

and one can easily prove that the sequences $c_{i,k-1}$ satisfy the required properties.

The proof ends by combining this result with the decomposition obtained in the previous lemma for a finite linear combination of translates of the sequence a with strictly positive coefficients. \blacksquare

THEOREM 3.14. Let $0 . Then <math>H^p(\mathbb{Z})$ is continuously embedded in $H^p_{\text{at}}(\mathbb{Z})$.

Proof. This follows immediately from the previous theorem for $k = \lfloor 1/p \rfloor$.

References

- [AC] P. Auscher and M. J. Carro, On relations between operators on \mathbb{R}^N , \mathbb{T}^N and \mathbb{Z}^N , Studia Math. 101 (1992), 165–182.
- [B] R. P. Boas, Entire Functions, Academic Press, 1954.
- [C] R. Coifman, A real-variable characterization of H^p, Studia Math. 51 (1974), 269-274.
- [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [E] C. M. Eoff, The discrete nature of the Paley-Wiener spaces, Proc. Amer. Math. Soc. 123 (1995), 505-512.
- [FS] C. Fefferman and E. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137–193.
- [FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. 79, Amer. Math. Soc., 1991.
 - [H] Y.-S. Han, Triebel-Lizorkin spaces on spaces of homogeneous type, Studia Math. 108 (1994), 247-273.
- [MS] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309.
- [M] A. Miyachi, On some Fourier multipliers for $H^p(\mathbb{R})$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 157–179.
- [S] C. E. Shannon, Communication in the presence of noise, Proc. IRE 37 (1949), 10-21.
- [Su] Q. Sun, Sequence spaces and stability of integer translates, Z. Anal. Anwendungen 12 (1993), 567-584.
- A. Uchiyama, A maximal function characterization of H^p on the spaces of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579-592.

Departament de Matemàtica Aplicada i Telemàtica Universitat Politècnica de Catalunya 08034 Barcelona, Spain E-mail: boza@mat.upc.es Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona 08071 Barcelona, Spain E-mail: carro@cerber.mat.ub.es

Received November 12, 1996
Revised version October 27, 1997
(3778)

STUDIA MATHEMATICA 129 (1) (1998)

A constructive proof of the Beurling-Rudin theorem

by

RAYMOND MORTINI (Metz)

Abstract. A constructive proof of the Beurling-Rudin theorem on the characterization of the closed ideals in the disk algebra $A(\mathbb{D})$ is given.

Introduction. Let $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ be the open unit disk, $\overline{\mathbb{D}}$ its closure and let $A(\mathbb{D})$ be the algebra of all functions continuous on $\overline{\mathbb{D}}$ and analytic in \mathbb{D} . Endowed with the supremum norm, $A(\mathbb{D})$ becomes a commutative, complex Banach algebra with unit element, the so-called disk algebra.

In 1957 Rudin [Ru] gave a complete characterization of the closed ideals in $A(\mathbb{D})$. Later, a similar but somewhat simpler and more functional analytic proof was given by Srinivasan and Wang [SrWa]. The proofs were based on Beurling's invariant subspace theorem for the shift operator on the Hilbert space H^2 of all square summable power series in \mathbb{D} , the Riesz theorem on the structure of analytic measures on the unit circle \mathbb{T} , the Hahn–Banach theorem and the Riesz representation theorem for bounded linear functionals on $C(\overline{\mathbb{D}})$.

In this paper we present an elementary and constructive proof of this theorem. For background material, the reader is referred to the books of J. Garnett [Ga] and K. Hoffman [Ho].

1. A Frostman type theorem for the sum of two inner functions.

Let u be an inner function. By Frostman's well known result the inner function $(a-u)/(1-\overline{a}u)$ is a Blaschke product for all $a\in\mathbb{D}$ outside a possibly empty set E of logarithmic capacity zero, denoted by $\operatorname{cap} E=0$ (see [Ga, p. 79]). Walter Rudin [Rud] extended this result by showing that for every analytic function f of bounded characteristic in \mathbb{D} the inner factor of f-a is a Blaschke product for all $a\in\mathbb{D}\setminus E$, where $\operatorname{cap} E=0$. Here we have the following result of Donald Sarason (unpublished):

¹⁹⁹¹ Mathematics Subject Classification: Primary 46J15.

