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The size of characters of compact Lie groups
by

KATHRYN E. HARE (Waterloo, Ont.)

Abstract. Pointwise upper bounds for characters of compact, connected, simple Lie
groups are obtained which enable one to prove that if 4 is any central, continuous measure
and n exceeds half the dimension of the Lie group, then ™ € L. When 4 is a continuous,
orbital measure then p™ is seen to belong to I?. Lower bounds on the p-norms of characters
are also obtained, and are used to show that, as in the abelian case, m-fold products of
Sidon sets are not p-Sidon if p < 2m/(m + 1).

1. Introduction. The purpose of this paper is to obtain estimates on
the size of characters of representations of compact, connected, simple Lie
groups in order to study the asymptotic behaviour of the Fourier transform
of central measures and to investigate Sidonicity problems.

In [13] Ragozin proved the striking fact that if G was such a group,
and y was a continuous, central measure on @, then p¥™ & ¢ L}(G). (The
product here is convolution.) Consequently, fi(A) — 0 as the degree of the
representation A tends to infinity, and also (see [15]) 'I;:;(;) — 0 as deg A —
oo when x is not in the centre of G. In the first part of the paper we prove
that if # does not belong to the centre of G and r = rank G, then

Tr Az ;

‘ de)é()\)l < c(w)(deg)\)—W(dlmG—r).
From this we are able to show that if s is any continuous, central measure on
G then " € L'(G) for all n > dim G/2. We do this by obtaining estimates
on the rate of decay of the Fourier transform which are sharp enough to prove
that if n > dim &/2 and u belongs to a certain class of central measures (a
clags which includes all continuous, orbital measures) then ™ € L*(G).

In the second part of the paper we obtain lower bounds on the p-norms of
characters. Earlier regults of this nature were found in [3] and [4]. The main
difference between the earlier results and ours was that the earlier estimates
involved an unknown constant which depended on the group &G and/or p,
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2 K. E. Hare

and this was not adequate for answering Sidonicity questions. We are able
to show that if G is the product of compact, simply connected, simple Lie
groups whose ranks tend to infinity, then the m-fold product of the FTR set
of G (an m-fold product of Sidon sets) is not p-Sidon if p < 2m/(m +1}. It
remains unknown if this set is 2m/(m + 1)-Sidon.

NoTaTION. We will be using the following notation throughout the pa-
per: Given a compact, connected, simple Lie group G of rank r we will let
Z(Q) denote its centre, W its Weyl group, T' a maximal torus of G, and ¢
its Lie algebra. We denote by & the set of roots for (@, T), and by $7 the
positive roots relative to a fixed base A = {ay,...,an}. We let Ay,..., Ay
he the fundamental dominant weights relative to A and A* the set of all
dominant weights. This set is in 1-1 correspondence with G gy € G is in-
dexed by its highest weight A € At. Its degree will be denoted by d. The
weights of A € AT are given by

O ={peA:wp)<AforalweW}

where g < A means X — p is a non-negative integral sum of positive roots.
We set o= 3.7, A;. By the Fourier transform of a central measure p on G
we mean
- Tr Az
Ay =1 —awl du
a %
(rather than the appropriate scalar multiple of the dy x d) identity matrix),

2. Upper bounds for the trace function

2.1. Root systems. First we need a result about root systems which may
be of independent interest. We will write 0, for the directional derivative in
the direction of & in @; we think of @ as both in the Euclidean space and
its dual. We denote by ¢ the function g(z) = [] e+ @(%).

TeEOREM 1. If & is any root system then

I @2 T (e

aEdt agFt

To prove this we need a lemma.

LemMaA 2. If @ is an irreducible root system with corresponding Weyl

group W, then
IT ey =1w1 [T (2@

acdt agd+

Proof. It is shown in the proof of [16], (4.14.5), that if A is any linear
functional on the Euclidean space, then
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z detw (w(A)™ =

{0 if m < |®7F],
weWw

mlk(N)g if m =¥,

where

IIae¢+(Asa)

nggp'{— 80£ (Q)

Suppose now that A belongs to the dual of a compact, connected, simple Lie

group with root system &. From the Weyl character formula and the obser-

vation above it follows that there is a sequence of homogeneous polynormials

gm of degree m satisfying

T wew det w (w(d + 0) (@) * /|8 + g(z) Xom s y
e—te(z) H cot (ezcx(w — ]_)

Since (***) —1)/a(z) — 1 as = ~» 0, by taking limits we see that we have

S wew detw (w(X + o) ()1
&+ le—2(®) g ()

9wl I (o

agdt nEdt
where the last equality is from the Weyl dimension formula. =

k() = [W|

Tr A(z) =

dy = Tr A(0) = lim = k(A + o).

