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Discrete Hardy spaces
by
SANTIAGO BOZA and MARIA J. CARRO (Barcelona)
Abstract. We study various characterizations of the Hardy spaces HF(Z} via the
discrete Hilbert transform and via maximal and square functions. Finally, we present the
equivalence with the classical atomic characterization of HF(Z) given by Coifman and

Weiss in [CW]. Our proofs are based on some results concerning functions of exponential
type.

1. Introduction. In [CW], Coifman and Weiss extended the usual def-

inition of Hardy spaces HP(R") (see [FS]) to the more general context of

spaces of homogeneous type. Their results are based on the atomic charac-
terization of these spaces. Since then, the theory has been widely developed
by many authors. Let us mention the work of Macfas and Segovia [MS],
where they prove an equivalent characterization of the Hardy spaces via a
grand maximal function.

A particular case of space of homogenecus type is the set of integers Z
and hence we have two equivalent definitions of the spaces H¥(Z). In this
paper we shall deal with this particular case.

We have to mention other works related to this theory, for example [U]
where a maximal characterization of the Hardy spaces is given for spaces of
homogeneous type, and [H] where the author obtains an atomic decompo-
sition for Triebel-Lizorkin spaces on spaces of homogeneous type. However,
in these two works, the hypothesis assumed on the space X of hompgeneous
type excludes the case of points of positive measure and hence Z.

From a different point of view, Q. Sun in [Su] gives a characterization of
HP(Z) in terms of discrete square functions.

Also, the space H'(7Z) is defined by Coifman and Weiss in [CW] as
the space consisting of all sequences a = {a(n)}n belonging to £*(Z) such
that
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that is, those whose discrete Hilbert transform is in £*(Z). In [E], this def-
inition is extended to the case 0 < p < 1 and it is proved that the resulting
space is isomorphic to the Paley—Wiener space of functions of exponential
type belonging to LP{R). In that paper, the author left as an open question
the equivalence between this characterization in terms of the discrete Hilbert
transform and the atomic one in [CW]. We shall prove this equivalence in
the range 0 < p < 1.

The paper is crganized as follows: in Section 2 we study some sampling
results concerning functions of exponential type. This section is a follow up
of some results in [AC] where the authors use some special properties of
functions of exponential type to prove that the maximal operator

{a,('n,)}n - {sup Z % . -tg—_—l_%—-nia(n— m) }

>0 | =

is bounded on £7(Z) for p > 1. From this fact, we see that if we define HF(Z)
as the subspace of £7(Z} consisting of those sequences a = {a(n)}, such that
the above maximal sequence is in ¢7(7), then HP(Z) = ##(Z) for p > 1, as
in the classical case.

This leads us to Section 3 where we study various characterizations of
the norm in H®(Z):

a) via the discrete Hilbert transform,

b) via a maximal characterization in terms of the discrete Poisson kernel,

¢) via other maximal operators, and

d) via square functions.

In particular, we shall prove that they all agree with the original one of
[CW].

As usual, we shall write f ~ g to indicate the existence of two positive
constants A and B so that Af < g £ Bf, and constants such as ¢ may
change from one occurrence to the next.

Also, for a function ¥ defined in R we will use the notation F4 to indicate
the sequence (F(n)), whenever a different definition is not explicitly written.

We shall write * for convolution of sequences.

2. Some results on functions of exponential type. The results of
this section hold in RV and Z¥ . However, we shall present them in R and
Z which is the only case we shall use in the next section.
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Let Er be the set of slowly increasing C°° functions f with supp)? C
[~R, R]. The elements of Er are functions of exponential type B. We re-
call a well-known sampling theorem (Shannon’s formula) for such functions

(see [S]}):
If g € Er, then

gl{z) = Zg(%) sinc(2Rz — n),
i)
where sincr = % for z % 0and 1 if ¢ = 0. Also, if 1 < p < o0, then

(sce [B])
(1) gl ~ (Z‘g(%) )’

If R < 1/2, then the above equivalence also works for 0 < p < 1.
The following lemama will be useful in the sequel (see [FJW]).