THEOREM 1.1 (Sarason). Let u and v be two inner functions having no common factor. Then for every $\varrho > 0$ the inner factor of $u + \varrho e^{it}v$ is a Blaschke product for almost all t in \mathbb{R} .

Proof (Sarason). In view of [Ga, p. 56], it suffices to show that

$$\begin{split} \lim_{r \to 1} \frac{1}{2\pi} \int\limits_0^{2\pi} \log |u(re^{i\theta}) + \varrho e^{it} v(re^{i\theta})| \, d\theta \\ &= \frac{1}{2\pi} \int\limits_0^{2\pi} \log |u(e^{i\theta}) + \varrho e^{it} v(e^{i\theta})| \, d\theta \end{split}$$

for almost all t. Since the integrands on the left side are subharmonic, the integral means increase to a real number not exceeding the right side of the equation above (Fatou theorem). Hence it will suffice to show that

$$\begin{split} \lim_{r \to 1} \frac{1}{4\pi^2} \int_{0}^{2\pi} \int_{0}^{2\pi} \log|u(re^{i\theta}) + \varrho e^{it} v(re^{i\theta})| \, d\theta \, dt \\ &= \frac{1}{4\pi^2} \int_{0}^{2\pi} \int_{0}^{2\pi} \log|u(e^{i\theta}) + \varrho e^{it} v(e^{i\theta})| \, d\theta \, dt. \end{split}$$

Because

$$rac{1}{2\pi}\int\limits_0^{2\pi}\log|u(re^{i heta})+arrho e^{it}v(re^{i heta})|\,dt=\log\max(|u(re^{i heta})|,arrho|v(re^{i heta})|)$$

we are, by Fubini, done if

$$\lim_{r\to 1} \frac{1}{2\pi} \int\limits_0^{2\pi} \log \max(|u(re^{i\theta})|, \varrho |v(re^{i\theta})|) \, d\theta = \max(0, \log \varrho).$$

Now the limit on the left is the value at the origin of the least harmonic majorant in \mathbb{D} of the subharmonic function $\max(\log |u|, \log |\varrho v|)$. Denote this majorant by h. So it remains to show that h is the constant function $\max(0, \log \varrho)$.

Without loss of generality let $0 \le \varrho \le 1$. Then $\log |u| \le h \le 0$. This implies that h has radial limits 0 almost everywhere on \mathbb{T} . So, if h is not identically zero, then h is the Poisson integral of a negative singular measure on \mathbb{T} . Hence $\varphi = \exp(h+i\tilde{h})$ is a singular inner function (here \tilde{h} denotes the harmonic conjugate of h in \mathbb{D}). Since $|u| \le |\exp(h+i\tilde{h})|$, that inner function φ divides u. But $|v| \le \frac{1}{\varrho} |\exp(h+i\tilde{h})|$ implies that φ also divides v, producing a counterexample. Hence $h \equiv 0$.

2. Closed ideals in $A(\mathbb{D})$. For a closed set $E \subseteq \mathbb{T}$ of Lebesgue measure zero we denote by $I(E, A(\mathbb{D}))$ the ideal of all functions in $A(\mathbb{D})$ vanishing

on E. A function $p_E \in A(\mathbb{D})$ satisfying $p_E(z) = 1$ for $z \in E$ and $|p_E(z)| < 1$ otherwise is called a *peak function* associated with E (for the construction see [Ho, pp. 80–81]). If $f \in A(\mathbb{D})$, we let $Z(f) = \{z \in \overline{\mathbb{D}} : f(z) = 0\}$ denote its zero set. The *hull* or zero set of an ideal I in $A(\mathbb{D})$ is the set $Z(I) = \bigcap_{f \in I} Z(f)$.

