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Convex sets in Banach spaces and a problem of Rolewicz
by

A. 8. GRANERO, M. JIMENEZ SEVILLA
and J. P. MORENO (Madrid)

Abstract. Let By be the set of all closed, convex and bounded subsets of a Banach
space X equipped with the Hausdorff metric. In the first part of this work we study the
density character of By and investigate its connections with the geometry of the space, in
particular with a property shared by the spaces of Shelah and Kunen. In the second part
we are concerned with the problem of Rolewicz, namely the existence of support sets, for
the case of spaces C(K).

1. Introduction. In this paper we discuss some topics concerning the
set Bx of all bounded, closed, convex and nonempty subsets of a real Banach
space X. The Hausdorff distance between Cy,Cs € By is given by

d(Cl,C’g) = iIlf{E >0:CLcCcCy +EB|[.”,CQ c O+ EB”.“},

where Bj. is the unit ball of X. It is well known that (Bx,d) is a complete
metric space [11] and, hence, a Baire space.

The first part is devoted to the study of the density character of Bx
and its interplay with different geometrical properties. These properties are
property a, the (weak*) Mazur intersection property and the following cor-
nerstone property, which we shall name the Kunen—Sheloh property: among
any uncountable family of elements of X, there is one that belongs to the
closed convex hull of the rest. Shelah [23] (assuming the diamond principle
for R1) and Kunen [18] (assuming the continuum hypothesis) constructed
Banach spaces § and K respectively with the above property. Most of our
work in Section 2 will tend to emphasize the effects of the Kunen~Shelah
property on the topological properties of By . For instance, we prove here
that, in many cases, spaces enjoying this property satisfy dens X = densBx
while, in general, dens Bx = 29¢% X, Moreover, assuming ¢ < 2*! (where
wq is the first uncountable ordinal), an Asplund space X with dens X = ¢
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enjoys the Kunen-Shelah property if and only if dens X = dens Bx. These
conditions are satisfied, for instance, by I and S.

Section 3 is related to the problem posed by Rolewicz on the existence
of a support set in any nonseparable Banach space. We shall restrict our
attention here to C(K) spaces. Lazar [14] proved that for every compact
Hausdorff space K such that either K is not hereditarily Lindelsf or K is
not hereditarily separable, C'{K) has a support set. Recently, Borwein and
Vanderwerff proved in {1] the existence of such a set in the Kunen space
K (which is of the form K = C(K) with K scattered compact) solving a
problem posed by Finet and Godefroy [3].

We begin by observing that the result of Borwein and Vanderwerff can
be extended to the class of all nonseparable Asplund spaces C'(K). Then
we characterize the Hausdorff compacta K which are not hereditarily Lin-
deldf in terms of the existence of a positive semibiorthogonal system (see
definition in Section 4). As a consequence, we show that the existence of a
support set in a Banach lattice does not imply the existence of a positive
semibiorthogonal system. Thus, the characterization obtained in [1] can-
not be strengthened in this direction. Finally, we prove that every Banach
space C(K) where K is not measure separable (denoted by K & MS) has a
support set. :

2. Density character of Bx. In this section, the density character
of Bx is investigated. Recall that, if £2 is a topological space, the density
character of 2 (denoted by dens(2) is the smallest cardinal number of a
dense subset of £2. Given a Banach space X, a first easy estimate of dens By
is

(2.1) dens X < dens By < 29ensX

and our aim consists in determining necessary and sufficient conditions en-
suring either left or right equalities, and their consequences for the geometry
of the space.

There is a general argument to estimate dens Bx: the existence of an
“almost biorthogonal” system in X x X™ like the one appearing in the
foliowing definition. A Banach space X is said to have property a (see [21))
if there exist 0 < X < 1 and a family {zi, 25 her C X x X* with [jz;]| =
[} " = =f(z:) = 1 such that: (1) for § # 4, [z}(z;)] < A and (2) By =
e6({£x;}icr}. Next, we denote by card I the cardinality of the set I.