Thus

W ,eot (At o
H dalq) = Edsd)\

Proof of Theorem 1. If & is not irreducible then ¢ decomposes as Ule B,
where the @; are irreducible pairwise orthogonal root systems with positive

roots dﬁ+ satisfying U_, -1 d5+ &+, Hence if ¢; =[] cs+ @, then
2

k
IT eatey =T I] Oulay,

acdt i=1acs}

and so an application of the lemma shows that it suffices to prove

wi ] ) > [ (e
agdt acdt
whenever &t is the set of positive roots of an irreducible root system with
Weyl group W.

This can be proven by considering each of the classical and exceptional
simple Lie groups separately. We will give the proof for type Bn, n > 2, (the
proof is typical) and leave the others for the reader.

We first note that it is equivalent to prove

wl I (ee) = 2171,
aedt
and that is what we will actually demonstrate.
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For type By, the Weyl group has cardinality 2"n! and there are n* positive
roots. These include

{Zak 1<'L<g<n}

as well as
nl
{a1+...+aj_1+22ak i = 23n}
k=j
Thus

T

Wl I (e 2 2mnt1m2" [ @n -7 +1) = F(n).
acdt =2
Now F(2) = 48 > 22" 50 assume inductively that F(n) > 27" Clearly,
F(n)2(n+ V{n+I(2n+1)2n
n+1 '
Applying the induction assumption we cbtain

F(n+1) 2 27 4n(2n + 1)(n + 1)},

Fn+1)=

and one can now eagily verify that F(n + 1) > 2(n+1)* completing the in-
duction step. m

2.2. Pointwise upper bounds. If z € T' and «{z) & 2xZ for any o € ¢+
(such z are called regular), then it is immediate from the Weyl character
formula that

T M) w| _ e
dy 7 da|Tlaear (€ =1} da

Hence if 1 is compactly supported on the regular elements qnd their conju-
gates, an obvious consequence of the continuity of [],cz+ (e**(#) —1) is that
(M) < O(dy"). This means that the interesting pointwise upper bounds
for the trace functions and asymptotic bounds for the Fourier transform
are for the singular (non-regular) elements and the central measures not
supported on the conjugates of the regular elements.

. THEOREM 3. If £ € Z(G) and A =3 a;)7; € G with ay = maxa;, then

[TMz)| . ele)
dx Tax+1

{where c{z) does not depend on ).

It is clear from the Weyl dimension formula that dy < (ay + 1)|¢+], 80
we immediately have the result mentioned in the introduction.
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COROLLARY 4. If = ¢ Z(G) then
|Tr A=)
dx

Proof of Theorem 3. In the proof ¢ will denote a positive constant which

may change. Note that since the trace function is central, we may assume

without loss of generality that z € T Let &(z) = {a € ¢ : a{z) € 2rZ} and

let ¢(z)t = S(z) NPT, It is easy to check from the definition that &(zx) is

a subroot system. The fact that #(z)* is a complete set of positive roots of

this subroot system can be seen from the construection of the positive roots
as those lying on the “positive” side of a hyperplane ([9], 10.1}.

We will denote by g, the function g, = Huresf’(m)"' «. Notice that Theo-

rem 1 says
I ta@)= [ (e
agd(z)t a€d(z)t
and since there are only finitely many choices for $(x)T, the latter product
dominates a strictly positive constant independent of « and A (interpreting
the empty product as 1),
Now

< c(m)d;lﬁqf’ﬂ _ C(m)d;\Ql(dimqu«).

- Haepy (€9 = 1)

lim =1,

e Hae¢ +(O¢( ) - ce(z))

thus the Weyl character formula 1mp11es that

Te\e) = li (Lo S OB RR (e 002
Hacom+{elz) — alz))

Taking the directional derivatives we obtain

eig(m) ZWEW det w HﬂE@(ﬂ:)"’ (W(Q - A), Q) expi(w(g + )\)) a:)

Haeﬁ(m)—l— aa(q:z:) Ha€¢,+\¢(r)+(eicx(m) _ 1)

etelz)

>Haed5+\f15 o (ee(® - 1)

Z—rI

TeA(z) =

and hence
|Tr A=) ¢ {Haeqs(mﬁ [(wle+A), o) }
< . max .
d)\ i H(xEﬂf’"“\di(:u)'F (ﬁw‘(m) — 1)’ wel HOLE@"” (Q + A, O!)

