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Dominated ergodic theorems in rearrangement invariant spaces
by

MICHAEL BRAVERMAN (Beer-Sheva),
BEN-ZION RUBSHTEIN (Beer-Sheva) and
ALEXANDER VEKSLER (Tashkent)

Abstract. We study conditions under which Dominated Ergodic Theorems hold in
rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In
particular, our results generalize the classical theorems for the spaces Ly and the classes
Llog™ L.

1. Results. The aim of this paper is to generalize the classical Domi-
nated Ergodic Theorems for Iy~Lso-contractions, which held in the spaces
L, (see, for example, [K85], p. 52, and references there), to the class of re-
arrangement invariant Banach spaces. We will show that this generalization
can be obtained by using standard techniques connected with the Hardy-
Littlewood maximal function. Corresponding consequences for Orlicz and
Lorentz spaces include the classical results for the spaces L.

Recall some definitions and notations. Let i be Lebesgue measure on
[0,1]. For a measurable function f on (0,1), its decreasing rearrangement is
defined by the formula '

(1.1) ) =inf{y>0:u{s: |fa)i >y} £}, 0<E<L
Clearly #* is decreasing right-continuous, and has the same distribution as

|71
A Banach space E of measurable functions on (0,1) is called rearrange-
ment invariont (r.i.) if the following conditions hold:

(i) g € B and |f| < |g| inply that f € E and ||f||e < [g]e;
(i) g € B and f* = g* tmply that f € E and [|fl|lg = ||g]e-
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One can find the theory of r.i. spaces in [KPS82] and [LT79]. The class of
r.i. spaces contains the spaces L, = L,(0,1),1 < p < oo, Orlicz and Lorentz
spaces. It is known ([KPS82|, Ch. 2) that Ly, C E C L; for every r.i. space
E. We write E; = B, if these r.i. spaces coincide as sets. In this case the
norms of E; and E; are equivalent.

If f is integrable, so is f* and we define

t
(1.2) @) = %Sf*(m) dz, 0<t<l
0

It is clear that the function f**(¢) is decreasing and continuous, so

(1.3) P ulf™ > u) =u
for all w > £**(1). Since the functions | f| and f* have the same distribution,
it follows that f**(1) = || f|r,-

We have f**(t) > f*(&),(f*)* = f* and therefore (by (ii)) f** ¢ E
implies f € E for every r.i. space E. So,
(1.4) HE):={f € L,(0,1): f*€E} CE.
The converse inclusion is not true, for example, in the space E = L. It can
be verified that H(E) is a r.i. space under the norm

(1.5) I flaE = 1" e

A linear operator A is said to be an L1-Ly contraction if it is a contrac-
tion in Iy and in Ly. Let PC be the set of all positive L[1-Lo contractions
and let PCp be the subset of PC which consists of all operators Ay of the
form

_ Agf(t) = f(0()),
where ¢ is an invertible ergodic measure preserving transformation of [0, 1].
It is obvious that

AE})=E and A(H(E))=H(E)
for every A € PCy. However, there exist r.i. spaces E and A € PC such that
AE) ¢ E
{see [KPS82], Ch. 2, Sec. 5).

On the other hand, it was proved in [M65] and [C66] that a linear oper-
ator A is an Ly-Le-contraction if and only if

(A () < f™(s), O<s<,
for every f.€ Ly. Hence, '

A(H(E)) c H(E)
for every r.i. space E and all A e PC.
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For A € PC put
1 n—1
(1.6) By f(t)=sup = > A*|f|(t).
n21 ™0

By the Dunford-Schwartz ergodic theorem [DS58], Ch. 8, B4 f < oo a.e. for
every [ € Ly.
Now we can formulate our results. The proofs will be given in Section 2.

THEOREM 1.1. Let E be o r.i. space.

1) If A€ PC, then f € H(E) = Baf € E and
(1.7) [Baflie < |1 fllze-

2) If AePCy, then Baf € E= fe HE).

