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Commutators of gquasinilpotents and invariant subspaces
by

A. KATAVOLOS and C. STAMATOPOULOS (Athens)

Abstract. It is proved that the set @ of quasinilpotent elements in a Banach algebra
is an ideal, i.e. equal to the Jacobson radical, if (and only if} the condition [Q,Q] € @
(or a similar condition concerning anticommutators) halds. In fact, if the inner derivation
defined by a quasinilpotent element p maps @ into itself then p € Rad A. Higher cornmu-
tator conditions of quasinilpotents are also studied. It is shown that if a Banach algebra
satisfies such a condition, then every quasinilpotent element has some fixed power in the
Jacobson radical. These results are applied to topologically transitive representations. As
a consequence, it is proved that a closed algebra of polynomially compact operators sat-
isfying a higher commutator condition must have an invariant nest of closed subspaces,
with “gaps” of bounded dimension. In particular, if [@, Q] C Q, then the algebra must be
triangularizable. An example is given showing that this may fail for more general algebras.

1. Introduction. Let .4 be a Banach algebra. The set of quasinilpotent
elements in A is dencted by @, that is, @ = {a € A : p(a) = 0} where
o(a) is the spectral radius of a. The Jacobson radical Rad A of A is often
denoted by R; in Banach algebras, R = {a € A :ab e Q for all b € A}.
The algebra A is called semisimple if R = {0};if 4 = R, Ais called a
radical algebra, and in this case every element of A is quasinilpotent. It is
obvious that R is always a subset of @ and the converse holds when A, or
mere generally A/R, is commutative. Some simple cases where these sets
differ are the Banach algebras M, (C} of all n x n matrices over C, or more
generally B(X) (resp. K(X)), the algebra of all bounded (resp. compact)
linear operators on a Banach space X; these are semisimple algebras but
still have plenty of quasinilpotent elements.

The commutator ab — ba of ¢ and b is denoted by [a,b] or by Dy(a).
We write {a,b} for the anticommutator ab -+ ba. The set & is said to be
closed under commutation (resp. anticommutation) if [a,b] (resp {a,b}) is
quasinilpotent whenever a and b are in Q.

In [16] it is proved that @ equals R if and only if @ is closed under
addition or multiplication. This result, as well as the result of Zemdanek [19],
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that A/R is commutative if and only if spectral radius is subadditive or
submultiplicative, demonstrates the close connection between the algebraic
and the topological structure in Banach algebras. A further connection of
these structures will be established if the following questions are answerad,

QfJESTION A, If @ is closed under commutation, is it equal to R?
QUESTION B. If @ is closed under anticommutation, is it equal to R?

Question A is absolutely natural if one examines the proofs of Lemmas 1
and 2 in [16]. On the other hand, motivation for question B also comes from
the Engel-Jacobson theorem about finite-dimensional algebras [11]. Notice
that for Banach algebras, the condition {4, A} C Q obvicusly implies that
A is a radical algebra, so that @ = R. In addition, a slight change in the
proof of Lemma 1 of {16] yields that if {4, @} C @ then @ = R.

An affirmative answer to both questions A and B will be given in The-
orem 2, which is one of the main results of this paper. In addition, a new
proof of the main result of [16] will also be given in the same theorem.

Concerning higher commutators, observe that the algebra M3 (C) satisfies
lg,1q,p] € @ for all p,q € Q. Here, {quasi-)nilpotents are not in the radical,
but their squares are. Generally, if A satisfies a higher commutator condition
then every quasinilpotent has some fixed power in Rad A (Theorem 3).

There is also a very interesting interaction between conditions such as
[A,A] € @ or @ = R and the notion of simultaneous triangularization
of algebras of operators, especially of compact operators (see [4], [6], [7]
and {10]). We improve some of these results by showing that the conditions
(@, Q] € Qor {Q,Q} C Q imply simultaneous triangularizability of closed
algebras of polynomially compact operators. This means (precise definitions
will be given in Section 3) that such algebras have “nests” of invariant sub-
spaces with at most one-dimensional “gaps”. Similarly, such algebras sat-
isfying higher commutator conditions admit “block triangularization” with
blocks of bounded dimension (see Theorem 11).