If $u = BS_{\mu}$ is an inner function, then Sing u is the set of all boundary singularities of u. It is clear that Sing u equals the union of the support of the measure μ associated with the singular inner part S_{μ} of u and the set of all cluster points of the zeros of u in \mathbb{D} . If μ is a Borel measure on \mathbb{T} , then μ_E denotes its restriction to E, where $E \subseteq \mathbb{T}$.

We call an inner function u normalized if u(0) > 0. The term g.c.d. $\mathcal F$ means the greatest common divisor of a set $\mathcal F$ of normalized inner functions (see [Ho, p. 85] and [Ga, p. 84]). The main tools of our constructive approach to the Beurling–Rudin theorem are, besides the theorem of Chapter 1, results on divisibility in closed ideals of $A(\mathbb D)$. The proofs depend on a refinement of ideas appearing in [Mo] for the case of the algebra H^∞ of all bounded analytic functions on $\mathbb D$.

The proof of the Beurling–Rudin theorem itself is done in several steps. First we show that the g.c.d., denoted by φ , of the inner parts of the functions in the ideal I is already determined by a countable set of functions in I. Then we construct functions f_n in I with the g.c.d. of their inner parts φ_n being φ , but such that φ_n converges uniformly on compact subsets of $\overline{\mathbb{D}} \setminus (Z(I) \cap \mathbb{T})$ to φ and that $\varphi_n(1-p_E) \in I$ for a peak function p_E associated with $E = Z(I) \cap \mathbb{T}$. This is done by using the facts that if $f = BS_\mu F \in I$, then $Z(I) \cap \mathbb{D} = \emptyset$ implies that, without leaving the ideal, one can split off the Blaschke factor B, the singular inner function $S_{\mu_T \setminus E}$ and one can replace the outer part F by a fixed outer function vanishing exactly on E.

LEMMA 2.1. Let (u_n) be a sequence of normalized inner functions without a common factor and let $v_n = \text{g.c.d.}\{u_1, \ldots, u_n\}$. Then

- (1) v_{n+1} divides v_n for every $n \in \mathbb{N}$,
- (2) g.c.d. $\{v_n : n \in \mathbb{N}\} = 1$,
- (3) (v_n) converges locally uniformly to the constant function 1.

Proof. Note that the first two assertions are trivial. Because (v_n) is a normal family, there exists a locally uniformly converging subsequence (v_{n_j}) . Let v be any such limit point. Because v_n divides v_k for every $1 \le k \le n$, there exist inner functions $f_{n,k}$ such that $v_k = v_{n_j} f_{n_j,k}$ $(1 \le k \le n_j, j \in \mathbb{N})$. Because for fixed k the set $\{f_{n_j,k}: j \in \mathbb{N}\}$ is a normal family, we can choose a converging subsequence. Without loss of generality let $f_k = \lim_j f_{n_j,k}$. Then $v_k = v f_k$. Hence v divides v_k for every k. Thus $v \equiv 1$.

LEMMA 2.2. Let u be an inner function and let $f_n = uh_n$ be a sequence in $A(\mathbb{D})$ converging in norm to f. Then f = uh for some $h \in A(\mathbb{D})$.

Proof. Because $||f_n|| = ||h_n||$ is bounded, by a normal family argument there exists a locally uniformly converging subsequence of h_n ; say $h_{n_k} \to h$, where $h \in H^{\infty}$. Then uh_{n_k} converges to uh. Since pointwise limits are unique, f = uh. By [Ga, p. 78], $f \in A(\mathbb{D})$ implies $h \in A(\mathbb{D})$.

Lemma 2.3. Let I be a closed ideal in $A(\mathbb{D})$ such that $Z(I) \cap \mathbb{D} = \emptyset$ and let $g = Bf \in I$ for a Blaschke product B. Then $f \in I$.