For any fixed w € W, {w~Ha) : @ € $(z}T} is a subset of ¢ of cardinality
equal to |$(z)T|, where at most one choice of 3 or —f3 is made for each
B € &%, Since (w(g+ ), @) = (o+ A, w(a)), this observation implies that

[Locsmy [(wle+A), ) _ 1
[aca+(0+ 2 0) [acot\tuw-1a@+) (@ + A @)

Next we show that for any given w € W the Z-span of w™*(${z)") does
not contain $1. Assume otherwise. Since z ¢ Z{G) there is some a ¢ &+
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with a(z) ¢ 27Z (see [1]). Let # = w™*(a). By our assumption there must
exist integers n; and roots B; € &(z)* with 8 = 3 nyw™1(F;). But then
a(z) = w(B)(z) = 3 nifi(x) € 2rZ, which gives a contradiction.

Let a,...,a, denote the simple roots in @. It is an easy exercise to see
that the Z-span of the set

st{gaiaiedi"':ak#o}

contains all of &, and consequently there must be some § € X with § ¢
+w}($(z)"). But then

1T (e+ A a) Zelo+ A B) = clax +1).
aget\xu—1(#(a)*)

Thus
T A@)] _ c ()

dyx ~ |Hae¢+\¢(m)+(ei°‘(w) ~ Wiy +1)  ax+1 "

Recall that a central measure is one which commutes with all other
measures under convolution.

COROLLARY 5 [13]. If i is a central, continuous measure then f(A) — 0
as dy — oo.

Proof Since u(Z(GF)) = 0, we have Tr A(z)/dy — 0 as d) — oo U a.e.
By the dominated convergence theorem G(A) — 0. m

2.3. Applications. As a result of Theorem 3 we are able to improve upon
Ragozin's work. But first we must obtain a preliminary result on the size of
the Fourier transform of certain continuous measures.

LEMMA 6. Let B1,...,3; € 7 and let K be a compact subset of
{33 €T @(‘7")-1— = {ﬁl) v ;ﬂj}}-
There is a constant c(K) such that
[TrA@)] _ oK)
ax “ax+1
Proof The proof of Theorem 3 shows that if we let

D(z) = 11 (ei*(=) 1),

aE@"‘\{ﬁl:"wﬁj}

forallz e K.

then for 2 € K,
| Tx Alz)] e
dy 7 (ax+1)[D(z)]’ |
Since D is continuous on the compact set K, and never vanishes, the result
follows immediately. m
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NOTATION. Set P; = {z € T : |$(z)*] = 5} and set P =|J,cq 97 Pig-
Then P, is the set of regular elements and Plg*‘l = Z(G).
COROLLARY 7. If 1 is a central measure, compactly supported on Pf

for some § # |®|, then |G(X)| € O(1/(ax + 1)). Moreover, if n > dimG/2
then {f(N"I4, } € 12, and if in addition n € N then ™ € L2,

Proof. For each subset F of & having cardinality 7, let
Bp ={z €T : &)t = F}Nsupp 4
Ifa € F, 2, € Br and z, — y, then by continuity a(y) € 2rZ, so that
()t 2 F. But also ¥ € suppy, so y € P, and thus y € Bp proving that
Bp is closed. By the lemma there is a constant ¢(F) so that
TEMa)l | o(F)
dy T oaxt

for all z € Bp.

Let ¢ = max{c(F) : F C &%, |F| = j}. Since p is central the support of p is
contained in the set of conjugates of the union of the sets By, and hence
T Mz < ¢
da 5
This clearly suffices to prove the first claim in the corollary.

To verify the second claim we use the first part of the corollary and the
fact that dy < (ax + 1)/%"! to obtain

_ .
R = do T la(o) Ia, 1P < Y (a, + 12772,
prtel el

for all & € supp .

But there are at most r(k + 1)"~! points in N” with maximum coordinate
k, thus

o0
Z(ag 4 1)2|¢'+i—2ﬂ < ZT(’C + 1)2|¢+]—2n+r—1’

= k=0

oeG
and the latter sum is finite provided 2|®+|—2n-+r < 0,ie. n > [&1|+7/2 =
dimG/2. =

More generally, the same idea shows that if n > dim G/2 and pa, ..., kin
are central measures, compactly supported on Pf' for some j # |$7|, then
p* ... i, € L2 In particular, if u and v are ceniral and compactly
supported off Z(SU(2)), then y and v are compactly supported on P§ and
thus w * v € L2, This was previously observed by Vrem [17]. Also, if p 2 2,
1/p+1/p’ = 1, and the integer n exceeds dim G/p’, then the same type of
argument again, coupled with the Hausdorff-Young inequality, implies that
if u is a central measure, compactly supported on Pf for some § # ||,
then u" € I? (or C(G) if p' = 1). Hence p#™% € LP for all p < co.
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Corollary 7 can be improved if we assume g is supported on the conju-
gates of the regular elements. First we require a lower bound for d),.