LeMMA 2.1. Let g,h € Ep, R < 1/2, with h € S(R) and b = 1 on
suppg. Then, for every x € R,

g(z) = (gxh)(x) =Y _ glk)h(z — k).
kEZ

In [AC], the following generalization of the Shannon formula was proved:

THEOREM 2.2. Let 1 < p < o0 and 0 < ¢ < oo. Then there exists ¢
constont C' = C(p,q) such thot

> (Voo %)/ < CPmax(1,R) | (T a2 ?)m s

negZ 0 R

for every family g;, t > 0, of functions in Eg.

Using similar arguments we can show that the previons lemma can be
extended to the general case 0 < p,q < oo,

THEOREM 2.3. Let 0 < p,q < 0o. Let {g¢{-) }e>0 be o family of functions
in Egp. Then there exists a constant C = C(p, q) such that

oo dt. p/g oo dt rlq
fV;‘z(g|gt(n)|qu1-;) gcpmax(l,R)Mé a@ied) o

Proof. We shall only prove the case 0 < p < min{l, g). The other cases
follow as in [AC). :
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Consider the conjugate exponent of ¢/p, that is, ¢/(g — p). Then it is
enough to show that, for every family {h:(n)}nez satisfying \
T dt
S lhe(n)[Pe/t4=P) Z < 1
t
0
for every n € Z, we have

® dt K dt\*?
S Sttt § < 0 max B ([l £) " o
neZ 0 RNO
Define
z)= Y hy(n)d(z —n),
nez

where % is of exponential type m (for some m € N), ¢(0) = 1, (k) = 0 for
every k € Z\ {0}, and

igﬁ (ge_;li,b(m - n)|P) < C < 0.

Then, by Minkowsk?’s integral inequality,

E | () [P2/ (a=P) fif - S [th(n)#' 5u_n)}:wq/(q ») dt
° 0 nez
< | (Ziht(n)m(m_n)lp)q/(q-m%
0 nez
T (a~p)/
S le(m—n)lf’( [ Ihe(n)|pe/ta=n) Eif) e <c.
0

neZ
Therefore, since g; ht(-) € ERym, we get

S 3 gl n)m(n)sz’

0 neZ

9@ he(e)fP do 5

o dt {a—p)/q o0 dt pla
| Ry () |P9/ (a=P) _t_) ( S lge ()9 _t_) dx
0

< Omax(L, R) |
0

< Cmax(1, R)

5ty
/"_‘\\ %‘_’_'

< cmas(t, )] (Tl &) .

Let us now formulate the converse inequality.
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THEOREM 2.4. Let 0 < p,q < oo and {g:(") }1>0 be in Er with R < 1/2.

Then
i( (ol N aso ;(}" T

for some constant C = C{p,q) > 0.

Proof. Let ¥ € S(R) N Eg satisfy # = 1 on supp g; for every £ > 0.
Then by Lemma 2.1 we have, for every z € R,

ge(e) = > g(n)¥(z — n).

neZ
‘We shall consider four cases:

() If0<p<1land 1 <q< oo, then by Minkowski’s integral inequality
in ¢ we get

ﬂi(?mt(m)q %E)P/q HS{( ‘th(n !If(m—n)lth)p/q
(St Jr ) Ve

]

a/q
< [T @ -n)p (S lge(n) ‘“) i
R

oo r/q
=Y (Vs )
[}

nez

({)Ifl <p<ocandl < g < oo, then by Minkowski’s integral inequality
in ¢ and Hélder's inequality we get

(Tatere %)™

0

< ;Isﬁ(m—n)](?gt(n)'q%)l/q
[; (T|gt(n)|q 'Cij)p/qlwx-nn]” (
e[ (Jmon ) we-nl "

IA

Sir-m)™
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Therefore,

oo »/q oo lq
[({ln@ir§) " deso] S (Tt s) o -mias

R 0

IA

dt
> g4 (2 — n)|T ~

i3

i)
!