Proof. Let

$$B_N(z) = \prod_{n=N+1}^{\infty} \frac{\overline{a}_n}{|a_n|} \cdot \frac{a_n - z}{1 - \overline{a}_n z}$$

be the Nth tail of the Blaschke product B with zero sequence (a_n) . Because $Z(I) \cap \mathbb{D} = \emptyset$, we can choose for every a_j a function $g_j \in I$ such that $g_j(a_j) \neq 0$. The formula

$$\frac{g(z)}{z - a_j} = -\frac{1}{g_j(a_j)} \left(g(z) \frac{g_j(z) - g_j(a_j)}{z - a_j} - g_j(z) \frac{g(z)}{z - a_j} \right) \in I,$$

applied for each $j \in \{1, \ldots, n\}$ successively, implies that $B_n f \in I$ for each n. Because B_n converges uniformly to 1 on each compact set in $\overline{\mathbb{D}} \setminus \operatorname{Sing} B$, $B_n f$ tends uniformly to f on $\overline{\mathbb{D}}$. (Note that $\operatorname{Sing} B \subseteq Z(f) \cap \mathbb{T}$). Since I is closed we conclude that $f \in I$.

The following lemma is an immediate consequence of the Nullstellensatz for $A(\mathbb{D})$, for which there exists a constructive proof (see [vR] and [MoRu]).

LEMMA 2.4. Let I be a closed ideal in $A(\mathbb{D})$, $g \in A(\mathbb{D})$ and let $f \in A(\mathbb{D})$ satisfy $Z(f) \cap Z(I) = \emptyset$. Then $fg \in I$ implies that $g \in I$.

Proof. By compactness there exist finitely many functions $f_j \in I$ so that

$$\bigcap_{j=1}^{n} Z(f_j) \cap Z(f) = \emptyset.$$

The Nullstellensatz now yields functions $h, h_j \in A(\mathbb{D})$ so that

$$1 = \sum_{j=1}^{n} h_j f_j + h f.$$

Hence $g = (\sum_{i=1}^{n} h_i f_i) g + h(fg) \in I + I \subseteq I$.

LEMMA 2.5. Let I be a closed ideal in $A(\mathbb{D})$, $E = Z(I) \cap \mathbb{T}$, and let S_{μ} be a singular inner function such that $S_{\mu}f \in I$. Then $f \in I$ whenever $\mu(E) = 0$.

Proof. Because μ is a regular measure and $\mu(E) = 0$, there exist open neighborhoods U_n of E (in \mathbb{T}) such that

(1)
$$\mu(U_n) < \frac{1}{n}, \quad U_{n+1} \subseteq U_n, \quad \bigcap_{n=1}^{\infty} U_n = E.$$

Since E is compact, we may assume that U_n is a finite union of arcs with disjoint closures. Let

(2)
$$G_n(z) = \exp\left(-\frac{1}{2\pi} \int_{U_n} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right)$$

and

(3)
$$H_n(z) = \exp\left(-\frac{1}{2\pi} \int_{\mathbb{T}\setminus U_n} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right).$$

It is easy to see that G_n and H_n are inner functions satisfying $G_nH_n=S_\mu$ and that G_n converges to 1 uniformly on every compact set of $\overline{\mathbb{D}}\setminus E$. Let p_n be a peak function associated with the boundary of U_n in \mathbb{T} and let V_n be a finite union of open arcs, slightly bigger than those of U_n but still satisfying (1). By taking suitable powers m_n , we get $|p_n^{m_n}| \leq (1/2)^n$ on $\mathbb{T} \setminus V_n$. Hence $p_n^{m_n}$ tends uniformly to zero on every compact set of $\mathbb{T} \setminus E$. It is even a weakly null sequence in $A(\mathbb{D})$.

Because $\operatorname{Sing} G_n \subseteq \operatorname{supp} \mu \cup \partial U_n \subseteq Z(f) \cup \partial U_n$, we conclude that $(1-p_n^{m_n})G_nf \in A(\mathbb{D})$ and that $(1-p_n^{m_n})G_nf$ converges uniformly to f on $\overline{\mathbb{D}}$. Let $f_n=(1-p_n^{m_n})G_nf$. It remains to show that $f_n\in I$. In fact, since $\operatorname{Sing} H_n\subseteq \overline{\mathbb{T}\setminus U_n}$, we see that $E\cap\operatorname{Sing} H_n=\emptyset$. Moreover, $\operatorname{Sing} H_n\subseteq Z(f)\cup\partial U_n$ implies that $\operatorname{Sing} H_n$ has Lebesgue measure zero. Thus there exists a peak function p_{E_n} in $A(\mathbb{D})$ associated with $E_n=\operatorname{Sing} H_n$. Hence $H=H_n(1-p_{E_n})\in A(\mathbb{D})$ and $Z(H)\cap Z(I)=\emptyset$. By the Nullstellensatz for $A(\mathbb{D})$ there exist $\alpha\in A(\mathbb{D})$ and $h\in I$ so that $1=\alpha H+h$. Hence