2. General results. We first obtain an affirmative answer to Questions
A and B (Theorem 2). Note that higher commutator conditions do not imply
the equality @ = R (consider for example M, (C)). Algebras satisfying such
conditions are characterized in Theorem 3.

Notice that the basic tool in this area ([9], [16], [18]) has so far been Ja-

cobson’s density theorem ([3], [12]). Our proof will be based on the following
improvement due to Sinclair [15]:

THEOREM. Lei A be a Banach algebra and m an algebraically irreducible
representation of A on o Banach space X,
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(i) (Jacobson) If x1,...,2n ere linearly independent and yy,...,y, are
any vectors in X, then there exists o € A such that m(a)z; =y, i=1,...,n.

(i) (Sinclair) If additionally y1,...,yn are linearly independent, then
a € A may be chosen inveriible.

‘Whenever necessary, we adjoin a unit, denoted by 1, to a Banach algebra.
We will need the observation that if T" is a quasinilpotent operator on a
Banach space X and © € X, then the set {z, Tz, T%z,...}\{0} is linearly
independent. For if $°7_, \eT¥z = 0, then writing

[
N Akt =t — 21)(t— 2) . (= Znom)
k=0
where 2; 5 0 we obtain T™x = 0, since T — 2;1 is invertible.
Using Sinclair's theorem we will prove the following

ProrositioN 1. Let A be a Banach algebra. If p € @ and p is not
contained in Rad A then there exists ¢ € Q such that pg, p+ q, {p,q} and
[p,q] are not quasinilpotent.

Proof. Since p & Rad A there exists an algebraically irreducible rep-
resentation 7 of A on a Banach space X and a vector ¢ € X such that if
zy = m(p*™1)z then the set S = {x1, s, 23,243\ {0} is linearly independent
in X and contains x, 2. Using Sinclair’'s theorem we find an invertible
element a € A4 such that w(a)z1 = 23, m(a)ze = @1 and 7(a)y = y for
y € S\{z1,72}. Let ¢ be the quasinilpotent a~'pa. Then we find that pq,
p+q, [p,q), and {p, g} are not quasinilpotent, since their images under =
have a nonzero eigenvalue. Indeed, noting that 7(q)z; = w(p)x; for i = 3,4,
one verifies that x4 is an eigenvector for m(pg), that z; — 2 is an eigenvec-
tor for 7(p + ¢) and for =({p,q})) and that z; — 4 i an eigenvector for

#(lp,q]). =

An immediate consequence is the following
TuEOREM 2. Let A be a Banach algebra. The following are equivalent:

(a') Q-+ Q - Qs
(b) QR C @,
(¢} [@ Q@ cQ,
(d){Q.Q}< Q,
(e) @ =Rad A.

REMARKS. (i) The equivalence of (a), (b) and (e) is due to Z. Stodkowski,
W. Wojtysski and J. Zemének [16], who use subharmonicity of spectral
radius [17] as well as Jacobson’s density theorem. Ina previous version of
the present paper, these tools were used to prove the equivalence of (c)
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to (e). The new method simultaneously yields all equivalences and is more
transparent.

(ii) In [16] it is shown that if an element p € Q satisfies D,p(A) C Q then
p € Rad A. Proposition 1 improves this result to the implication D,(Q) C @
= p € Rad A Note that, if p € A is not assumed to be quasinilpo-
tent, the hypothesis Dy(Q) C Q or even D;(Q) CRadA does not imply
Dp(A) CRad A, since there exist nonabelian Banach algebras for which
Q = {0 (see [2).

(iii) In Sinclair’s theorem the element a € A can in fact be chosen of the
form a = e for some b € A. Therefore the quasinilpotent element q in our
proof is in fact homotopic to p via the homotopy ¢(t) = e™*pe®® (¢ € [0,1]).

If ¢" € R, then it is easy to see that DR(Q) € Q. We prove that the
converse also holds for a quasinilpotent element. The example of the Banach
algebra M,,(C) shows that this conclusion is best possible.