= S wp( { e )

From this, we get

nsa@g*(w”q é;)p/qdm < E{(;mzmn)!iﬁgt(n)|q%f)”qdw
< R;W(M)P(}:;gt(nnq@;)”qdm
T p/q
= Y- mp da | o 2y
=13 (Titmre )

(iv) Finally, if p/q > 1, we can apply Hélder’s inequality with exponents
/g, (0/q) = p/(p — q) to get

2]

§ lge ()12

i
0
< (e -mr( T Y (e )

n
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Hence,
=]
dt p/q 00 di\ P9
(o) do<of S wte—mp( T o €)oo
R M0 E n 0

O ({1t -mpds) ({lator Y
- gy (5 0 dt)””. .

As a consequence of Theorems 2.3 and 2.4 and the usual embeddings of
sequence spaces, we get the following result, which is an extension of the
case p > 1 for the Lebesgue spaces L”.

COROLLARY 2.5. Let 0 < p < 1 and f € HP(R)NEg. If 0 < g < p, then
f € HYR) and there exists a constant C = C(p,q, R) > 0 such that

1l zramy < ClIf || e (my

3. Discrete Hardy spaces. As mentioned in the introduction, H*(Z) is
characterized as the space consisting of all sequences a = {a(n)}, belonging
to £1(Z) for which if H? is the discrete Hilbert transform defined by

(Ba)m) = 3 2L,
n#EmM

then Hda € £*(Z) (see [CW]). Hence, it is very natural to give the following
definition (see also [E]).

DErFINITION 3.1. Let 0 < p< 1 and define
HE,(Z) = {a € °(Z) : H'a € P(Z)},
with the p-norm
el sz, @ = lal, + [ Hall,.
DeriNITION 3.2. Let 0 < p < 1 and let

Pi(n) = n#0, Pl0)=

_t
t2 4+ n?’
Then we define
H3ur(7) = {a € £(2) s 5up P xal € £()
>
with the p-norm

lallgz, @ = lallp + Il sup [Pf * al|lp-
t>0
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Theorem 3.4 below shows that the above spaces are equivalent, but first
we need the following lemma.

LEMMA 3.3. Let kg € N and @ € S(R)NER be an even function such that
B(0) = 1 and §o*d(z)dz =0 for 1 <k < ho—1, k €Z. If PF = Py x &,
then, for every n € Z\ {0},

|P(n) — P(n)| = O(L/In|*),
uniformly in t > 0.
Proof. For every t > 0, P and P? are in L}(R), and since PP is

continuous we can apply the inversion theorem for the Fourier transform at
every point to get

R R
PE(n) = | B(¢)e >l de = 2 { §(¢)e™™* cos 2mné df
-R 0

R
Sé‘ (ezw(m —t)¢ +E—27r(m+t)£) de.
|

Using integration by parts,

PP = |86 (5

27r(1n 1313 -—21r(in+t).§ R
2r(in —t)  2w(in+ t) )]

- ?(6)'(5)62”("“‘t)6d5
2r(in — t) )
1 B N
+ W §(é) (é‘)e 2m(intt)é dé
1t
=g T+,

Using the hypothesis on $ we obtain

VLI i JUNP
= (27"5‘571115))’“0 (S) d£ko (£)e?m(in=1)¢ g¢
and
(I1) = CLe ) ‘Z’k&f(ﬁ) "27r(iny+f)5 de.

(2n(in+t))ke ]
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Therefore, for every n # 0,

|PF(n) — Py(n)| = |(I) + (ID)] < C(®) 1

C < C
= (€ F n2)Ro/2 = Jplke’

with C independent of t > 0.

THEOREM 3.4. Let 0 < p < 1. Then
Hﬁilb(z) = Hﬂlax(z):

with equivalent norms.