PROPOSITION 2.1. Let X be a Banach space with o family {z;, 2} Yier C
X x X* such that ||z < M ond ||z}||* < M for some constant M > 0,
zi(®i) =1 and |z} (z;)| < A for j # 1 and some 0 < A < 1. Then dens By >
20441 In particular, if X has property o, then dens By = 2dens X
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Proof. For each subset J C I, we consider Cy = @({z;}ics) € Bx-
Then, if J # J' and i € J\ J', we have

i = ¥l 2 23 (@i — ¥)/ =3 1" = (1= N)/ll=5 [1* = (L A)/M
for every y € Cy. Hence
d(Cy,Cp) 2 dist(zi,, Cp) = inf{||zy, —y||: v € Cp} = (1 = N)/M,
and the proof is finished. w

Some consequences can now be deduced from the preceding proposition.
First, a Banach space X with a biorthogonal system § = {z;,2}}ier C
X x X* satisfies dens Bx > 2°47. Moreover, if S is a long biorthogonal
system (that is, if cardI = dens X) then dens Bx = 297X Indeed, by
using a result of Plichko [19] (as in [7]} we obtain a bounded biorthogonal
system with the same cardinality as the given one. The assertion then follows
from the preceding proposition. The preceding arguments lead us directly
to the characterization of finite-dimensional Banach spaces as those spaces
satisfying dens By = Ngp.

If n is a cardinal, recall that the cofinality of n (denoted by cf(n)) is the
smallest cardinal 3 such that there exists a sequence {8;}ics of ordinals
strictly less than i satisfying n = sup{f; : ¢ < #}. As another application
of Proposition 2.1, we derive an estimate of densBx when either X has
the Mazur intersection property, or X* has the weak* Mazur intersection
property. The major impact of this estimate occurs when the cofinality of
dens X is not countable. Recall that a Banach space X is said to have
the Mazur intersection property ([16], [4]) if every element of Bx is the
intersection of closed balls. If Y is a dual Banach space, denote by By the
set of all weak™ compact convex and nonempty subsets of ¥. The dual
Banach space Y is said to have the weak® Mazur intersection property [4] if
every element of By is the intersection of closed dual balls.

ProrosiTiON 2.2. Let X be an infinite-dimensional Bonach space. If
esther X has the Mazur intersection property or X* has the weak™ Mazur
intersection property then dens By > 2% for every o < dens X. Moreover,
if cf(dens X) is not countable, then dens By = 29w X

Proof. Under these hypotheses, it is proved in [9] (see also [10]) that
there exists of a bounded family {z;, 2} }ie; C X x X* and a set {Ai}ier C
(0,1) satisfying card I = dens X such that 2¥(z;) =1 and 2 (z;) <1- X
for every j # 4. Since

- _
I=|J{iel:x>1/n},
na==l

for each o < dens X there is no € N such that card({t € I : A > 1/na})
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> a. Similarly, if ¢f(dens X) is not countable, there exists ng € N with
card({i € I : A; > 1/ng}) = dens X. The remainder of the proof follows
eagily by using Proposition 2.1. =

So far we have shown the existence of a wide class of Banach spaces
satisfying dens Bx = 295X gince every “reasonable” Banach space has a
long biorthogonal system. On the other hand, the only examples exhibited
satisfying

(2.2) dens By = dens X

are finite-dimensicnal spaces. It is now natural to inquire whether there ex-
ists an infinite-dimensional space X for which equality (2.2} holds. Needless
to say, we are looking for a Banach space admitting no equivalent norm with
property c. This is the case, as observed in [7], of any Banach space X with
the Kunen—Shelah property: given an uncountable subset B of X, there is
z € B such that ¢ € ©@(B \ ). The first known space with this property
was constructed by Shelah [23] using the diamond principle for ¥y. Later
on, assuming only the continuum hypothesis, Kunen [18] provided a second
example. These spaces where used to answer some long standing questions
in the theory of Banach spaces (see for instance [1], [3], {7}, [8], [9]). Both
examples are Agplund and, in addition, the Kunen space K is of the form
K = C(K), K being scattered compact. As the reader probably guesses,
these spaces are our candidates to fulfill equation (2.2).

Let us fix some notation. It will be convenient to consider the following
subsets of By: Uy = {C € By :int C' # 0} and Ox = {C € Bx : 0 € int C}.
It is clear that both Ox and Ux are open and Uy is dense in By . Similarly,
consider the following subsets of By: Uy = {C € BY : intC # @} and
O} = {C € By : 0 € int C}. Given the Banach space X and a subset
C € Ox, recall that C° = {f € X*: f(z) £ 1, z € C} is the polar set of
C. In turn, given C € O%., the set C, is C° N X. Recall that f € C° is a
weak* denting point if, for every £ > 0, there exist z € X and & > 0 with
diam{g € C° : g(z) > f(z) — §} < =

ProrosiTiON 2.3. Let X be an Asplund space with the Kunen~Shelah
property. Then every subset of By is a countable intersection of closed
half-spaces. If, in addition, dens X > ¢ and dens X = {dens X)™°, then
dens Bx = dens X

Proof Let € € Bx and assume, without loss of generality, that 0 €
int C. Then C° C X* is a weak™ compact and convex set with nonempty
interior. Sinceé X is an Asplund space, X* has the Radon-Nikedym property
and C° = @"" (D), Da being the set of all weak* denting points of C°. By
91, theré*exists a countable set D, C D, such that D, C D!, implying
C°=tw" D,)and C={re X :2*(z) <1, z* €D}

icm
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For the second assertion, given a dense subset {z} };e7 of X* with card I
=densX* =densX and J C I, define C; = {z € X : z}(z) < 1, i € J}.
Then

Ox C F={C;€Bx :JCI, Jcountable}.