THEOREM 3. Let A be o Banach algebra, p a quasinilpotent element in
A and n a positive integer, If D(Q) € Q then p" € Rad A.

Proof. Suppose that p™ ¢ Rad.A. We will construct a quasinilpotent
g € A such that D2 (q) is not quasinilpotent. Since p is quasinilpotent and
p" is not contained in Rad.A there exists an irreducible representation
on a Banach space X and an z in X such that if z; = 7(p*~1)z, then the
set S = {zx : 1 < k < 5n + 1}\{0} is linearly independent and contains
LY, ... Tp41. By Sinclair’s theorem we find an invertible ¢ € A such that
m(a)#1 = Tpt1, T(a)Bpq1 = 21 and w(a)y =y for y € S\{z1, £nr1}; hence
m(a)zy = 2p for 1 <k < B5n+1and k # n+ 1. Define g = a~'p"a. Then g
is quasinilpotent and 7(g)z1 = Zont1, 7(q)Tny1 = 21 and w(g)zy = 7 (P )k
forl <k <bn+land ks#n+1. '

An easy calculation (using the Leibniz formula for inner derivations)
shows that DY y(m(@))m1 = &1+ p2gn 15 + Azanty for some scalars A and u.
However, since 7(p)Tan4m = Tontm1 and w(qp)zon pm = 7 (pg)tanem for
all m, one verifies that D7 oy (7(@))T2n4m = O and hence Do (w{a)) s +
BZon41 + AZ3p41) = £1 + UB2m+1 + AZ3nr1. Thus the operator D ) (m{g))

is not guasinilpotent. The conclusion is that D7 (g) is not quasinilpotent
either. »

The next result, which will be used in the following section, improves a
theorem of Grabiner [5] on Banach algebras consisting of nilpotents.

PROPOSITION 4. Let A be o Banach algebra consisting of algebraic ele-
ments. Then there exists m € N such that for each a € A there is g nonzero
polynomzal p, of degree at most m, with p(a) = 0.
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Proof. The Banach algebra A/Rad .4 consists of clements with finite
spectrum, and so by Theorem 5.4.2 of {3] must be finite-dimensional. Thus
there exists n € N such that for each o € A there is a nonzero polynomial
p, of degree at most n, with p{a) € Rad A.

Now a quasinilpotent algebraic element must be nilpotent. Thus the
Banach algebra R = Rad.A consists of nilpotents, and thus by Grabiner’s
theorem [5] must have bounded index of nilpotence. Hence there exists k € N
such that for each ¢ € Rad A we have ¢® = 0. It follows that for each o € A
there is a nonzero polynomial p of degree at most m = nk with p{e) = 0. w

An operator A on a Banach space X is said to be polynomially compact
when there is a polynomial p 5 0 such that p(4) is compact.

COROLLARY 5. Let A be o norm closed algebra of polynomially compact
operators on a Banach space X. Then there exists n € N such that for every
A € A there is a nonzero polynomial p of degree at most n such that p(A)
8 compact.

Proof. Consider the Banach algebra B = A/ AN K(X). B consists of
algebraic elements so from the previous proposition it has bounded index, n
say. S0 for every A € A there exists a nonzero palynomial p with degp <n
such that p(A4 + K (X)) = 0, which means that p(A) is compact. =

3. Applications to invariant subspace theory. In the last fifteen
years, much work has been done on simultaneous triangularizability of sets
(especially algebras) of operators (see [4], [6], [7], [L0], [11] and their ref-
erences). We recall that a nest A on a Banach space X is a complete to-
tally ordered set of closed subspaces of X containing {0} and X. A set §
of bounded operators acting on X is called simultaneously triangularizable
when there exists an S-invariant nest which is maximal as a nest.

An immediate corollary of Theorem 2 is the following.

PROPOSITION 6. Let A be o norm closed algebra of polynomially compac;t
operators on a Banach spoce. If [@,Q) C @ or {@,Q} € Q then A is
simultaneously triangularizable.