(2my%e | (in —t)ke  (in + t)ko

38

Proof Let 0 < R < 1/2 and let ¢ € Eg be as in the previous lemma.

Choose a € HP . (Z) and set

glz) = a(n)d(z - n).

ner

Since a € £P(Z) C £(Z), it follows that g € L*(R) N Bx C L2(R), and

5(€) = Y _aln)e 2" ™P(£) € LM (R).

nek
Also, if m € Z, then
R

(2) Hg(m) = (—wisign(€)§(6))Y (m) = —mi | §(e)e™™ ™ d¢
0

0
+mi | gle)ePmmede
—R
R
- 1 S (Z a(n)@(&)e“zm"f) e2mme g¢
0
0
+ i S (

= 27 Z S (&) sin(27(m — n)€) d€

nEZ

Z a'(n)g’i(é)e—%rinf) g2mimé d¢

nFm 1]
Using integration by parts one can show that, for every ko > 1 and
m#n,
¥ 1
3 B(¢) si - = o + ]
(3) ggs(g) sin(@m(m —n)) & = 5 + Jhoy
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where
R ko5

1 S ddgk{f (£) sin (27[‘(??1 —n)§+ gkg) d€.
0

(2m}ko {m, ~ n)ko

dpy =

To see this, we observe that

R ~, . cos(2r(m — n)f) N
(S] P(£) sin(2m(m — n)§) df = { - 2(¢) 2r{m —n) ]0
1 R

[ (8) (&) cos(2m(m — n)¢) de,

2m(m —mn)
which is (3) for kg = 1. But, by the conditions assumed on &,

Tro = Tig 41,

and hence, we get the result. Substituting (3) in (2), we deduce that there
exists a positive constant C = C(@ kg) such that, for every m € Z, m # n,

o) - 3 2L < > S

n;ém
Taking now kg so that pky > 1, we obtain

1 P
@ et -Hhps oY ¥ e ) < Clal
Also,
(Pixg)(@) =) a(n)(Pix®)(z —n) =) a(n)P(z ~ n),
ne€Z nEZ
and by Theorem 2.4,
(5) |sup |2, * glllp < C|(sup | Py * gl = || sup |PF *alllp-
€0 >0 >0

By (1), (4), (5) and the known corresponding equivalence in R (see [M]),
we get

5%, < [1(Hg)lp + Cliall, < C(IHglly + llallp)
< C(jlsup 1Py % glllp + llallp) < C(llsup|P: + g)°lp + llaln)
0 >0
= O(|| sup [P *alll + llalip) < C(}isup | P x allip + llall5)-
>0 >0
For the other embedding, we have to show that

lsup 1P allp < Clllally + |H ).
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But, by Lemma 3.3, (5) and the equivalence in R,
I sup | P > alll, < || sup |PF % al|l, + Oflall,
>0 >0
<| sup [Pe*glllp + Clally < Clllglle + 1Egllp + lallp)-

Now, if 0 < p < 1, then

lol = (§ |Z
< (3 latm)

neﬁ

&z — n‘ dw)l/p

1/p
P § 26z - mPdz) " = |18l alp-

On the other hand, since Hyg is in Er, R<1/2,
1Hgllp < Cll(Hg)llp < O Hallp + |allp),
and the result follows from (4) and (5). =

From now on, we simply write H?(Z) for both spaces. Similarly to
Lemma 3.3 we have the following result.

LEMMA 3.5. Let & € S(R) and let ¢ be in SN Egx such that p =1 in
(—€,2) for some e > 0. Set & = (D4 % ).

(a) If n € Z\ {0}, then for every M > 0,
|85 (n) = B(n)] = O(1/{n}™),

uniformly in t > 0.
(b) If §x & = 0, then there exists ¢(t) € L*([0, c0), d¢/t) such that, for
everyn € Z\ {0} and M > 2,

|85 (n) = #+(n)| = SO/ In™).

Proof We restrict our attention to the proof of part (b). We can obtain
(a) in a similar way.