PROPOSITION 8. If A= Y7_, a;; then dx 2 o(G) [T}, (a; + 1) 177,

Proof. In the appendix we show that for each of the compact, con-
nected, simple Lie groups {except type A,, r even, which we handle sepa-
rately below) there is a way to partition the positive roots into classes @,
§=1,...,r, each of size |$7|/r, where if & € @, then (e, ;) # 0.

This property ensures that

IT te+xa) = (a; + 1)1 0
@)y
thus
~11la o+ A "
dAZH 11_11—[ EQ<<Q o Ha + 1)l
aedt+ & j=1

For type A,, r even, we partition (see appendix) the positive roots except

for
” 7
{Zak 15 < 5}

k=7
into classes Q; each of cardinality r/2, and again satisfying (o, A;) # 0 if
o € ;. This partitioning gives the formula

dy = (G HH {0+ A ) ]_l_[<g+/\2ak>

=l ac@y =1

By using the inequality @ + b > v/ab for a, b > 0, we obtain

{0+ A,Zak) St 1)z \/(aj + 1) {@gprs +1)
Py k=j
.,r/2. Hence

fori=1,..
r/2

{a; +1)772 H(a +1)Y2(a; 4, 2+ )2
j=1

"',_—]e

dy > C(G')

.
It
-

o

= (@) [[(a; + 1))

[
il
-

and as |$|/r = (r+1

—

/2 we are done. w

COROLLARY 8. If p is a central measure, compactly supported on the
regular elements of G and their conjugates, then {i(M\)"I4, } € I whenever
n>dimG/(dimG —r).

icm
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Proof. In the opening paragraph of Section 2.2 we observed that |fi(A)]

< 0(dyt). Thus
<y an

AT
Now, for any t < 0,

2B <@ Y f[(ai + 1)1 < c(G)(i(k L),

AEG A={ay,..,a.) =1 k=0

and this sum is clearly finite if £ < —r/|®*|. Replacing ¢ with 2 ~ 2n and
solving for n gives the result. m

REMARK 1. (i) Because dim G < 2(dim G — r) for all of our groups,
this corollary implies that u * 4 € L? for all central measures y, compactly
supported on the conjugates of the regular elements.

(ii) Ragozin observed that one application of his work was to show that a
compact, connected, simple Lie group does not admit infinite central Sidon
sets. In contrast, it is known that the dual of any compact, connected group
contains an infinite central (a, 1)-Sidon set for any a < 1 ([6]; see our Section
3 for definitions). This implies that there are infinite subsets £ of the dual,
and central continuous measures 4 satisfying fi(A) > 5" for all A € E and
for any a < 1. Hence we cannot hope for asymptotic estimates as we have
in Corollaries 7 and 9 without some restriction on the class of measures to
which they pertain.

ExAMPLE 10. An interesting class of singular, continuous, central mea-
sures are the orbital measures, u,, supported on the conjugacy class C(z)
containing = € Z(G). These are defined by

{ £ due = § £lgmg™"ydmolg)  for f € C(G).
G G

The orbital measures are examples of measures supported on PJ-G. Ragozin
has observed that for all n < dim G/dim C(z), u? is singular to Haar mea-
sure on G. Since

dim O(z) = 2(|8] - |8(=) )
(see [12]), our results prove, in contrast, that when = is regular then {u}} €

{? whenever n > dim G/dim C(z). It would be interesting to know if this
remains true for arbitrary z ¢ Z(G).

We are now ready for our improvement of Ragozin’s result.

THEOREM 11. If u3,...,un are central, continuous measures and n >
dim G/2 then py * ... * py, € LY{G).
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Proof The main idea of the proof is to show that each central, con-
tinuous measure y; can be approximated, in measure norm, by a sequence
of measures vp,; with o2 ; € L* for each ¢ = 1,...,n. We then let vy, =
Vm,1 % - - . % Uy and note that Parseval’s 1dent1ty 1mp11es that vy, € L% In
pa.rtlcular each v is in LY, and as vy — pa * ... * b in M{G) this implies
g1 % ... % g € LHG).

So it only remains to see how to do the approximation for a given central,
continuous measure i. We continue to use the P; and PG notation. The sets

PJG are disjoint; they are unions of conjugacy classes; and their union over
all § # |@*| is the complement of Z{G).
Since u is central and continuous, u{Z(G}) = 0, and thus if w; = 1pop,
M

then p = E}ﬂ,l"l wj. Now

Being a closed subset of a metric space, U,f_t 1 P, is a G, and thus P; is
an Fy, say Pj = |J2_, Fin,j, where the sets Fy, ; are closed, nested subsets
of Pj. Let FiY . =) g™ Finjg and wm,j = 1ps wj = lpg p Since FG
a union of conJugacy classes, wp, ; is a central measure Olearly, U F m i=
PG so by continuiy of measures wp, ;j — w; in measure norm. Since Fr, ;
is compact, one can check that FS . is compact, and thus by Corollary 7,
wh, € L2

Finally, we let v, = E!@ -1 W, j- Then vy, — Elﬁl Yw; = pin M(G)
and we observe that v, € L?, being a finite sum of measures having the
same property. m

W

A measure u is called LP-improving if there is some p < 2 with the
property that u* f € L? whenever f € LP.