$$f_n = (f_n \alpha)H + f_n h = (S_\mu f)\alpha(1 - p_{E_n})(1 - p_n^{m_n}) + f_n h \in I$$

Since I is closed, we obtain $\lim f_n = f \in I$.

LEMMA 2.6. Let I be a closed ideal in $A(\mathbb{D})$ such that $Z(I) \cap \mathbb{D} = \emptyset$ and let E = Z(I). Suppose that $f = BS_{\sigma}F_{\mu} \in I$, where B is a Blaschke product, S_{σ} a singular inner function and F_{μ} the outer part of f. Then $S_{\sigma_E}(1-p_E) \in I$, where σ_E is the restriction of the measure σ to E and p_E is a peak function in $A(\mathbb{D})$ associated with E.

Proof. We first note that $\operatorname{Sing} S_{\sigma} = \operatorname{supp} \sigma \subseteq Z(f)$ and that E has Lebesgue measure zero. Moreover, $f = BS_{\sigma_E}S_{\sigma_{\mathbb{T}} \setminus E}F_{\mu}$. By Lemmas 2.3 and 2.5 we have $g := S_{\sigma_E}F_{\mu} \in I$. Since μ is absolutely continuous with respect to Lebesgue measure on \mathbb{T} , we obviously have $\mu(E) = 0$. By exactly the same reasoning as in the proof of Lemma 2.5, we obtain bounded analytic functions G_n and H_n defined as in (2), (3) and satisfying $G_nH_n = F_{\mu}$. Note that

$$\max\{\|G_n\|, \|H_n\|\} \le \max\{1, \|F_\mu\|\}.$$

Because $H_nG_n = F_\mu$ is continuous on $\overline{\mathbb{D}}$ and H_n analytic on U_n with $|H_n| = 1$ on U_n , we see that G_n is continuous on $\mathbb{D} \cup U_n$. Since G_n is analytic on $\mathbb{T} \setminus \overline{U}_n$, the only points of discontinuity of G_n are at the boundary points of U_n .

Let $p_n^{m_n}$ be the peak functions constructed in the proof of Lemma 2.5. We then deduce that $f_n := (1 - p_n^{m_n})G_n(1 - p_E) \in A(\mathbb{D})$ and that f_n tends uniformly to $1 - p_E$ on $\overline{\mathbb{D}}$.

In the last step we show that $S_{\sigma_{\mathbb{B}}}f_n \in I$. Note that $S_{\sigma_{\mathbb{B}}}f_n \in A(\mathbb{D})$. By the same reasoning as for G_n , H_n is a bounded analytic function continuous outside the boundary of U_n , so that $h_n := H_n(1 - p_n^{m_n}) \in A(\mathbb{D})$.

Since $g \in I$, we see that

$$S_{\sigma_E} f_n h_n = S_{\sigma_E} f_n (1 - p_n^{m_n}) H_n = (1 - p_n^{m_n})^2 (1 - p_E) S_{\sigma_E} G_n H_n$$
$$= (1 - p_n^{m_n})^2 (1 - p_E) g \in I.$$

Now $Z(h_n) \cap Z(I) = \emptyset$. By Lemma 2.4 we obtain $S_{\sigma_E} f_n \in I$. By the closedness of I, we conclude that $S_{\sigma_E} (1 - p_E) = \lim_{n \to \infty} S_{\sigma_E} f_n \in I$.