As in Lemma 3.3 we find that, for every n € Z\ {0} and every M € N,
(6)  &f(n)—Bi(n)

R dM (@t} @() — 1) (mianE+M/2) 4
(@mn)™ ssém ag™ © §
1 d & mi(2Zn 2
i, g

|&l>R
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In order to estimate the above integrals we observe that if we apply
Leibniz’s formula to

we obtain as one of its factors the term

s 8 (2() — 1)

ﬁﬁ(t&)——dgﬁ"‘"(ff),
which can be bounded, for ¢ < [¢| < R, by At|¢| if 0 < ¢ < 1, and by
C/(1+tEPM ift > 1.

On the other hand, the term containing the first derivative of f(t') can
be bounded as follows:

Ct
[ (taw(a( < {_L_
T

Finally, if M > 2, the remaining terms in (6) contain derivatives of order
k > 2 and they can be bounded as

d*B(t- Ct
E‘, ) (g) S ; N
dé (1+ €D
with N large enough, From all these estimates the result follows easily. m

ifo<t<l,
ift > 1.

From this lemma and using the same techniques as in Theorem 3.4, we
can show other characterizations of the space H?(Z). Namely, { P{(n)}n can
be substituted by {8} (n)}necz, where &1 (n) = t71&(n/t) if n # 0, ¢(0) =0
with & a function in the Schwartz class so that {& = 1 (as is done in the
real case [F'S]).

THEOREM 3.6. Let 0 < p <1 and let & € S be such that {; & = 1. Then
liallp + [Isup |%¢ * alllp ~ lla]l sz
>0
for every a € H¥(Z).

We may also have another definition in terms of area functions (see
also [Su]):

DEeFINITION 3.7, Let 0 < p < 1 and define
HE(Z) = {a € £7(Z) : {I(F * a)(n)]| s2(ae o) Inez € (D)},
with the p-norm
Hallp -+ | “Lpd *a”L?(dt/t)”p,

where ¥} denotes the restriction to Z \ {0} of ¥ () = t~1¥(./t), with ¥ €
S(R) such that {5 ¥ = 0, F£(0) = 0.

H@“Hi(z) =
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Using part (b) of Lemma 3.5 and Theorems 2.3 and 2.4 for ¢ = 2, we
can obtain the following equivalence for HP(7Z) in terms of square functions.

THEOREM 3.8. Let 0 < p < 1. Then HE(7Z)
norims.

= HP(Z) with egutvalent

Next, we want to show the connection with the atomic version of the
HP(Z) space introduced in [CW].

DerFINITION 3.9. Let 0 < p < 1. We say that ¢ = {a(n)}nez is an
HP-gtom in Z if the following conditions hold:

(i) supp & is contained in a ball in Z of cardinality 2n+ 1, n > 1.
(il) fialloo < (20 +1)7H/7.
(i) 3, n*a(n) = 0 for every @ € N such that « <p~' — 1,

The atomic HZ (Z) space is defined as the space of all sequences a =
{a(n)}nez such that

oQ
a = E )\jaj,
7=0

where a; are HP-atoms and

!

where the infimum is taking over all possible representations of a.

||a||Hﬂ(z

The standard proof in the setting of homogeneous type spaces shows the
following:

THEOREM 3.10. Let 0 < p £ 1. Then HE(Z) is continuvously embedded
in HF(Z).

We can also prove the converse. For this purpose, we need first the fol-
lowing proposition (see also [Su]).