Since dens Bx = dens Ox and dens X = (dens X} = card F, the proof is
complete. Notice that, in fact, we obtain card X = dens X = densBx =
cardBxy. m

We can paraphrase the result obtained in the preceding proposition by
stating that spaces under consideration are extremely “poor” in convex sets.
We shall see later that a certain converse may be deduced with an additional
hypothesis. Recall that a family {z, : & < wy} in a Banach space X is weakly
right-separated if o & {xg: > a} for all @ < w;. It can be easily seen
that the lack of weakly right-separated families implies the Kunen—Shelah
property [18]. As far as we know, it is an open problem whether or not the
converse holds. The Kunen space has no weakly right-separated families; in
fact, it is hereditarily Lindeltf in the weak topology. It seems to be unknown
whether or not the Shelah space has weakly right-separated families. We are
now interested in the question if having no weakly right-separated families
implies (2.2). The answer, in some cases, is affirmative.

PrOPOSITION 2.4. Let X be a Banoch space with no weakly right-sepa-
rated family. Then:

{i) Every subset C € BY. is w*-separable.
(ii) Bvery subset C' € Bx is a countable intersection of closed half-spaces.
(iil) If dens X = dens X* > ¢ and dens X = (dens X)™, then dens X =
dens Bx.

Proof. (i) Let C € B%. and assume that C is not w*-separable. Then we
can construct, in a standard way, a family {Cq }a<cw, € By of w*-separable
subsets of C such that Cy ¢ Coqq for all @ < wy. If we take fo € Coqr\ Ca
and %, € X satisfying

sup{f(za) : f € Ca} <1< fal®a),

then f,(zs) < 1 whenever o < @ and thus zo & {zs: 53> a} for all
o < wy. Hence, {Zo}a<w, 18 a weakly right-separated family, which is a
contradiction.

(i) Given C' € Oy, there is a sequence {zy} C C° such that ° =
{z*}" . Therefore, C = {z € X : 2% (z) < 1, n € N }. The statement of (ii)
can be extended to every element of Bx by using the density of Ux.

(ili) can be proved as in Proposition 2.3. =
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Recall that Sersouri [22] proved the equivalence between the following
properties:

1. X has the strong Kunen-Shelah property: For every family {z,}acu,
C X, there exists an ag such that

Bag € E({Ig 18> ao}).

2. Every family (Ca)acw, 0f closed convex subsets of X which is decreas-
ing (i.e. Caq1 C© Cy) is stationary (ie. there is oy < wy such that C, = C,,
for every & > ag)-

By using arguments similar to those exhibited in the preceding proof,
we can show that for an Asplund space X any of the above properties is
equivalent to

3. Every element C € BY. is weak™ separable.
4. X has the Kunen—Shelah property.

It is worth mentioning that condition (2) implies clearly the Corson prop-
erty (C), that is, every collection of closed convex subsets of X with empty
intersection contains a countable subcollection with empty intersection. On
the other hand, we do not know if the Kunen-Shelah property implies the
strong Kunen-Shelah property for a general Banach space.

The connections between equation (2.2) and the Kunen—Shelah property
become clearer when dens X = ¢ as it occurs with the Kunen and Shelah
gpaces. For this purpose, we find it necessary to assume that ¢ < 24, a
conditicn which is weaker than the continuum hypothesis.

PROPOSITION 2.5. Assume that ¢ < 2** gnd consider a Banach space X
such that dens X = ¢.

(i} If dens Bx = dens X, then X enjoys the Kunen—Shelah property.

(iiy If, in addition, X is an Asplund space, then dens Bx = dens X iff
X has the Kunen—Shelah property.

Proof. (i) If X lacks the Kunen—Shelah property, we can obtain, as in
Proposition 2.2, a bounded uncountable family {2,}a<w, and € > 0 such
that dist(xa,%5({zs : § # a})) > ¢ > 0. Then Proposition 2.1 yields the
estimate dens By > 2“* > dens X, which is a contradiction.

(i) One implication is already proved in part (i) and the other follows
from Proposition 2.3. »

Let us make some remarks about the material in this section. A first
comment should be made on the density cha,racter of B%.. An estimate
analogous to the one given in (2.1) is

icm
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dens Bx = dens By. < dens Bx-.

