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and one can easily prove that the sequences ¢; y_1 satisfy the required prop-
erties.

The proof ends by combining this result with the decomposition obtained
in the previous lemma for a finite linear combination of translates of the
sequence a with strictly positive coefficients. m

THREOREM 3.14. Let 0 < p < 1. Then H?(Z) is continuously embedded
in HE(Z).

Proof This follows immediately from the previous theorem for k =
[1/p]. w
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A constructive proof of the Beurling—Rudin theorem
by

RAYMOND MORTINI (Mets)

Abstract. A constructive proof of the Beurling-Rudin theorem on the characteriza-
tion of the closed ideals in the disk algebra A({D)} is given.

Introduction. Let 2 = {z € C : |z| < 1} be the open unit disk, D
its closure and let A(D) be the algebra of all functions continuous on I
and analytic in 1. Endowed with the supremum norm, A(I}) becomes a
commutative, complex Banach algebra with unit element, the so-called disk
algebra.

In 1957 Rudin [Ru] gave a complete characterization of the closed ideals
in A(D). Later, a similar but somewhat simpler and more functional analytic
proof was given by Srinivasan and Wang [StWal. The proofs were based on
Beurling’s invariant subspace theorem for the shift operator on the Hilbert
space H? of all square summable power series in I, the Riesz theorem on the
structure of analytic measures on the unit circle T, the Hahn-Banach the-
orem and the Riesz representation theorem for bounded linear functionals
on C(D).

In this paper we present an elementary and constructive proof of this
theorem, For background material, the reader is referred to the books of
J. Garnett [Ga) and X. Hoffman [Ho].

1. A Frostman type theorem for the sum of two inner functions.
Let w be an inner function. By Frostman's well known result the inner
function (& — u)/(1 ~ @u) is a Blaschke product for all a € D outside a
possibly empty set B of logarithmic capacity zero, denoted by cap £/ = 0
(see [Ga, p. 79]). Walter Rudin [Rud] extended this result by showing that
for every analytic function f of bounded characteristic in D the inner factor
of f — a is a Blaschke product for all @ € D\ E, where cap £ = 0. Here we
have the following result of Donald Sarason (unpublished):
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THEOREM 1.1 (Sarason). Let u and v be two inner functions having no
common factor. Then for every g > 0 the inner factor of u + gev s g
Blaschke product for almost all t in R.

Proof (Sarason). In view of [Ga, p. 56], it suffices to show that

2w

1 18 it, (1 oi0
glﬂvi-ﬂ: § log |u{re®™) + pe*u(re’)| df
1 2 .
= e S log |u(e®) + geu(e®)| df
27 o

for almost all ¢. Since the integrands on the left side are subharmonic, the
integral means increase to a real number not exceeding the right side of the
equation above (Fatou theorem). Hence it will suffice to show that

29 27
1 1 8 it i
Lim 3 (SJ (S}logIU(re )+ pettu(re)| df dt
27 2n ’ ‘ ,
s | | logu(e”) + oe™v(e?)| df dt.
0 0
Because
27
5 ) log u(re®) + ee'*u(re™)| db = log max(fu(re™), lu(re”)])

271'0

we are, by Fubini, done if
2

linﬂ1 ~2—1-7; S log max(|u(re®)|, ¢ [v(re®)|) df = max(0, log o).
0

Now the limit on the left is the value at the origin of the least harmonic
majorant in I of the subharmonic function max(log |ul,log|ev|). Denote
this majorant by h. So it remains to show that h is the constant function
max(0, log g).

Without loss of generality let 0 < ¢ < 1. Then log|u] £ h < 0. This
implies that b has radial limits ¢ almost everywhere on T. So, if h is not
identically zero, then h is the Poisson integral of a negative singular measure
on T. Hence ¢ = exp(h + 1h) is a singular inner function (here h denotes
the harmonic conjugate of h in D). Since |u| < |exp(h + ik)|, that inner
function. ¢ divides u. But |v| < %|exp(h -+ ik)| implies that i also divides v,
producing a counterexample. Hence h=0. =

2. Closed ideals in A(ID). For a closed set B C T of Lebesgue measure
zero we denote by I(F, A(ID)) the ideal of all functions in A(ID) vanishing
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on E. A function pg € A(ID) satisfying pg(2) = 1 for 2 € E and lpe(z)] < 1
otherwise ig called a peak function associated with E (for the construction
see [Ho, pp. 80-81]). I f € A(D), we let Z(f) = {zeD: flz) = 0}
denote its zero set. The hull or zero set of an ideal J in A(D) is the set
Z(I) = Nyer Z(f)-

If u = BS, is an inner function, then Sing u is the set of all bhoundary
singularities of w. It is clear that Singu equals the union of the support of
the meagure y¢ associated with the singular inner part S, of u and the set of
all cluster points of the zeros of w in . If g is a Borel measure on T, then
pp denotes its restriction to E, where E C T.