PROPOSITION 3.11. Let 0 < p < 1 and @ € HP(Z). If ¢ € L*(R) with
supp ¢ C {|z| < N}, then

fl@) = a(n)d(z —n) € H'(R),
nexL

and there exists a constant C = C(p) such that

| fllzery < Cliallzr(z)-

Proof. Since a € H?(Z) C £(Z) and ¢ € L*(R), it follows that f €
L*(R), and therefore it is enough to estimate || f|lp + [| 5 f|l»-
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First we observe that

11 = § |3 almstz )| dz

R nez
< 3" tam)lPlg(z — n)P dz <> la(m)l||g 2.
RneZ nez

On the other hand,

sl = § | (amste-m)[ az
~ce nel

m+1
_ Z S Sznez‘;(i)i(y—”) dypdm
meL m 'R
m—+1 1 P
Y5 Y ¢ T Jams-maf &
mez m 1RY T Y nn<aN  n—mlsan
m—+1
< Z S Z a(n)swdypdm
meZ m | |n—m|<2N R TTY
w1 N,
Py n)( z-y\ "
+ ) 1 dy| d
DRI O
m+1
+3 VIV X amyely-n)
meZ m R|n—m[>2N
N,
D(m—-n—w—l—y)k"l P
X (kgl m =) )dy de

= (I) + (II) 4 (I1I),
where Np is the integer part of 1/p, and we have used the fact that

- () fee

k=1

Ty

Since ¢ € L*(R), H¢ is locally integrable, and we can estimate (I} by

m-1 o
I = 2 S Z a(n)He(z — n)‘ dz
meEL m .

|n—m|<2N
' mnt1

SZ Y el

- mEL|m—n|L2N me—n

|H(z)[P de
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ZN+1
=CY lam)P | |Hp(z)] de = ClalE.
nEL —2N

To estimate (II}, we observe that we can assume N > 2 and then for
ly—n £N, m<z<m+1and |m—mn|> 2N, we get

Im—n|<ly—n|+lz-yl+lz-m| <N+1+z -y
3 3
SN +lo—yl < glm—n+|z -yl

Thus, |# — y| > {|m — n| and therefore,
_|m—mn—z 4y C

No
LN PRt ' e
m—y( m—n) [z =yl Im—n|No = |m — n|Not1’

Since (Np -+ 1)p > 1, we can deduce

m+L N
_ am = zoy pm
w :{_;Z(i |3ty (1-220)" af aa)
US> s 161y ) < Cloley
nE€ZL |n-m|>2N |m n' R
Similarly,
m+1
(1) = Z S S Z a(n)d(y —n)
meL m Rin—m|>2N
N
Lm—n—gz+y)k? P .
X(E ) ¢
No met1 aln) ®
YT D e m- o
k=1meZ m | |n—m|>2N (m—n)* g
& st k-1 g |F a(n) |*
=Z(S'S¢(9)(y“m) dy’ dfv’)z M (m—n)*
k=1 0 R meZ ! n—m|>2N

< CHO‘H:’}:{P(E))

where the last inequality follows because, for & € N, the sequences
{1/n*} ez 10} are discrete convolution kernels from HP(Z) to I#(Z) and
hence,
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o(n) P
2| 2

meEL ' |n—m|>2N
a(n) |?
SN o Y| X e
meZ ' n¥EM (m ﬂ. mEZ ' in—m|<L2N, m#n (m n)
< OlalZpez, +ClallE.
Therefore,
IZ fllp < Cllallzs @),
and

1fllarry < CUIFllp + [ H fllp) < Cllallgozy- w
In order to prove the continuous embedding of H?(Z) into the atomic
space HY (Z), we need the following auxiliary functions and lemmas.
Let By(z) = Xx(~1/2,1/2)(2) and, for any positive integer k = 2, consider
Bi(z) = (Bex *71 xB;)(z)

For these functions, we shall use the following two properties which can
be easily proved by induction:

(i) For k even, By is a polynomial of degree k — 1 over any interval of
the form [m,m + 1] with m an integer, and, for k odd, By is a polynomial

of degree k — 1 over any interval of the form [m — 1/2,m +1/2].
(f) For 0<j <k—1,
(7 > " mIBy(y —m) = Pix(v),

meL
where P; ; denotes a polynomial of degree j.