The equality follows from the facts that the sets @x and O%. are homeomor-
phic, dens By = dens Oy and dens By. = dens O%.. It frequently occurs
that dens BY. < densBx-«, for instance, when X = #; since ¢, has a long
biorthogenal system (£1(R) embeds isometrically into £,,). Also, it is the
case when X = K gince K* = {£1(R) and, consequently, dens Bx~ = 2°.

The second observation concerns the concept of nicely smooth norm
introduced by Godefroy in [5]. Note that Proposition 2.4 implies that non-
separable Banach spaces with no weakly right-separated family do not admit
an equivalent nicely smooth norm. Indeed, every closed dual ball is w*-
separable. This is somehow a generalization of a result given in [9], which
provides an alternative proof of the fact that no nicely smooth norm exist
in the Kunen and Shelah spaces.

The third and final remark pertains to Proposition 2.4 and can be ex-
pressed with the followmg open question raised by Godefroy: is every w*-
closed (not necessarily convex) subset of the dual of the Kunen space w*-
separable?

3. On the Rolewicz problem. A point z of a set C € By is called
a support point for C if there is a functional z* € X* such that 2*(z) =
infoz* < sup z*. We will say that C € Bx is a support set if C contains
only support points. Rolewicz proved in [20] that a support set must be
nonseparable and asked whether such a set exists in every nonseparable
space. Later on, some authors directed their attention to the study of this
suggestive problem. Kutzarova [12], Lazar {14] and Montesinos {17] proved
the existence of support sets in certain nonseparable spaces. The underlying
idea is that such sets can be constructed from an uncountable biorthogonal
system.

‘We shall restrict our attention in this section to C(K) spaces, where K is
a compact Hausdorff space. Our aim is to examine topological conditions on
K which ensure the existence in C{K) of a support set. Lazar found in [14]
two such conditions: K contains a non-Gy closed subset {equivalently, K is
not hereditarily Lindeldf) or K is not hereditarily separable. Recently, Bor-
wein and Vanderwerff solved a problem by Finet and Godefroy [3], namely
the existence of a support set in the Kunen space. In the first result of this
section we observe, using Lazar's arguments, that this fact can be extended
to every space C(K) where K is an uncountable scattered compact space.
Recal(l t);hat the ath derivative of a topological space K is usually denoted
by K

ProposiTION 3.1. Fwery nonseparable Banach space C(K), with K -
Hausdorff and scattered compact, has o support set. :
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Proof If K& = @, then {K \ K(®},cy, 15 an open covering of
K\ K1) without a countable subcovering. Otherwise, there is qp < wy
such that K@)\ K (e+1) js uncountable. In any case, K is not hereditarily
Lindeldf. w

Observe that, if K@) = § for some & < wy, then C{K) has an uncount-
able biorthogonal system.

The existence of a support set in the Kunen space (which has no uncount-
able biorthogonal systems) and the subsequent necessity to clarify the inter-
play between both concepts, moved Borwein and Vanderwerff [1] to recap-
ture the following weakening considered by Lazar. The family {z4, fota<w:
C X x X* is called a semibiorthogonal system if fa(xs) = 0 for all & < 4,
Jalza) > 0 and fs(za) = 0 for all «. Tt is proved in 1] that a Banach space
has a support set if, and only if, there exists a semibiorthogonal system.
Since every C(K) space is a Banach lattice, we can adopt this new point of
view 0 examine the above characterization.

The notation and terminology used in the remainder for Banach lattices
can be found in [15]. Given a Banach lattice, denote by Xt its positive cone.
Let us say that a semibiorthogonal system {z,, fu }acw, 18 positive whenever
Ty € XT and f, € (X*) for every . A natural question arises: does there
exist a positive semibiorthogonal system in every Banach lattice with a
support set? We shall answer this question in the negative as a consequence
of the following characterization.

We say that a family of sets {C}acw, is ezpansive (contractive) when-
ever Cp & Chqq (respectively Cutq & Co) for every o < wh.

ProposiTion 3.2. Let K be a compact Hausdorff space and let X =
C(K). The following are equivalent:

(i) K is not hereditarily Lindeldy.
(ii} X has an ezpansive family of closed ideals.
(iii) There is o positive semibiorthogonal system in X x X*.
(iv) There is a positive semibiorthogonal system in X x {§; 1 k € K}.