We call an inner function u normalized if w(0) > 0. The term g.c.d. F
means the greatest common divisor of a set F of normalized inner func-
tions (see [Ho, p. 85] and [Ga, p. 84]). The main tools of our constructive
approach to the Beurling-Rudin theorem are, besides the theorem of Chap-
ter 1, results on divisibility in closed ideals of A(DD). The proofs depend on
a refinement of ideas appearing in [Mo] for the case of the algebra H® of
all botnded analytic functions on D,

The proof of the Beurling-Rudin theorem itself is done in several steps.
First we show that the g.c.d., denoted by ¢, of the inner parts of the func-
tions in the ideal I is already determined by a countable set of functions
in I. Then we construct fanctions f, in I with the .g.c.d. of their inner
parts @, being ¢, but such that ¢, converges uniformly on compact sub-
sets of D\ (Z(I) N T) to ¢ and that v, (1 — pg) € I for a peak function
pg associated with B = Z(I) N'T. This is done by using the facts that if
f=BS,F €I, then Z(I) NI} = 0 implies that, without leaving the ideal,
one can split off the Blaschke factor B, the singular inner function Sy, ,
and one can replace the outer part F by a fixed outer function vanishing
exactly on K.

LEMMA 2.1. Let (uy,) be o sequence of normalized inner functions without
a common factor and let v, = g.e.d{uy, ... un}. Then

(1) vy divides vy, for every n € N,
(2) gcd{v, i neN} =1,
(8) (un) conwverges locally uniformly to the constant function 1.

Proof. Note that the first two assertions are trivial. Because (v,) is a
normal family, there exists a locally uniformly converging subsequence (v, ).
Let v be any such limit point. Because v, divides vy for every 1 < k < n,
there exist inner functions fnj such that vy = vnfazk (1 < k < ny,
j € N). Because for fixed k the set {fn,x : § € N} is a normal fam-
ily, we can choose a converging subsequence. Without loss of generality
fet fr = limy fn;x. Then vy = vfy. Hence v divides v for every k. Thus
vt=1 m
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LEMMA 2.2. Let w be an inner function and let f, = uh, be a se-
quence in A(D) converging in norm to f. Then f = uh for some h €
A(D).

Proof. Because || fn|| = {|hs] is bounded, by a normal family argument
there exists a locally uniformly converging subsequence of Ay; say An, — h,
where h € H®, Then uh,, converges to uh. Since pointwise limits are
unique, f = uh. By {Ga, p. 78], f € A(D) iroplies h € A(ID). w

LeMMA 2.3. Let I be o closed ideal in A(D) such that Z(I)ND =0 and
let g= Bf € I for a Bloschke product B. Then f € I.

Proof. Let

[=¢]
By(z) =
n=N+1
be the Nth tail of the Blaschke product B with zero sequence (a,). Be-
cause Z(I) ND = §, we can choose for every a; a function g; € I such that
g;{a;) # 0. The formula

Q(Z) - 1 (g(z) gj(z)-"gj(a’j)

z—a;  gslay) z = a;
applied for each j £ {1, ..., n} successively, implies that B, f € I for each n.
Because B,, converges uniformly to 1 on each compact set in D\ Sing B, B, f
tends uniformly to f on D. (Note that Sing B C Z{f) N T). Since I is closed
we conclude that f & 1. =

O COp— =z
|@n] 1-—Gnz

—g;(2) 9(2) ) el

& — G4

The following lemma is an immediate consequence of the Nullstellen-
satz for A(D), for which there exists a constructive proof (see [vR] and
[MoRu]).

LemMa 2.4. Let I be a closed ideal in A(ID), g € A(D) ond let f e A(D)
satisfy Z(f)N Z{I) = 0. Then fg € I implies that g & I.

Proof. By compactness there exist finitely many functions f; € I so
that

n

) 2(f) N 2(f) = 0.

j=1
The Nullstellensatz now yields functions A, h; € A(D) so that

1= "h;f;+hf

=1

Hence g = (34 hifs)g+h(fo)eI+TC 1 w
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LemMa 2.5. Let I be a closed ideal in A(D), E = Z(I)N'T, and let
S, be a singular inner function such that S,f € I. Then f € I whenever
ME) = 0.