LEMMA 3.12. Let k € Z and let a € HP(Z) with 0 < p < 1/k. Consider,
for k even,

[(2k-3) /4] i+3/4
afm)= > am-j) | Bu@)dy, meZ,
F=1-+{(—2k—1}/4] J+1/4
and, for k odd,
[(2k—1)/4] j+1/4
em)= Y. am-j) | Biw)dy, mezZ
F=iH[(—2k+1)/4) i—1/4
Then o
. Ck (m) = E Aiat:’;q(m
i=0
where
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o0
Z AP < C““”Hﬁ(;z)
#=0

ond aip, satisfies the following conditions:

( ) There exists a ball By in 7 so0 that suppa;, C B;.
) llas ko < 1/(#B)MP.
) Yomez™ o k(m) =0,0< <k~ 1.

REMARK. Qbserve that if ¥ = [1/p], the above sequences g, ; are HP-
atoms in Z.

Proof (of Lemma 3.12). First assume that k& = [1/p] is odd. Let a €

HP(Z) and set
flz)= Z a(n)X|n-1/4,n+1/4)(T).
ned

By Proposition 3.11, f € HP(R) and
Wil zemy < Cllallgszy-
Since f is also in L*(R), it can be decomposed in terms of HP-atoms {b;}32,;

that is, o
=" Abi(z)
i=0
where 3=, [Xif? < Cllallf gy
Let I; be the support of the atom b, and consider the sets
={ieN:|L| >1/8} and Ja={ieN:|L| <1/8}.
Ifi e Jy, then

forae. z € R,

I

1Bl oo < 1/|L:*7 < 87,
Thus, for each m € Z, we get
() » ]
k2 eo
k/2
k/2

and hence the series )_,c; Xib;(x) converges for a.e. z € R and in the
distribution sense to a function in L%(R).
(%) (7 Bm) = [( 32 A
1=0
P (3o bulm =) Belw)d
_kfz 1=
S ( Z )\ibi(m - y))Bk(y) dy
—k/2 i€y
[ (3 atilm = 1)) Buly) du.
~k/2 i€Sa
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For the first term, using the dominated convergence theorem, we have

k/2
[ (o Aditm—9))Bely) dy = Milbs x Be)(m).
—k/2 i€dy i€

Let s now see that the second term in (8) vanishes. If we analyze how
the atomic decomposition is obtained for our function f (see [C]), we see
that we can assume that supp b; Nsupp f # 0. Therefore, if i € Jy and [ € Z,
then either suppb; C [l — 3/8,1+3/8] or [~ 1/2,1+ 1/2] Nsuppb; = and
thus

Z Aibi(y) =0 forae ye(I—1/2,01-3/8)U(1+3/8,1+1/2).
ieJy
Given now j € Z such that |j] < (k —1)/2, let p; € S(R) with suppp; C

[m+j—-1/2,m+3j4+1/2] and ¢; =1 on [m+§—3/8,m+j+3/8]. By (9),
we get

k/2
§ (3 xbitm =) Bely) dy
—k/2 i€y

(k=13/2

= 2 (S(ZM )sv,(yBk(m y)dy)

i=—(k=1)/2 R i€y
Using property (i) of By, we see that ¢;(-)Bx(m — -) € & and hence the
above expression equals

(k~1)/2

> Soa(fut

() Bi(m — y) dy).
Fe—(k~1)/2 i€y R

Since, by the cancellation property of the atom. b;, {; b:(y).By(m — y) dy

=0, we can easily deduce that, for every ¢ and 7,

§0:(w); (y) Br(m — y) dy = 0,
R
and therefore
k/2
§ (0 Mbilm =) Buly) dy = 0.
—k/2 iels
Consequently, if we write a; x(m) = (b; * By){m), we have proved that

(f * Bg)(m) =

Z)\azk

ey
Let us now prove that a; satisfies (a), (b} and (c):

icm
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e suppa;x & supp(b; * By) NZ C (I
Bk is a ball in Z.