COROLLARY 12. If 1 is any central measure, compactly supported on
PG Jor some j  |®T|, then u is LP-improving. Indeed, p L C L? for
p > 2 —4/(2 +dimG). If, moreover, p is supported on the regqular elements
then p+x 2 CL? forp> 1 +7/(2dimG —r).

Proof. Suppose i is any central measure supported on PJG for some
j# 1515+| From Corollary 7 it follows that the operator T;, defined on L'(G)

by Tl f)(o‘) (cr)” F(o') maps LY(G) to L*(G). Because also Tp defined by
To(f)(0) = filo)°f (O’) maps L? to L2, an application of Stein’s interpolation

theorem (cf. [5]) gives u* LP C L2 for all p > 2 —4/(2 + dimG).

icm
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The arguments are the same if y is supported on the regular elements, but
instead use the better result: {H(A)"14, } € [? for n > dim G/(dim G ~r). »

This property was discovered by Ricci and Travaglini [14] for orbital mea-
sures ps; when z is a regular element. In fact, their sophisticated arguments
vield the characterization: pg*LP C L? if and only if p > 14+7/(2dim G —7).

3. Lower bounds for the trace function
3.1. p-norm lower bounds

THEOREM 13. There is a constant ¢ so that if G is any compact, con-
nected, simple Lie group and A = E;zl a;A; € G, with ay = maxay;, then

ITrAl, o1, 2 \—dimG
N Alp - - im G /p
4 2 2(6’!‘ ax)
forall 1 <p < oo.

Proof. Fix A € G. Since Tr ) is a class function, the Weyl integration
formula yields

I Tr AR = — | [Tr M(a)[P|D(x)[? da

1W|
where D) = [Tacas |69 ~ 17

We let m(u) denote the multiplicity of i in X restricted to T. With this
notation, for x € T' we have

TeA(z) = Y

peII(A)

mp)e =),
If o = (z;)7=, and p = 3, i1}y, then since |u;| < crlax| we have
Tz —dal < S mw) D Iyl

pEIT(A) j=1

< rmax{pgang| : p € TN} > miu)
BEI(A)

< er’ay max |z dy.
M

Let

1
= ; : i< .
By {(y_,,) €T :max |y < 20a,\r2}

If z € B, then our calculations show that |Tr A(z)| > dy/2, while if o € &
then |e(x)| < 3/4 so that |sina(z)/2| > |a{z)|/4. Hence for = € By,

D)= ] P2 > T |22

2 sin —+ 5
acdt acdt
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Combining these facts we see that
1 2

ITr Al = i } ITr M(2)PID(2)]* do

B

2

@

1/(2er?ay)

> (30) il VI

—1/{2cra,) acdt

af@)[*

dzy...dz,.

Observe that [], ca+ |a(2)|2/4 is a homogeneous polynomial of degree 2{$|,
in 7 variables. If p is any homogeneous polynomial of degree, say d, in r

variables then
R R

S S p(Z1,. .. %) dxy . day
-R -R
1 1
= R S S p(xy, ... 2p)doy ... dz, = R"He(p)
G

where ¢(p) is a constant which depends only on the polynomial p, and
in particular, is independent of R. To evaluate this constant when p =
Il ea+ |a(z)?/4 it suffices to compute

ki) ™ a(m) 2

V-8 I || den- o dee

-r T aedt

For this we use the fact that |a(z)|/2 = |sin a(z)/2l, so
T T 2
. oz
TVt SO W § (528 [PEA
- - et
>\ ID(@)*dz = 1W| | dg = [W},

T ' e

with the penultimate equality being the Weyl integration formula applied
again. Thus

1 1/ (2er%ay)
W—l S - -1/(2$::r2a)\) ag+

(with a new choice of constant ¢), and since 2|7| +r = dim G, the result
is proved. m

a—(ml 2dm d, = !
2 1. Gy 2 (crzaA)gl@ﬂ-{-r

3.2. Applications to Sidonicity. Let G be any compact group with dual
object G. We continue to write dy for the degree of A € G. Let a € R,
1<p<oo.

icm

The size of characters of compact Lie groups 13

DEFINITION 14. Let ¢ = (3p—2a)/(3p—2) and r = 2p/(3p —2). We call
E C G local {a,p)-A if there is a constant ¢ satisfying

lldy Tr AX2s < ev/s (d Tx |A|M)Y7
A

for all § > 1, A € E and dy x d) matrices A. When the above inequality
holds for A = I;, we call E local central (a,p)-A.