We will say that the r.i. space E has the Hardy~Littlewood property (E €
HLP) if H(E) = E, that is, f € E = f* € E. We write E € DET if
Baf € E for every f € E and A € PC. Consider the operator

_Jfit/7), t < min{l,r},
D“”f(t)'"{o, r<t<l
ConroLLARY 1.1. The following conditions are equivalent for a r.i. space

E:
1) E ¢ DET;
2) E € HLP;
3) “DT‘HE-—»E - O(’F) ag T — o0
1
Y iy = { | Dyl dr < co.
0

If these conditions hold then

(1.8) |Bafle < delfle, FeB

The equivalence 1)¢2) follows from Theorem 1.1, and the proof of
2)&3)<4) can be found, for example, in [KPS82], Ch. 2, Sec. 67.

We now turn to the inequality (1.8). It follows from (1.2) that

1 1
(8 = { £ (er) dr = | Doy (B dr.
0 0

Hence, the triangle inequality implies
1
i le € D1 /nllm—m dr 17 lm = dellfl-
0
Using (1.7) and (1.5) we get (1.8).
Recall now the definitions of Orlicz and Lorentz spaces.



148 M. Braverman et gl

Let M be an Orlicz function, ie. a convex increasing function on
[0,00) with M(0) = 0. The Orlicz space Lps consists of all f such that
S; M(|£(t)|/A) dt < oo for some positive A, and it is a r.i. space under the

norm
1

(19) 1#lar = inf {X: [ F01/A) dt < 1.

0
The Lorentz space Ly 5, 1 £ p £ 00, 1 £ ¢ £ 00, consists of all functions
f such that

1
190 = (e ase) ™ < oo

]

(1.10)

for g < oo, and for ¢ = oo,
(1.11) [l Fllp.co = suptH/P f1{1) < cc.
>0

It is clear that Ly, = Lp. For g > p the functional ||-|[,, does not satisfy the
triangle inequality, but there is a norm || - | },}g on Ly 4 which is equivalent to
it ([SW71], Ch. 5). For any positive function ¢ one can define the Lorentz
space Ly y by replacing in (1.10) dt%/? by 4(t)dt.

COROLLARY 1.2. If p > 1, then Ly, 4 € DET for every 1 < g < 0o. If, in
addition, 1 < g < p, then

p
(1.12) ||BAf||p,q = ;‘:I”f”p,q

for every A € PC.

This result follows from (1.8) and from the well known and easily verified
relation | Dy|z, ,~z,, = m/P. I p=q > 1, we get the classical inequality
for the spaces L, (see [K85], p. 52).

There exist Lorentz spaces Ly such that H(Lpy) # Lpy. Necessary
and sufficient conditions under which a general Lorentz space Ly, € HLP
(and, hence, L,y € DET} were recently found in [AMS0], [Sa90], [B93)],
[St93].

We now turn to Orlicz spaces.

COROLLARY 1.3. The following conditions are equivalent for an Orlicz
function M

1) Ly € DET;

2) Ly € HLP;

3) there is p > 1 such that
. M(tz)
ta>1 tP M (x)

> 0;
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§ M(z/s)ds
4 sup =— :
) o1 M@y
z M'(a
5) N
2>l M (33 )
We now describe the subspaces H{Lys) for Orlicz spaces Lpr. To this
end for any Orlicz function M define

M(z),
MO +=z

< 00,

0<x<1,

(1.13) My (z) =

ol by 13
2
——
ok
g

Then M; is an Orlicz function and M{z) < M;(z) for all z > 0. Hence
LM] C LM.
ProrosiTioN 1.1. For every Orlicz function M,
H(Lpr) = Ly, .
This proposition and Theorem 1.1 imply the following dominated ergodic
theorem for Orlicz spaces.

COROLLARY 1.4. For everyn=10,1,...,

1) if A€PC, then f € Ly, = Baf € Lag;

2) if A€PCy, then Baf € Ly = f & L, .

The first statement can also be derived from the results of [£S92], Ck. 3,
where the topic is treated in the context of martingales.