Proof. Because u is a regular measure and () = 0, there exist open
neighborhoods Uy, of E (in T) such that

1 o0
@ MU <50 Una €T (Ua=E

Since E is compact, we may assume that U, is a finite unjon of arcs with
disjoint closures. Let

) Gule) =exp (- 3= § S2autw)
U,

and |

® o =eo (-2 | S ),
T\,

It is easy to see that G and H, are inner functions satisfying G,H, = 5,
and that G, converges to 1 uniformly on every compact set of D\ E. Let py,
be a peak function associated with the boundary of U, in T and let V,, be a
finite union of open arcs, slightly bigger than those of U, but still satisfying
(1). By taking suitable powers m., we get [pi'~| < (1/2)" on T\ V;,. Hence
p™ tends uniformly to zero on every compact set of T\ E. It is even a
weakly null sequence in A(D).

Because SingGn C suppp U 8U, € Z(f) U U,, we conclude that
(1 — pm»)Gnf € A(D) and that (1 — pii")Gnf converges uniformly to
fonD. Let f, = (1 — pP»)Gnf. It remains to show that f, € I. In
fact, since Sing H, € T\ Un, we see that F (N Sing H, = 0. Moreover,
Sing H,, C Z(f)JU,, implies that Sing Hy, has Lebesgue measure zero. Thus
there exists a peak function pg, in A(D) associated with E, = Sing Hpy.
Hence H = H,(1 - pg,) € A(D) and Z(H} N Z(I) = 0. By the Nullstel-
lensatz for A(D) there exist o € A(D) and h € I so that 1 = oH + h.
Hence

Jn = (an’)H + foh = (S,U.f)a(l '—PE,,)(l - PT“) + fah el
Since I is closed, we obtain im f, = fel. »

LeMMA 2.6. Let 1 be a closed ideal in A(DD) such that Z(I)ND = @
and let E = Z(I). Suppose that f = BS.F, € I, where B is o Blaschke
product, 8, a singular inner function and F,, the outer part of f. Then
Son(l — px) € I, where g is the restriction of the measure o to E and pp
is a peak function in A(ID) asseciated with E.
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Proof. We first note that Sing S, = suppe C Z{f) and that F has
Lebesgue measure zero. Moreover, f = BSy g Soyp, pFu. By Lemmas 2.3 and
2.5 we have g := §,,F,, € I. Since u is absolutely continuous with respect
to Lebesgue measure on T, we obviously have u(E) = 0. By exactly the
same reasoning as in the proof of Lemma 2.5, we obtain bounded analytic
functions G,, and H, defined as in {2), (3) and satisfying G, H,, = F,,. Note
that

max{ |G|, | Hnll} < max{L, || £}

Because H,Gy, == F, is continuous on D and H, analytic on U, with
|Hn| = 1 on Uy, we see that Gy, is continuous on DUU,. Since Gy, is analytic
on T\ Uy, the only points of discontinuity of G, are at the boundary points
of U,,.

Let p™~ be the peak functions constructed in the proof of Lemma 2.5.
We then deduce that f,, := (1 — p)Gr (1l — pg) € A(D) and that f, tends
uniformly to 1 — pg on D.

In the last step we show that Sy, fn € . Note that Sy, fn € A(D). By
the same reasoning as for G, H;, is a bounded apalytic function continnous
outside the boundary of Uy, so that h, = H,(1 — pii*) € A(D).

Since g £ I, we see that
Sonfahn = Sog fu(l — PP ) Hy = (1 — p7)*(1 — pp)Se z Gy
=(1—pp)*(1 —pg)y € L.

Now Z(ha) N Z(I) = (. By Lemma 2.4 we obtain S,,f, € I. By the
closedness of I, we conclude that Sy (1 —pe) =1limS;, fn €. n

THEOREM 2.7 (Beurling-Rudin). Let I be a nontrivial closed ideal in
A(D) such that the greatest common inner divisor of the normalized inner
factors of the elements in I is the constant function 1. Then I = I(E, A(D}),
where E = Z(I) N'T. Moreover, I is the closure of the principal ideal gen-
erated by 1 — pg, where pg is o peak function for B,

Proof SteEP 1. Since A(D) is a separable Banach algebra (e.g. the
polynomials with rational coefficients are dense), every subset, in particular
our closed icleal I has this property. Let {fr : n € N} be a dense subset of I.
Then the g.c.d. of the normalized inner factors of the f, is, by Lemma 2.2,
also a common divisor of all limit points of the f,. Hence, by our hypothesis,
this is the constant function 1.