THEOREM 2.7 (Beurling-Rudin). Let I be a nontrivial closed ideal in $A(\mathbb{D})$ such that the greatest common inner divisor of the normalized inner factors of the elements in I is the constant function 1. Then $I = I(E, A(\mathbb{D}))$, where $E = Z(I) \cap \mathbb{T}$. Moreover, I is the closure of the principal ideal generated by $1 - p_E$, where p_E is a peak function for E.

Proof. Step 1. Since $A(\mathbb{D})$ is a separable Banach algebra (e.g. the polynomials with rational coefficients are dense), every subset, in particular our closed ideal I has this property. Let $\{f_n : n \in \mathbb{N}\}$ be a dense subset of I. Then the g.c.d. of the normalized inner factors of the f_n is, by Lemma 2.2, also a common divisor of all limit points of the f_n . Hence, by our hypothesis, this is the constant function 1.

STEP 2. Since the inner factors of the functions in I have no common inner factor, they do not vanish simultaneously at any common point in \mathbb{D} . Hence $Z(I) \cap \mathbb{D} = \emptyset$. Therefore $E = Z(I) \subseteq \mathbb{T}$ and E has Lebesgue measure zero. Let p_E be a peak function associated with E and let $f = \varphi h \in I$, where φ is an inner and h an outer function. By Lemmas 2.6 and 2.3 there exists

a singular inner factor u of φ with $\operatorname{Sing} u \subseteq E$ such that $g := u(1 - p_E) \in I$. Taking for f our f_n 's, we get singular inner functions u_n such that $\operatorname{Sing} u_n \subseteq E$ and $u_n(1 - p_E) \in I$. Moreover, because the inner factors of the f_n have no common divisor, the same obviously holds for the u_n .

STEP 3. Now let $v_n = \gcd.d.\{u_1,\ldots,u_n\}$. We claim that $v_n(1-p_E) \in I$. In fact, let $a \in \mathbb{D}$ be chosen so that by Theorem 1.1 the inner factor of $u_1 + au_2$ is a Blaschke product B times $\gcd.d.\{u_1,u_2\} = v_2$. Hence $u_1(1-p_E) + au_2(1-p_E) = v_2BF \in I$ for some outer function F. By Lemma 2.3 we get $v_2F \in I$. Because $\arg v_2 \subseteq E$ (note that both u_1 and u_2 are analytic on $\mathbb{T} \setminus E$) we see by Lemma 2.6 that $v_2(1-p_E) \in I$. Now we repeat the same step, replacing u_1 with v_2 and v_2 with v_3 . Because $\gcd.d.\{v_{n-1},u_n\} = v_n$, we obtain via induction a proof of our claim that $v_n(1-p_E) \in I$.

STEP 4. Applying now Lemma 2.1, we conclude from g.c.d. $\{v_1, v_2, \ldots\}$ = 1 that (v_n) converges uniformly on compact subsets of $\mathbb D$ to the constant function 1. But actually, we have more. In fact, v_n is analytically extendable to $\mathbb C\setminus E$. Because $v_n(0)$ is bounded, we see that the family (v_n) is uniformly bounded on every compact set of $\mathbb C\setminus E$. Hence by Vitali's theorem, v_n converges uniformly on every compact set of $\mathbb C\setminus E$ to 1. In particular, v_n converges uniformly to 1 on $\overline{\mathbb D}\setminus E_{\varrho}$, where E_{ϱ} is the ϱ -neighborhood of E in $\mathbb T$. Thus $v_n(1-p_E)$ converges uniformly to $1-p_E$ on $\overline{\mathbb D}$. Since $v_n(1-p_E)\in I$, we conclude by the closedness of I that $1-p_E\in I$.

STEP 5. If $f \in I(E, A(\mathbb{D}))$, then $k_n = (1 - p_E^n)f$ converges uniformly to f. But $k_n \in (1 - p_E)A(\mathbb{D})$. Hence $f \in \overline{(1 - p_E)A(\mathbb{D})}$. Thus

$$I \subseteq I(E, A(\mathbb{D})) \subseteq \overline{(1 - p_E)A(\mathbb{D})} \subseteq I. \blacksquare$$

REMARK. It is immediately clear from the proof that if I is a nontrivial closed ideal in $A(\mathbb{D})$ with inner factor u, then $I = \overline{(uF)}A(\mathbb{D}) = u\overline{FA(\mathbb{D})} = uI(E, A(\mathbb{D}))$ for every outer function F such that $Z(F) = Z(I) \cap \mathbb{T}$.