Consider now Zygmund’s classes Llog" L, n = 1,2,... Recall that

Llog™ L consists of all measurable functions f on [0, 1] such that
1
{17(@)|(log" | £(<))" dex < o0,
0
where log™ 2 = max{0, logz}. We put Llog" L = L, forn = 0.
ProrosiTioN 1.2, For every n=1,2,...,
H(Llog™ ' L) = Llog™ L.

Note that the class I log" L is an Orlicz space Lyr, where M (z) is equiv-
alent as £ — co to ln(z) = z(logt z)" in the following sense: [ {c1z) <
M(z) < l.(cox) for positive constants ¢1, c2 and all z large enough (see
[KR61], Ch. 1).

Thus we obtain the following classical results ([K85], p. 54) as a conse-
quence of Theorem 1.1 and Proposition 1.2.

COROLLARY 1.5. For everyn=0,1,...,

1) if A€ PC, then f € Llog"™* L= Baf € Llog" L;
2) if A € PCo, then Baf € Llog" L = f € Llog" ™' L.
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See also Section 3 for more examples of r.1. spaces without the DET-
property.

2. Proofs. The proof of Theorem 1.1 is based on the following lemmas.

LemMA 2.1. Let f and g be nonnegative measurable functions on (0,1)
such that for every t > 0,

(2.1) wlg >t} < % | Fdp.
{g>1}

Then for all s € (0,1),

(2.2) g*(s) < f(s).

Proof. We begin with the known relation

5

[r@de= sup {|fldu
0 G:uG=s} oy

(see [KPS82], Ch. 2, Sec. 2). Putting s = u{g > t} and rewriting (2.1) m
the form ¢ < (1/s) X{g>t} fdu, we get - ‘

(2.3) t< ™ (u{g >t}

for every £ > 0.,
Let

A={s:s=p{g > t} for some t > 0}
and sp € A. Then (2.3) implies
to i= sup{t : ju{g > £} = 50} < F**(s0).
It can be easily derived from the definition of g* that g*(sp—0) = tp. Hence
(2.4) g (50— 0) < f**(s0), 80 € A
Take now s € A and put
5o = sup{uiu > s, g°(u) = g°(s)}.
Then so € A and by (2.4) we have
g*(s) =g"(s0—0) < f*"(s0) < F™(s)-
Thus, (2.2) is true for all s ¢ A. If s € A, the estimate follows from (2.4). =
LEMMA 2.2. For every nonnegative f € Ly and all £ > f**(1),

(25) Wbt | Sdusplf> 1
{f>t} :
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Proof. We suppose, without loss of generality, that f = f*. Set s =
p{f** > 2t}. Then, according to (1.3), 2¢t = f**(s) and (1.2) implies

l El
(2.6) o= | £ (@) da.
0
If s < u{f > t}, then
1 p{f>t} 1
s< o | Fe)de = o { fdu
0 {f>t}

and the first inequality in (2.5} follows.
Suppose s > u{f > t}. Then from (2.6) we have
1 8
| fduto | fla)de
{f>t} p{f>t}
Since f(z) <t for z > p{f > t}, the last integral does not exceed s/2 and
we get the lower bound in (2.5).
We now turn to the upper bound. Define uv = p{f** > t}. Then, as
above, :

st
Y

17 1
w= [ £*(z)de > S i fau
0 {f>f*(u)}
We have t = f**(u) > f*(u), which yields the desired estimate
1

w2z [ fau w

{f>t}
LEMMA 2.3. For every A€ PC, f € Ly and oll 5 € (0,1),
(Baf) (s) < £7(a).

