2(w),T) ond (2(z),T) con-
structed in this section (by using the same ko, ky,...) are metrically iso-
morphic. To see this it suffices to construct codes between blocks. We have
Ai = A; and define f; : A — A; by f, = id. Having £, : A, — A, we
can number the blocks of A, as follows: Egn) = fu(BM),i=1,... My, and
then define fn+1(B£,”H)) = B 5 e &, Next we define

U: 2w)\ 7 HX") — 2@\ 7 HX").

It is mot hard to note that U is an isomorphism of the metric dynamical
systems (2{w), T, 1) and (£2(w), T, 7)) where y, [ are the unique T-invariant
Ineasures.

icm
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