Proof. For such algebras Radjabalipour [10] has shown that the equality
Q = R implies that A ig simultaneously triangularizable. Thus the result
follows from Theorewm 2. m

REMARK. (i) A different proof of the first implication (and also of Rad-
jabalipour’s theorem) will follow as a special case of Theorem 11 below. Note
also that, for norm closed algebras consisting of compact operators, the same
result has been proved in [4]. The method used in [4] is quite different and
applies to more general operator algebras.
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(i) If A is a simultaneously triangularizable closed algebra of compact
operators, then @ is an ideal (see, for example, Theorem 2 in (7]). This is
no longer true for norm closed algebras of polynomially compact operators,
as can be seen from the example in [10].

In [6] it is shown that if A is an algebra of operators on a Hilbert space
H which is closed in the weak operator topology and contains a maximal
abelian selfadjoint algebra, then the condition @ = R implies simultancous
triangularizability of A. Since by [1] there is no proper ultraweakly closed
subalgebra of B(H) containing a maximal abelian selfadjoint algebra, the
theorem is also valid if A is assumed to be ultraweakly closed. Combining
this with Theorem 2, the following is immediately obtained.

COROLLARY 7. Let A be an ultraweakly closed subalgebra of B(H) which
contains o mazimal abelian selfadjoint algebra. If (@, Q) C Q or{Q,Q0} C @
then A 1s stimultaneously triangularizable.

Recall that a {continuous) representation 7 of an algebra A on a Banach
space X is called topologically transitive when 7(A) has no nontrivial closed
invariant subspaces. In general, it is not known whether the kernel of such
a representation must contain the radical (:= the intersection of the kernels
of algebraically irreducible representations).

LEMMA 8. Let w be a topologically transitive representation of a Banach
algebra A on some Banach space X such that w(A) consists of polynomially
compact operators. Then Rad A C kerm.

Proof. Let J C A be the closed ideal 7 = 7~} (K(X)). By hypothesis,
for each a € A there is a nonzero polynomial p with p(w(a)) compact,
that is, p(a) € J. Hence the Banach algebra B = A/ consists of algebraic
elements. By Proposition 4 there exists k¥ € N such that p can be chosen
of degree at most k. If a € Rad A we conclude that B = =(a)* must be
compact. Suppose that B # 0. Since 7(.A) is transitive and the operator B
is compact, using Lomonosov's lemma (8], one finds ¢ € A guch that the
operator 7(c).B has a nonzero eigenvalue. Since the map 7 is a morphism,
the spectrum of ca® must be nonzero, and so a* ¢ Rad .A. This contradiction
shows that m(a)* = 0.

Thus the algebra m(Rad.A) consists of nilpotent operators of index at
most k. By Theorem 4.1 of [6], m(Rad A) must have an invariant subspace.
Since 7(Rad .A) is an ideal of the tramsitive algebra m(.4), it must be zero. w

PROPOSITION 9. Let A be @ Banach algebra each element of which has

totally disconnected spectrum. Let m be a topologically transitive representa-
tion of A on some Banach space X such that w(A) consists of polynomially
compact operators. If dim(X) > n, then there exist n orthogonal idempo-
tents e; € A such that the operators m(e;) have finite nonzero rank.
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Proof If 7 = n~1(K(X)) then, as in the proof of Lemma 8, the Banach
algebra B = A/J consists of algebraic elements.

Case (i): Suppose that n{J) = {0}. Then 7 induces a representation, ¢
say, of B on X which is (topologically) transitive. By Lemma. 8, ¢(Rad B)
= {0}.

Thus ¢ induces a (topologically) transitive representation 9 of the finite-
dimensional algebra B/RadB on X. Transitivity shows that dim(X) < oo,
and now Burnside’s theorem ([12] Corollary 8.6), shows that (B /RadB) =
B(X}, so w(A) = B(X). If &,...,£, € X are linearly independent, there
exists w(e) € w(A) = B(X) with w(a)éx = kéy for k = 1,...,n and the
corresponding Riesz projections e; of a satisfy our requirements.