Proof. This follows directly from the classical maximal inequality (see
[K85], p. 51)

1
(2.7) p{Baf >t} <3 §
{Baf>t}

fldps

and (2.2) with g= B4 f. w

LEMMA 2.4. For every nonnegative f € L1 \ Loo there exists o constant
a=a(f) € (0,1) such that for all s € {0,a) and all A € PCy,

F**(s) < 2(Baf)"(s/2).
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Proof. Now we use Ornstein’s inequality (see [071] and [De73])

p{Baf >ty > = | fdp (> |f]z),

{r>e}
which holds for every A € PCq. This inequality and (2.5) imply that

W{Baf >t} 2 u{f™ > 2}/

fort > ||f|lL,- Since f & Loo, we have u{f** >t} > p{f* > t} > 0 for every
t > 0. So, the number o = sup{s : f**(s) > 2|/ f||z, } 18 positive and we get
the desired estimate. m

2

Proof of Theorem 1.1. The implication 1) and the estimate (1.7) fol-
low from Lemma 2.3, while the implication 2) is a direct consequence of
Lemma 2.4. =

Proof of Corollary 1.8. The equivalence 2)<»3) can be easily derived
from Corollary 1.1 and Proposition 2.b.5 of [LT79].

We now turn to 3)<>4). Denote by a(p) the infimum in 3). The implica-
tion 3)=»4) follows from the inequality

M(y)
My/t) < e

which is a direct consequence of 3). To prove the converse implication we
need an auxiliary statement.

PrOPOSITION 2.1, If 4) of Corollary 1.3 holds, then there ezists ¢ > 0
such thot

(2.8) Cle) = sup i1 t°M (w/t) dt

< 0.
z>1 M(m) e

Proof. We use arguments from [B93]. Consider the operator

TM(z) --S
1

Denoting by C' the supremum in 4}, we have TM(z) < CM(z) for all z > 1.
Since 1" is positive, by iterating we get
(2.9) T"M(z) < C"M(x)
for every n =1,2,.

Now we compute T7 M. Let ﬁrst n = 2. Changing variables and the order
of integration we get :

M(x/t) dt.

(z>1)
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x x T d
(Tau() o) w=f (15) )
1y L]
1 Ms
( )logydy

The same arguments and induction give us

(n i ! §M (%) (log y)n“I dy.

From (2.9}, for allz > Land 0 < e < C71,

o=
E

T M(z) =

(2.10) Zs” M () < czcﬂ-l "1 M(z) = Cy M (z),
nex] n=1
where Gy = 0350, (Ce)*? = C(1 ~ Ce)™! < 0o, On the other hand, the

first sum in (2.10) is equal to

S () S ()

==

}...__-:

Thus,
SyaM(—z—) dy < C1M(x)
X

and (2.8) follows. m

Implication 4)=3). By Proposition 2.1 there exists £ > 0 such that for
r>s8>1,

‘ & x g e I Sl+5_1
Cle)M (z) = StEM(E) dt > M(—S—) §t dt = M{ = ) ~r—
1

because M (z/t) is decreasing with respect to ¢. Hence, for s> 2,

1 Y T g
Mz)  1-s7 1-277 450
sl te M (x/s) = Ce)(1+5) = Cle)(L +&)
Put y = z/s. Then for > 2 and y > 1,
M(sy)
DY)y,
stteM{y) ~

which implies 3). .
The equivalence 4)<>5) follows from the relation
v T M ’( )
SM(;) dt =z | = dt+zM(1) - M(z),
1 1
which can be derived by changing variables and integrating by parts. w
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Proof of Proposition 1.1. Implication f € Lpg, = f** € L. ¥or any
function g,

(2.11) {0 (jg(2)]) do = | M'(t)p{lg| > t} dt
0 ]
<M@A)+ | M'()ullg| > t) at.

1
We may suppose, without loss of generality, that f = f*. Using (2.11) and
(2.5) we get
1 o I
{ (f**(:c))dm<M 1)+2§ ( {
0 1 {r>t/2}
Changing the order of integration shows that the last term is

f du) d.

2f(z} o
1 Mt 1
(2.12) 3 g 2f(z )( g ( ) 4 )dm: 5 § Mi(2f(z)) d=,
where zg = p{f > 1/2}. We may suppose that the last integral is finite by

changing f to f/), where X is large enough. Then
1

(2.13) VM (@) do < o0
0

and hence f** € Las.