One can alsc define (central) (a,p)-A sets, however these are not of in-
terest in this paper.

Obviously, it is easier to be local central (a,p)-A as o decreases or p
increases. T'wo other obvious facts are:

PROPOSITION 15. (a) G is local central (p — 1, p)-A.
(b) If (b+1)/g < (a+ 1)/p and E is local central (a,p)-4 then B is
local central (b, ¢)-A.

Because of (a) we are only interested in the case a >p — L.

DeFINITION 16. The subset E C G is called (central) (a,p)-Sidon if
there is a constant ¢ such that '

Flee 2 e g T FOOP)

whenever f(z) = s ez dy Tr fQ)A(z) (and f is central); E is called local
(central) (a, p)-Sidon if the inequality above holds for all f(z) = di Tr AX(z)
with A € E and A a (central) d x dy matrix.

(1, 1)-Sidon sets are generally called Sidon sets and have been extensively
studied {cf. [10] and the references cited therein}. One reason for the interest
in (a,p)-A sets is that local (a,p)-Sidon sets are local (a,p)-A (see [8]).
Indeed, a set is local Sidon if and only if it is local central (1,1)-A (see [11]).

Using the fact that local Sidon sets are local (1,1)-A, Cartwright and
McMullen [2] characterized Sidon sets in compact connected groups by
means of an “independent” set called the FTR set:

DEFINITION 17. Let G be a compact, simply connected, simple Lie group
of rank 7, with the notation as in the first section. We define the FTR set
of G by

{1, A0} if @ is of type A, ¥

- Ay if G is of type By, Cr or Dy (r 2 5),
FTR(C) = })\1?)\3, Ad} i Gis of type Dy,

) otherwise.

For m € N we define the m-fold FTR set by
FTR™(G) = {0 € G: o € (FTR(G))™}

(where FTRY(G) is understood to be {1} and the product denotes tensor
product). .
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The FTR sets are essentially the only non-trivial examples of Sidon sets
in products of compact Lie groups. In light of what is known about p-Sidon
sets in abelian groups, it is reasonable to ask whether m~fold FTR sets
are (1,p)-Sidon if and only if p > 2m/(m + 1). Some partial evidence to
support this supposition is discussed in [8]. For example, it is shown that
if G = [[ Gr, where rank G, tends to infinity, then the m-fold FTR set of
G is not central (a,p)-Sidon if p < (a + 1)m/(m + 1), Here we prove the
corresponding result for local (a, p)-Sidon sets.

We first need some preliminary results about m-fold FTR sets.

PROPOSITION 18. {a) If n > 2m and m > 2 then
FTR™(A,) = FTR™ %(4,,)

{ Za])\ Zyaj-l- Z (n—j+La; = m}

J=n—m+1
By In>m+1,m>2 end G’ is of type By, Cy or Dy, (n > 5) then

Zaﬁ\ ZJaJ m}

Proof. For convenience, when A=3"a;A; we W111 wr1te

FTR™(G) = FTR™%( G)u{

S(A\) = ZJG,J-F Z (n—7+1a if)\e?{;,
j=n-m+1
and
™m
SN = ja; ifxe B, Cyor D,
F=1

Also, if the representation u is a subrepresentation of v we will write p < v.

(a) As FTR(A,) = {A\1, A}, FTR?*(A,) consists of all irreducible sub-
representations of A1 @ A, A ® A, and A, ® A,. It is well known (and
easy to check) that M ® Ax = 20 ® A, i ® A, = 1@ (M + )\y,) and
An @ Ap = 22, ® A1, thus the result is true for m = 2.

We proceed by induction assuming the result is true for m and that
2(m+1) < n If X € FTR™(A,) then A < M @ o or A < A ® ¢ for
some ¢ € FTR™(A,), and by the induction hypothesis we may assume
o =3 a;); where S{c) = m — 2k for some non-negative integer k.

The components of A\; @ are those o —A; -+ X411 € AT for 0 < 7 < n (see
[7]). The definition of o ensures that if a; 0 then either j < m < n/2—1 or
jzn—m+1>n/2+42, and from this it is clear that if 0 — X4+ Ajpq € A7
then S(o ~ A; + A\j41) = S(o) + L. The induction hypothesis shows that
either A\=0 — X+ A1 e FTR™ or A e {n:8(n) = m+1}.