Case (ii): Suppose that m(J) # {0}. This is a nonzero ideal of 7(.A) and
hence must act transitively on X. Now let D be the closure of w(J). This
is a transitive algebra consisting of compact operators, so by Lomonosov’s
lemma there exists A € D having a nonzero eigenvalue. The Riesz projection
of A which corresponds to this eigenvalue is a nonzero, finite rank operator
in D. So D is a norm closed, transitive algebra, containing a finite rank
operator. By Corollary 2.5 of [14], if &, k = 1,...,n, are linearly indepen-
dent vectors in X, then there exists Ty in D such that T &, = k&y. Using
the continuity of spectrum on the space of compact operators [3], one finds
m(a) in w(J) having n nonzero, distinct eigenvalues. These will also be in
the (totally disconnected) spectrum of ¢ in A and the corresponding Riesz
projections e; € A satisfy our requirements. m

REMARK 1. In this proposition, as well as in the theorem below, the
agsumption that each element of A has totally disconnected spectrum cannot
be omitted. Indeed, B. Aupetit [2] has constructed a nonabelian algebra A4
of 2x 2 matrices over the bidisk algebra A(Dx D) which contains no nonzerc
quasinilpotents, and hence no nontrivial idempotents. This consists of all

matrices
o f g
d “"(foa(g) a(f))

with f,9 € A(D x I), where fo(z,w) = 2z +w and (af)(z,w) = f(w,=z). If
7(F) = F(0,1), clearly 7 is a transitive representation of A4 on a space of
dimension 2.

TueoruM 10, Let A be o Banach algebra each element of which has
totally disconnected spectrum. Let m be o topologically tronsitive representa-
tion of A on some Banach space X such that w(A) consists of polynomially
compact operators. If n € N is such that D} (@) C @ for all g € Q then
dim(X) < n. .
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Proof Suppose that dim(X) > n + L. Then, by Proposition 9, there
exist n + 1 orthogonal idempotents e; € A such that each m(e;) has finite
nonzero rank. Let &1,...,&nt1 € X be unit vectors such that e} =
51', 3 == 1,...,n+1.

CraM. m(e)(m{A)&ip1) = m(e)(X) foralli=1,...,n.

Proof of Claim. Since w(A)&1 contains §iqy, transitivity of =(A)
shows that w(A)¢;4+1 = X. Hence

w(e)(X) = mle) (w(A}irr) € mles) (m(AYigr) = mle) (m(A)irn)

because the space 7m(e;)(m(A)&;41) is finite-dimensional, hence closed.

It follows that there exist a;, i = 1,...,n, in A with 7(e;)m{a:)&ir1 = &
Let b; = e;ai€:41- The elements b; are nilpotent of index two and 7{bi)is1
= £;. Now notice that the sum b == b; + ... + b, is nilpotent; indeed, if
Ju =€ +...+ep and fo = 0, then bfpni1 = b and (X — fr-1)bfx = 0 for
k=1,...,n + 1. However, my(b)"€nr1 = &1, 50 an(b)™ # 0, contradicting
Lemma 8, since b™ € ‘R by the hypothesis and Theorem 3. =

Let A be an algebra of bounded operators on a Banach space X and N
a nest of A-invariant closed subspaces of X. For N € N, we denote by N..
the closed linear span of all subspaces in A which are properly contained
in N. The operator induced by A € A on the “gap” N/N_ is denoted by
7n(A); that is, my (A4) (z+N.) = A(z)+N_ for all z € N. Note that if V' is
maximal with respect to being A-invariant, then each 7wy is a topologically
transitive representation of A on N/N_.

As a corollary of Theorem 1Q we obtain

THEOREM 11. Let A be an algebra of polynomially compact operators
on some Banach space X which is complete with respect to some algebra
norm which dominates the operator norm. Suppose that DP(Q) € Q for all
g€ Q. If N is any mazimal A-invariant nest, then dim(N/N.) < n for
ol Ne N,

This theorem applies, for example, when A is a closed subalgebra of some
von Neumann~Schatten class, or, more generally, of some complete normed
ideal of compact operators on a Banach space.