Implication f** € Ly = f € Lpy,. Without loss of generality we may
again suppose that f = f* and that (2.13) holds. Using (2.11) and (2.5) we
get, by changing the order of integration,

1

> @yde > | L pa) e
o 1 {f>t}
> | My(f(o) b~ M (1),

8]
p{f > 1}. Hence f € Ly, . n

Proof of Proposition 1.2. For n = 1 we have to prove that H(I,) =
Llog L. One can easily verify that '

where x; =

1

§ £ (2)log(1/z) dz

0
Hence H(L,) is the Lorentz space Ly, where ¢(z)

17z, =

= log(1/z). We may
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suppose || f||z, = L. Since [{ffz, > zf*(x) for every 0 < & < 1, we have

1 1
{17(2)log* £ (x)| dz < | £*(2) log(1 /) dz
0 a

On the other hand, it is known (see, for example, [G86]) that
1
" () log(1/z) do < o1+ | |#(2)og" | 7(a)] da),
0
where ¢ < e/ (e — 1) is a constant. From this and the previous inequality,
H(Ll) = Ll,v‘; = Llog L.

Forn > 1 the class L'log" L is an Orlicz space Ljs, whose Orlicz function
M(z) is equivalent to the function I,(z) = z(logt )™ as £ — cc. An easy
computation shows that the corresponding Orlicz function M; is equivalent
t0 lpt1 (). Thus the desired statement follows from Proposition 1.1. w

The best constant in (2.14) was found in [G86].

One can derive the proof of Corollary 1.3 directly from Proposition 1.1.
Indeed, the condition Ljs € HLP means that Ly = Lps, as sets. Using
the well known necessary and sufficient condition for the coincidence of two
Onlicz spaces (see [KR61], Ch. 2) one can casily show that 2)<4).

O T 1

(2.14)

3. Remarks. 1. We will say that a ri. space E satisfles the Statistic
Ev"godz'c Theorem (E € SET), if for every f € B and A € PC the sequence
Anf = L5070 AR f converges in the norm of E. According to [V83], E €
SET if and only if E is separable. It is known ([KPS82], Ch. 2) that the last
condition holds if and onty if B # L., and L, is dense in E.
Thus we can show that there is no connection between the DET-property
and SET-property of E. Indeed, we have

L, ¢ DET and I, € SET,
Ly g DET and I € SET.

On the other hand, the Lorentz spaces Lpeo, 1 < p < o0, are nonseparable
and they have the Hardy-Littlewood property. Thus

Lpeo €DET and Lpco # SET.

Finally, there exist nonseparable r.i. spaces B without the Hardy-Littlewood
property (see [BM77] and [KPS82], Ch. 2). For such a space E we have

E¢DET and E ¢SET.

2. From E; C Es and E, € HLP it does not follow that E; € HLP. We
describe briefly an appropriate construction (see [LT79], p. 140) for the case
Ey =L, 1< q< oo, and By = Las. More exactly, we show that for every

1 <p<oo,
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g > 1 there exists an Orlicz space Lps such that L, C Ly C Ly for every
r > q and Ly ¢ HLP. 2

Let ¢ > 1,00 = 0 and a, = 2™ . Define M(ax) = of, and
_ Gy — 4

M(z) = (z — ax) + af

Ap—1 — G
for z € (ag-1,ax). Obviously, M is an Orlicz function. Choosing z, = on’+1
and t, = 22", one can verify that

lim MM(t”mn) =
n—oo th M ()
for every p > 1. Hence, according to Corollary 1.3, Las & HLP.

It follows from the definition that M({z) > z? for all z > 0 and, there-
fore, Lps C L,y On the other hand, elementary calculations show that
M{z)/z™ — oo as x — oo for each r > ¢, which implies L, € Lay.