The argument is similar if ) is a subrepresentation of A, ® o. Thus

FTR™ ' (4,) CFTR™ H(A,) U {X: S(A) = m+1}.
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As 1 € FTR?(4,) we obviously have FTR™ }(4,) € FTR™!(A4,). As-
sume now that A = 3 a;A; and S(A) =m+1. Ifap # 0 forsomel <k <m
then consider

o= Z Gj)\j + (Cl':kq]_ + 1))\1;;_1 + (ax — 1))\;,.
Ftk,k—1

Since S(g) = m, o0 € FIR™(A,) and A = 0 — M1+ A S M1 ® o €
FTR™(A,). If ay, # 0 for some n—m+1 < k < n, then one can similarly
show that A € FTR™(A,)® A, C FTR™"(A,). Otherwise A = aX; + (m+
1—a)A,, where without loss of generality a 3 0. Then A = ((a— 1)A1 + (m+
1 —a)An) — Ao + A1 and so belongs to FTR™(4,,) ® Ay € FTR™*(4,,).
Thus {A: S(X) = m+ 1} C FTR™!(4,,), which completes the proof of the
induction step.

(b) If G is of type By, Cp or Dy, (n > 5) then FTR™(G) = {A < AT'}. We
again proceed by induction on m (directly checking the result for m = 2) and
will use the fact shown in [7] that the size of m ensures that if ¢ € FTR™(G),
then o @ Ay has components g = (Aj_1 + ;) €At for 1< j<m+ 1

So let A € FTR™M(Q). If A = o + \j—1 — A; for some ¢ € FTR™(G),
then S()\) = S(o) — 1, and therefore, by the 1nduct10n hypothesis, A €
FTR™ (). Otherwise A = ¢ — {A;_1 — A;), and then one can easily sece
that S(A\) = §{g)+ 1,80 A € FTR”‘"‘l(G’) U{r:8(\) =m+1}.

For the converse, notice that once again we clearly have FTR™ (@) C
FTR™(G). Suppose A = 3 a;\; with S(A\) =m + 1 and a; # 0 for some
k>11If

o= > ajdi+{(@e1+he-1+ (e -1
ik, k—1
then S(o) = m, so ¢ € FIR™(G), and as A = 0 — (Ap_1 — i), A €
FTR™(@®). The remaining case to consider is A = (m + 1)A; and since
we can then write A = mMA; — (Mg — A1) we clearly have A € FTR™! (@),
completing the induction step for part (b). m

PROPOSITION 19. If n > 2m and G is of type Ay, By, Crn or Dy, (0 2 5)
and A € FTR™(G) \ FTR™ (G) then dy > ("11).

Proof. This is proved in [7], 4.2, for G of type A,. Similar arguments
{(but easier), using the previous proposition, work for the other types. m

Note that by definition of the m-fold FTR set, dy = O(n™) if A €
FTR™(G). We are now ready to prove the main result of this section.

TueorEM 20. Let G = [ G, where G, are compact, simply connected,
simple Lie groups with rank Gy, tending to infinily. The following are equiv-
alent:

(1) FTR™(G) is a local central (a,p)-A set;
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(2) an infinite subset of |J, FTR™(Gy) \ FTR™ %(G,) is local central
(a,p)-4;

(3) p = (a+ V)m/{m-+1).

Proof. (1)=(2) is obvious as FTR™(G,) ¢ FTR™(G).

(2)=+(3). Suppose an infinite subset of | ), FTR™(G ) \ FTR™%(@,)
is local central (a,p)-A. Then there is a sequence {)\k} FTR™(G;,) \
FTR™%(G;,) satisfying

I Tx Axllzs < ev/Edy, T2,

where rank G, = rp — co. Choosing 2s = (dim G}, )/e (for £ > 0 small as
explained later) and applying Theorem 13 we have
B Ty g < esm 2 (dim G, )2 VY,
2(2merian, )
As 1, — oo we may assume without loss of generality that G, is one of
An, By, Cpn or Dy, (n = B), where n > 2m, and thus by the proposition above
dy, = em?™. Also, ay, < da, and dimGj, = O{rZ), so we must have the
inequality
1—&)—2 € 14m(2-(atl)/p)
rrkv’n( 3 € < ﬁrk T P
holding (for a new comstant ¢ = c(m)). If p < (a + 1)m/(m + 1), then by
fixing & sufficiently small and letting 5 — oo we have a contradiction.
(3)=(1). First notice that
FTR™(G) = | (FTRj( I G.)
F=0 rank G, >max(8§,2m)
xFTR™ ([ Ga))
rank G, <max(8,2m)
and that FTR? ([T, .. .. <max(s,zm) On) 18 @ finite set since rank G — c0.
As o x F is a local central (a,p)-A set if and only if B is, and the class of

local central {a, p)-A sets is closed under finite unions, we may as well assume

G = [1G, where rank Gy, > 2m and G, # D, or one of the exceptional
Eroups.