o loiklleo < fibillec fg |Br(z)| da < CRY/|LIYP < C(k, p)/(#Bix)M,
where the last inequality follows since {I;| > 1/8.

e For 0 < j <k—1, weuse (7) and the cancellation properties for the
atom b; to obtain

+[=k/2,k/2)) NZ C By, where

> miage(m) = 3 md (bx Br)(m) = | bi(y)Pyaly) dy = 0.
meZ e "
On the other hand, since
[(2k-1)/4] J+1/4
(f # Be)(m) = a(m=1) | Buly)dy = cx(m),
F=1+{(-2k+1)/4) i—1/4

we obtain the result.
Finally, if k = [1/p] is even, we replace the function f above by

flz) = Z a(nxpsas/(c—n), o€ HP(Z),
nek
and we argue as hefore. w

THEOREM 3.13. Let k € Z, k > 1 and let « € HP(Z) with 0 < p < 1/k.

Then, o0
= Z Aiei g (n)
i=0

where 35720 [il? < Cllalfpgy and ik satisfies (a), (b) and (c) of the
previous lemma.

Proof. We proceed by induction on k. If & = 1, the result follows by the
previous lemma. Assume that the result is true for & — 1, and let us prove
it for k.

By hypothesis, if @ € HP(Z) with 0 <p < 1/k < 1/(k ~ 1), then

00
= Z M«sai,k—l(m

i=0

where 3552 [l < Cllallfn (g and @iy satisfies:

» There exists a ball Bz,k_l C Z 50 that supp a1 S Big_1-
¢ llocn-1lloo < 1/ (#Bsp-1)17.
¢ Tz Mipmr (m) = 0,0 5 < k2.

Therefore,

a(m) —a(m —1) = 2“‘ 0 k-1{m) — @ g1 ( Z)‘quczk 1(m),

i=0 =0
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and one can easily prove that the sequences ¢; y_1 satisfy the required prop-
erties.

The proof ends by combining this result with the decomposition obtained
in the previous lemma for a finite linear combination of translates of the
sequence a with strictly positive coefficients. m

THREOREM 3.14. Let 0 < p < 1. Then H?(Z) is continuously embedded
in HE(Z).

Proof This follows immediately from the previous theorem for k =
[1/p]. w
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A constructive proof of the Beurling—Rudin theorem
by

RAYMOND MORTINI (Mets)

Abstract. A constructive proof of the Beurling-Rudin theorem on the characteriza-
tion of the closed ideals in the disk algebra A({D)} is given.

Introduction. Let 2 = {z € C : |z| < 1} be the open unit disk, D
its closure and let A(D) be the algebra of all functions continuous on I
and analytic in 1. Endowed with the supremum norm, A(I}) becomes a
commutative, complex Banach algebra with unit element, the so-called disk
algebra.

In 1957 Rudin [Ru] gave a complete characterization of the closed ideals
in A(D). Later, a similar but somewhat simpler and more functional analytic
proof was given by Srinivasan and Wang [StWal. The proofs were based on
Beurling’s invariant subspace theorem for the shift operator on the Hilbert
space H? of all square summable power series in I, the Riesz theorem on the
structure of analytic measures on the unit circle T, the Hahn-Banach the-
orem and the Riesz representation theorem for bounded linear functionals
on C(D).

In this paper we present an elementary and constructive proof of this
theorem, For background material, the reader is referred to the books of
J. Garnett [Ga) and X. Hoffman [Ho].

1. A Frostman type theorem for the sum of two inner functions.
Let w be an inner function. By Frostman's well known result the inner
function (& — u)/(1 ~ @u) is a Blaschke product for all a € D outside a
possibly empty set B of logarithmic capacity zero, denoted by cap £/ = 0
(see [Ga, p. 79]). Walter Rudin [Rud] extended this result by showing that
for every analytic function f of bounded characteristic in D the inner factor
of f — a is a Blaschke product for all @ € D\ E, where cap £ = 0. Here we
have the following result of Donald Sarason (unpublished):
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