3. The same method which was used in the proof of Theorem 1.1 allows

us to obtain corresponding results for martingales. For example, we get the
following

THEOREM 3.1. Let 0 < f € Ly and let {F,}32, be an increasing se-
quence of o-algebras such that Fy is trivial and Uf’ml Fn coincides with
the algebra of oll measurable subsets of (0,1). Consider the martingale
frn = E% f and put

Bf = sup £

Then for every r.i. space E, "
1) f € H(E) = Bf € B and | Bf||e < ||/l a);
2) if there exists a constant C such that
(3.1) frt1 S Cfq foreveryn=1,2,...,
then Bf € E = f € H(E).
To prove 1) we use Doob’s maximal inequality for martingales [Do53]

and the same arguments as in the proof of Theorem 1.1. The proof of 2) is
based on the inequality

S Jadu < S
{fa>t} {f1>t}

which follows from (3.1) (see [ES92], p. 98), where a detailed explanation of
the topic is given for Orlicz spaces.

fodp+Cu{ sup fr >t} (t>0),
1<k<n

Acknowledgments. We would like to thank Michael Lin for helpful
discussions. We also thank the referee for useful remarks.

icm

Dominated ergodic theorems 157

References

[AM90] M. Arido and B. Muckenhoupt, Mazimal functions on classical Lorentz
spaces ond Herdy’s inequality with weights for nonincreasing functions, Trans.
Amer. Math. Soc. 320 (1990}, 727-735.
[B93] M. Braverman, On a class of operators, J. London Math. Soc. 47 {1993),
119-128.
M. Braverman and A. Mekler, On the Hordy-Littlewood property of sym-
metric spaces, Siberian Math, J. 18 (1977), 371-385.
[C66] A, P. Calderén, Spaces between LY and L°° and the theorem of Marcinkiewicz,
Studia Math. 26 (1966), 273-299.
[Dos3] J. L. Doob, Stochastic Processes, Wiley, New York, 1053.
[De?3] Y. Derriennic, On integrability of the supremum of ergodic ratios, Ann.
Probab. 1 (1973), 338-340.
[DS58] N. Dunford and J. Schwartz, Lineer Operotors, part I, Interscience, New
York, 1858.
[E892] G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes,
Encyclopedia Math. Appl., Cambridge Univ, Press, 1992.
[G86] D. Gilat, The best bound in the Llog L inequality of Hardy and Littlewood and
its martingale counterpart, Proc. Amer. Math. Soc. 97 (1986), 429-436.

(BM77]

[KR61] M. A. Krasnosel’skil and Ya. B, Rutitskil, Convesr Punctions and Orlicz
Spaces, Noordhoff, 1961.
[KPS82] 8. G. Krein, Yu. Petunin and E. Semenov, Inferpolation of Linear Opera-

tors, Transl, Math. Monographs 54, Amer. Math. Soc., Providence, 1982.
[K85] U. Krengel, Brgodic Theorems, de Gruyter Stud. Math., de Gruyter, Berlin,
1985,
[LT79] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. Funciion
Spoces, Springer, 1979,
[M65] B. S. Mityagin, An interpolation theorem for modular spaces, Mat. Sb. 66
(1965}, 473482 (in Russian).
[071] D.S. Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math.
15 (1971), 77-79.
18a90] E.T. Sawyer, Boundedness of classical operators in classical Lorentz spaces,
Studia Math, 96 (1990}, 145-158.
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean
Spaces, Princeton Univ, Press, Princeton, N.J., 1971
[8t93] V.D.Stepanov, The weighted Hardy's inequality for nonincreasing functions,
Trans. Amer. Math, Soc. 338 (1993), 173-188.
[V85] A, Veksler, An ergodic theorem in symmetric spaces, Sibirsk. Mat. Zh. 24
(1985), 189~191 (in Russian).

[SW1)

Departmment of Mathematics
Tasbkent State University
Tashkent, Uzbekistan

Department of Mathematics & Computer Sciences

Ben-Gurion University of the Negev

P.0. Box 633

Beer-Sheva, 84105, Israel

E-mail: braver@indigo.cs.bgu.ac.il
benzion@indigo.cs.bgu.ac.il

Recefved Januery 50, 1997 (3828)

Revised vergion August 88, 1997