Proof. (i)=(il). If K is not hereditarily Lindelsf, there exists an un—
countable family {Ua}a<w, of open subsets of K such that U = |, U
cannot be covered by any countable subfamily of {U, }a<w, - We may assume
that Uy & Ugyr for every @ < wy. Then the family {Ky = K \ Ustacuw
of compact sets is contractive and the associated family of closed ideals
Iy = {z € O(K): z|k, = 0} is expansive.

(ii)=(iii). Take Tq € Joy1 \ Jo With 24 > 0 and g, € If € X* with
9a(ma) > 0. As Iy is a sublattice, we have fo = gt € It and fu(zs) 2
GalZe) > 0. Then {Z4, fatacw, 15 a positive semibiorthogonal system.
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(ii)=(iv). Let {Za, fata<w, C X X X* be a positive semibiorthogonal
system. Recall that f, is a regular measure defined on the Borel subsets
of K. If we set Go = {k € K : z,(k) > 0}, then Gg N supp fo = § for
8 < a. We can pick k, € supp f, such that z,(ks) > 0. With this choice,
{Za, 8k, }a<uw, i8 a positive semibiorthogonal system.

(iv)=(i). Consider the positive semibiorthogonal system {4, 8k, }a<w, -
Then the family {U, = {k € K : 25(k) > 0}}a<w, is an open covering of
the set A = {ka}a<w, Which does not admit any countable subcovering. m

As noted in [1], the “two arrows” space K is hereditarily Lindeldf and
hereditarily separable, while C(K) has an uncountable biorthogonal system
and hence a support set. This example provides a negative answer to the
question preceding Proposition 3.2.

A support set C < X (not necessarily bounded) is Y-supported [1], where
Y ¢ X~ if for every x € C there is f € ¥ with f(z) =infe f <sups f. A
support cone is a support set ¢ C X such that Az € X whenever A > 0 and
zeC.

PrOPOSITION 3.3. Let X be o Banach lattice. The following are equiveo-
lent:

(i} X has an expansive family of closed ideals.

(ii) There is a positive semibiorthogonal system in X x X*.
(iii} There is an (X*)*-supported cone C C X+,
(iv) There is an (X*)"-supported set C ¢ X+ with 0 € C.

Proof. (i)=(ii) is already done in Proposition 3.2.

(ii)=-(i). Denote by {za, fa}a<w, the positive semibiorthogonal system.
Consider for every a < w; the smallest closed ideal I, containing {#s}s<a.
Then f, € I:. Indeed, this is easily proved from the fact that f, > 0,
zg > 0 for 8 < wy, and

I, = {Sﬂ € X : x| < |u| for some u = Z)\i:ci and a finite set F C a}.
i€F
fu=3 0Nz, F C o afinite set, it is clear that ut < a = 3, o Aiz;
and u” < b= 3, po(~ )\)xl,whereF*‘ ={i € F: )\ =20}and F™ =
{i € F: X < 0}. Thus, for 0 < z < ju| we have 0 < fo{z) < fa |u!) =
falut) + fa(u™) € fola) + fx(b) = 0. On the other hand, fo & I, 50
Io G I.t1. The rest of the proof follows easily from the arguments of [1]. m

We do not know if there is a positive semibiorthogonal system in X
whenever X has an (X*)*-supported set C C X+,

The next result concerns the class M8 of compacta K for which every
regular measure on K is separable. This class contains, for instance, the
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compact ordered spaces, compact scattered spaces and Eberlein compacta.
The class MS has recently been studied by DZamonja and Kunen [2].

ProrOSITION 3.4. If K is o compact Housdorff space and K ¢ MS then
C(K) has a support set.

Proof, Since K ¢ MS, there exists a regular measure ¢ on K which
is nonseparable. From the Maharam-Stone theorem [13, p. 122] we ob-
tain Ly({0,1}*1,») — Li(u) where v is the Haar probability measure
on {0,1}, This means that L;({0,1}**,») — C(K}* Since f3(w;) —
L1 ({0,1}*2,1), there is a quotient map ¢ : C(K) ~— f2(w;) and, in conse-
quence, an uncountable biorthogonal system in C'(K). m

On the other hand, if K is any nonmetrizable Rosenthal compact space
then C{K) contains an uncountable biorthogonal system and the class of
Rosenthal compact spaces have property MS (see [6]).

We finish this section by mentioning that the Rolewicz problem is still
open in C(K) spaces. If there exists a compact Hausdorff space K for which
C(K) has no support set, then K should be hereditarily Lindeléf, hered-
itarily separable and K € MS. The “two arrows” space K satisfies these
conditions but it cannot be a counterexample. Recall that Borwein and
Vanderwerfl proved that if X has the strong Kunen-Shelah property (as
for instance, the Kunen and Shelah spaces), then X* has no norm closed
weal*-supported set. .
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