STEP 2. Since the inner factors of the functions in I have no common
inner factor, they do not vanish simultaneously at any common point in I,
Hence Z(I) ND = §, Therefore £ = Z(I) C T and F has Lebesgue measure
zero, Let pg be a peak function associated with £ and let f = ph € I, where
v I8 an inner and h an outer function. By Lemmas 2.6 and 2.3 there exists
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a singular inner factor u of ¢ with Singu C E such that g .= u(1 —pg) & I.
Taking for f our f,’s, we get singular inner functions u, such that Sing u, C
E and un(l — pg) € I. Moreover, because the inner factors of the f,, have
no common divisor, the same obviously holds for the u,.

SteP 3. Now let vy, = g.c.d.{uy,...,u.}. We claim that v, (1 —pg} € I.

In fact, let @ € [0 be chosen so that by Theorem 1.1 the inner fac-
tor of uy + aug is a Blaschke product B times g.c.d.{uj,us} = vs. Hence
ur(l - pg) + eus(l — pg) = vuBF ¢ I for some outer function F. By
Lemma 2.3 we get vo F € I. Because Singus C F (note that both u; and
up are analytic on T \ E} we see by Lemma 2.6 that v2(1 — pg) € I. Now
we repeat the same step, replacing u; with vy and up with uz. Because
g.c.d-{vp-1,Un} = Un, we obtain via induction a proof of cur claim that
vo(l—pg) €1

STEP 4. Applying now Lemma 2.1, we conclude from g.c.d.{vy,va,...}
=1 that (v,) converges uniformly on compact subsets of ID to the constant
function 1. But actually, we have more. In fact, v, is analytically extendable
to C\ E. Because v, (0} is bounded, we see that the family (v, ) is uniformly
bounded on every compact set of C\ E. Hence by Vitali’s theorem, v,
converges uniformly on every compact set of C\ F to 1. In particular, v,
converges uniformly to 1 on D\ E,, where F, is the p-neighborhood of E in
T. Thus v, (1 —pz) converges uniformly to 1—-pg on D. Since va (1 —pg) € I,
we conclude by the closedness of I that 1 —pg € I.

Step 5. If f € I(E, A(D)), then k, = (1 — p%)f converges uniformly to
f. But k, € (1 — pr)A(D). Hence f € (1 — pg)A(D). Thus
ICHE AD)C(l~pp)A(D)CI. =

REMARK. It is irnmediately clear from the proof that if I is a nontrivial
closed ideal in A(DD) with inner factor u, then J = (uF)A(D) = u FA(D) =
ul (B, A(D)) for every outer function F' such that Z(F) = Z(I)NT.
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On quasipositive elements in ordered Banach algebras
by

GERD HERZOG and ROLAND LEMMERT (Karlsruhe)

Abstract. Let a real Banach algebra A with unit be ordered by an algebra cone K.
We study the elements a € A with exp(ta) € K,t 2 0.

1. Introduction. Let {(4,] - ||) be a real Banach algebra with unit 1.
A wedge K is a closed convex subset of A with AK C K, A > 0, and
K is called a cone if in addition K N {-K) = {0}. A cone K is called
normal if there exists v > 1 with 0 £ z <y = |zl < v[|yll, and K is
called solid if Int K # 0. A cone K is called an algebra cone if 1 € K and
a,b e K = ab € K. If K C A is an algebra cone, we consider A as an
ordered Banach algebra. As wsnal z €y y—~z € K.

Let A* denote the dual Banach space of A and let K* denote the dual
wedge of K, i.e.

K*={peA*:p(a)>0, a € K}

The cone K is called polyhedral if there exist ¢n,...,%n € A" with K =
{z € A:4u(x) 20, k=1,...,n} Of course in this case dim.4 <n.

The most common examples of ordered real Banach algebras are gener-
ated in the following way: Let E be a real Banach space ordered by a solid
cone Xp. The Banach algebra L(E) (the linear continuous endomorphisms
of B) can be ordered by the algebra cone

K={TeL(E): Tt >0, z 20}
The operators in K are called positive. For a survey on positive operators
see e.g. [1], [3], [7], and the references given there.

Now let 4, = A x A denote the complexification of A (see e.g. [2]),
and identify a € A with (a,0) € A.. The spectrum of a € A is denoted by
o(a) := 0((a,0)), and r(a) := r((a,0)) denotes its spectral radius. Moreover,
we define

7(a) 1= max{ReA: X € o(a)}.
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