Such groups G have the property that when A € FTR™{G)\FTR™ *(G)
then A = fy % ... x G, where §; € FTR™ (G, ) \FTR™ ?(G},) and 3 m; =
m (see [7]). Moreover, if we set Aj; = A (Gy,), then dg, > cmdy. -

As || Tr |32 is the number of irreducible subrepresentations of A* counted
by squared multiplicities, it is clear that

k k
ITx Mz = [T Bill2s < TT ITE sl 5o,

i=1 i=1
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Since FTR(G) is a Sidon set, it is a local central (1,
is a constant ¢ such that

ITr Aqg|2s < ev2s  forall s> 1 and all Ay,
By factoring || Tr Ai4||55,, as [T )\11||2mB;T/LT]|Tr A1z m‘(iml/m), and observing
that the trace of a representation is bounded everywhere by its degree, it
follows that

k
||Tr)\H2.s£Hc a5 m'/md;’?fl 1/m)
=1

k
< c(m)\/EH d;;wlfm < c(m)\/gdi—(a+l)/p’

which is the desired result.

1)-A set, and thus there

Because local (a, p)-Sidon sets are local {a, p)-A the following are obvious
corollaries of the theorem.

CoroLLARY 21. (a) FIR™(QR) is not local (a,p)-Sidon if p <
m(a+ 1)/(m+1).

(b) FTR™ Q) is not local (a, 2m/(m-+1))-Sidon fora > 1—2/(m + 1)
andm 2> 1.

Previously it was known that FTR*(G) was not local Sidon [2]. Here we
see that it is not even local (1/2 + €, 1)-Sidon for any € > 0.

4. Appendix. We will list a partitioning for each of the classical Lie
groups which satisfies the requirements of Proposition 8, leaving the verifi-
cation and a suitable partitioning for the exceptional groups to the reader.

1 An7odd: For j = 1,...,(r+1)/2 let Q5 = {Shoson i =3,...,
j+{r+1)/2-1} _ .
=AY gy @ =0, U o

For j = (r+1)/2+1,...,7let @y
yQpop asfor A,y Let Qr={D j_,an:i=

i=1,...,5—(r+1)/2}.
2. Ar,7 even: Define @y, ...

r/2+1,...,7}
3. Byp: Let QJ = {Ekhg Qg : L= .77 :T} U {Zk_q, o+ sz—_] Qg
L. 5.7"1}

4. Cy: The same pa.r’cltxonmg as for B, works if one replaces Z ak +
2 Zk_J ay in B, with 3772 ozk+2 }:k_J e+, and replaces Ekm ak+2ar
in B, with 22:;:1 o + Q.

5. Dp:Forj<r—lwelet@; = {ZLJ. o 1=
2 ikt t oy ti=1,...,5 -1}

Let Qpoy = {Qp-1, P pu; Ok 1t =1,...,7 — 2}

Let @ = {0, Y ioioh +arii=1,...,r — 2}

AN

. aT—l}U{Zkﬂ Qg+
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Convex sets in Banach spaces and a problem of Rolewicz
by

A. 8. GRANERO, M. JIMENEZ SEVILLA
and J. P. MORENO (Madrid)

Abstract. Let By be the set of all closed, convex and bounded subsets of a Banach
space X equipped with the Hausdorff metric. In the first part of this work we study the
density character of By and investigate its connections with the geometry of the space, in
particular with a property shared by the spaces of Shelah and Kunen. In the second part
we are concerned with the problem of Rolewicz, namely the existence of support sets, for
the case of spaces C(K).

1. Introduction. In this paper we discuss some topics concerning the
set Bx of all bounded, closed, convex and nonempty subsets of a real Banach
space X. The Hausdorff distance between Cy,Cs € By is given by

d(Cl,C’g) = iIlf{E >0:CLcCcCy +EB|[.”,CQ c O+ EB”.“},

where Bj. is the unit ball of X. It is well known that (Bx,d) is a complete
metric space [11] and, hence, a Baire space.

The first part is devoted to the study of the density character of Bx
and its interplay with different geometrical properties. These properties are
property a, the (weak*) Mazur intersection property and the following cor-
nerstone property, which we shall name the Kunen—Sheloh property: among
any uncountable family of elements of X, there is one that belongs to the
closed convex hull of the rest. Shelah [23] (assuming the diamond principle
for R1) and Kunen [18] (assuming the continuum hypothesis) constructed
Banach spaces § and K respectively with the above property. Most of our
work in Section 2 will tend to emphasize the effects of the Kunen~Shelah
property on the topological properties of By . For instance, we prove here
that, in many cases, spaces enjoying this property satisfy dens X = densBx
while, in general, dens Bx = 29¢% X, Moreover, assuming ¢ < 2*! (where
wq is the first uncountable ordinal), an Asplund space X with dens X = ¢
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