We give an example to show that the completeness assumption cannot
be omitted, even for algebras of compact operators:

EXAMPLE 12. There exists an algebra of compact operators on a sepor-
able Hilbert spoce which contains no nonzero quasinilpotents and yet is not
simultaneously triangularizable.
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_ Proof. Let Ag be the Banach algebra of all continuous functions F :
D x D — M3(C) which are holomorphic in I} x I. Consider the direct sum

w(Fy= Y0 F(1/n,1/m)

(r,m)ENE

ag an operator on a separable Hilbert space. It is easy to see that 7 is a
morphism, and [|7(F)|| < sup{||F(L/n,1/m}| : {(n,m) € N} < ||F| -
Moreover, 7 is 1-1, a8 can easily be seen from the identity principle. Indeed, if
m{F) = 0 then the analytic function z — F(z, 1/m) vanishes at each 2 = 1/n
and hence identically, and so for each 2z the analytic function w — F{z, w)
vanishes at each w = 1/m and hence identically.

Notice that if «(F) is quasinilpotent then F must be quasinilpotent
since 7 preserves spectrum, and hence F? = (. (Indeed, each F(1/n,1/m)
is quasinilpotent in M>(C) and hence F{1/n,1/m)* = 0. By the identity
principle, F? = 0 identically.)

Let Cy < Ap be the closed subalgebra consisting of all F € Ap which van-
ishon I x {0} L {0} x 3. We claim that n(Cp) consists of compact operators.
For this, it suffices to observe that if F € Cy the sum

20 o0
n(F)=>">" F(l/n,1/m)

mn=1m=1
converges in nonn. Indeed, by the uniform contimuity of F, given ¢ > 0
there exists § > 0 such that |z; — 23| < & implies ||F(z1,w) — Fz,w)| <&
for all w € I and thus sup,, |F(1/n,1/m) — F(0,1/m)|| < e forn > d7L
Since F(0,1/m) = 0 for all m € N, we obtain lim, sup,, |F(1/n,1/m)| = 0;
similarly lim,, sup,, ||[F(1/n,1/m)| = 0 and the claim follows.

Now Aupetit’s algebra A4 C Ap mentioned in Remark 1 contains no

nonzero quasinilpotents. Since Cp is an ideal of A, the corresponding sub-
algebra A of Cy has the same property. This consists of all matrices

= (focf(g) a(gf))

where f,g € A{(ID x D) vanish on D x {0} U{0} x B, folz,w) = 2z +w and
(af)(z,w) = f(w,z). Thus w(A) is an algebra of compact operators with no
nonzero quasinilpotents, Jt is evident that the compression of m{A) to each
of its two-dimensional invariant subspaces is transitive (in fact, it equals
Ma(C)) and thus 7(.A) is not simultaneously triangularizable. m

As remarked earlier, the converse of Theorem 11 fails, even for n =1,
for algebras containing noncompact operators (see [10]); it is true when
ACK(X):
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PROPOSITION 13. Let A be ¢ norm closed algebra of compact operators
and N o mazimal A-invariant nest. If dim{(N/N_) < n for oll N ¢ N,
then Q™ € Rad A (end so D(Q) C Q) for oll Q € Q.

Proof. Suppose that there exists @ € @ such that A = Q" ¢ Rad A.
Then there exists B € A such that the spectrum of BA is nonzero. Ag
BA is compact, there exists a maximal nest, N say, of closed subspaces,
containing A, which triangularizes BA (see [13]}. Thus the (scalar) operator
induced by BA on some “gap” of A is nonzero; it follows that BA cannot
vanish in the corresponding “gap” of N, and so neither can A.

Thus there exists N € A such that «x(Q™) is not zero, Let x € N/N_
be such that my (Q™)x 5 0. As remarked in Section 2, and since the opera-
tor w((2) is quasinilpotent, the vectors z, 7y (Q)z, ..., 75 (Q" )z ave linearly
independent and hence dim{N/N_}) > n+ 1, u
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