Acknowledgements. I would like to thank Donald Sarason for allowing me to present his result on the sum of inner functions in this paper.

References

- [Ga] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [Ho] K. Hoffman, Banach Spaces of Analytic Functions, Dover Publ., New York, 1988 (reprint of the 1962 edition).
- [Mo] R. Mortini, Closed and prime ideals in the algebra of bounded analytic functions, Bull. Austral. Math. Soc. 35 (1987) 213-229.
- [MoRu] R. Mortini and R. Rupp, A constructive proof of the Nullstellensatz for subalgebras of A(K), Trav. Math. 3, Publ. CUL, 1991, 45-49.

(3851)

R. Mortini

[vR] M. von Renteln, A simple constructive proof of an analogue of the Corona theorem, Proc. Amer. Math. Soc. 83 (1981) 299-303.

[Ru] W. Rudin, The closed ideals in an algebra of analytic functions, Canad. Math. J. 9 (1957) 426-434.

[Rud] —, A generalization of a theorem of Frostman, Math. Scand. 21 (1967), 136-143.

[SrWa] T. P. Srinivasan and J. K. Wang, On the closed ideals of analytic functions, Proc. Amer. Math. Soc. 16 (1965), 49-52.

Département de Mathématiques Université de Metz Ile du Saulcy F-57045 Metz, France E-mail: mortini@poncelet.univ-metz.fr

58

Received February 27, 1997

STUDIA MATHEMATICA 129 (1) (1998)

On quasipositive elements in ordered Banach algebras

by

GERD HERZOG and ROLAND LEMMERT (Karlsruhe)

Abstract. Let a real Banach algebra A with unit be ordered by an algebra cone K. We study the elements $a \in A$ with $\exp(ta) \in K$, $t \ge 0$.

1. Introduction. Let $(A, \|\cdot\|)$ be a real Banach algebra with unit 1. A wedge K is a closed convex subset of A with $\lambda K \subset K$, $\lambda \geq 0$, and K is called a cone if in addition $K \cap (-K) = \{0\}$. A cone K is called normal if there exists $\gamma \geq 1$ with $0 \leq x \leq y \Rightarrow \|x\| \leq \gamma \|y\|$, and K is called solid if $\text{Int } K \neq \emptyset$. A cone K is called an algebra cone if $1 \in K$ and $a, b \in K \Rightarrow ab \in K$. If $K \subset A$ is an algebra cone, we consider A as an ordered Banach algebra. As usual $x \leq y :\Leftrightarrow y - x \in K$.

Let A^* denote the dual Banach space of A and let K^* denote the dual wedge of K, i.e.

$$K^* = \{ \varphi \in A^* : \varphi(a) \ge 0, \ a \in K \}.$$

The cone K is called polyhedral if there exist $\psi_1, \ldots, \psi_n \in A^*$ with $K = \{x \in A : \psi_k(x) \geq 0, k = 1, \ldots, n\}$. Of course in this case dim $A \leq n$.

The most common examples of ordered real Banach algebras are generated in the following way: Let E be a real Banach space ordered by a solid cone K_E . The Banach algebra L(E) (the linear continuous endomorphisms of E) can be ordered by the algebra cone

$$K = \{T \in L(E) : Tx \ge 0, x \ge 0\}.$$

The operators in K are called *positive*. For a survey on positive operators see e.g. [1], [3], [7], and the references given there.

Now let $A_c = A \times A$ denote the complexification of A (see e.g. [2]), and identify $a \in A$ with $(a,0) \in A_c$. The spectrum of $a \in A$ is denoted by $\sigma(a) := \sigma((a,0))$, and r(a) := r((a,0)) denotes its spectral radius. Moreover, we define

$$\tau(a) := \max\{\operatorname{Re} \lambda : \lambda \in \sigma(a)\}.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 46H05.