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On quasipositive elements in ordered Banach algebras
by

GERD HERZOG and ROLAND LEMMERT (Karlsruhe)

Abstract. Let a real Banach algebra A with unit be ordered by an algebra cone K.
We study the elements a € A with exp(ta) € K,t 2 0.

1. Introduction. Let {(4,] - ||) be a real Banach algebra with unit 1.
A wedge K is a closed convex subset of A with AK C K, A > 0, and
K is called a cone if in addition K N {-K) = {0}. A cone K is called
normal if there exists v > 1 with 0 £ z <y = |zl < v[|yll, and K is
called solid if Int K # 0. A cone K is called an algebra cone if 1 € K and
a,b e K = ab € K. If K C A is an algebra cone, we consider A as an
ordered Banach algebra. As wsnal z €y y—~z € K.

Let A* denote the dual Banach space of A and let K* denote the dual
wedge of K, i.e.

K*={peA*:p(a)>0, a € K}

The cone K is called polyhedral if there exist ¢n,...,%n € A" with K =
{z € A:4u(x) 20, k=1,...,n} Of course in this case dim.4 <n.

The most common examples of ordered real Banach algebras are gener-
ated in the following way: Let E be a real Banach space ordered by a solid
cone Xp. The Banach algebra L(E) (the linear continuous endomorphisms
of B) can be ordered by the algebra cone

K={TeL(E): Tt >0, z 20}
The operators in K are called positive. For a survey on positive operators
see e.g. [1], [3], [7], and the references given there.

Now let 4, = A x A denote the complexification of A (see e.g. [2]),
and identify a € A with (a,0) € A.. The spectrum of a € A is denoted by
o(a) := 0((a,0)), and r(a) := r((a,0)) denotes its spectral radius. Moreover,
we define

7(a) 1= max{ReA: X € o(a)}.
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We call a € A positive if a > 0, and guasipositive if exp(ta) > 0, £ > 0.
Now let

@ = {a € A: a is quasipositive},
H:={ac A:IXeR:a+ Al is positive},
Moreover, for ¢ € K™ let
Hy:={reA:pz)=0}
REMARKS. 1. We have K ¢ H C Q.

2. If 1 € Int K, then we get the trivial case @ = H = 4,
3. Since K is closed under multiplication we have

a€Q < Je>0Vte [0,e] : exp(ta) > 0.
4. We have a € (—Q)NQ 4 exp(ta) > 0,t € R.

—Q:={ecA:-ae @}
—-H:={acA:-ae H}.

A fanction f : A — A is called guasimonotone increasing (in the sense
of Volkmann, see [8]) if

a<b pe K", pla)=pb) = ¢(f(a)) < o(f(b)).
We will prove the following assertions:

THEOREM 1. Let A be ordered by an algebra cone, Then

(1) Qs o wedge;

2) (-Q)NQ is a closed subspace of A;

(3) (~H)N H is a subalgebra of A;

4 eec@, rla)<0=a"1<0;

(5) @ € Q = the function f : A —~ A defined by f(z) = az is quasi-

monotone increasing,;

(6) Q=H= anEK*,:p(l)=0 Hzp;

(Mac (-H)NH = +a+r(a)l > 0:

(8} (-H)N H s closed;

{9) If K is polyhedral then Q = H;
(l0)ae (-QNQ=a?ecQ;
(11) a € @ & limp_gq A1 dist(1 + ha, K) = 0;
(12) If K is normal then a € Q = 7(a) € o(a).

REMARKS. 1. With a similar proof to that in Section 2 it can be shown
that a € @ if and only if the function f: A — A defined by f(z) = za is
guasimonotone increasing,

2. In general H # Q (even if dim A < 0o) (see Examples 2 and 3).

3. In general (—Q) N Q is not a subalgebra of 4, since if a,b € (—~Q)NQ
then gb is in general not in Q (see Example 2). Moreover, if a € (—Q) N Q
then ¢ is in general not in —@Q (see Examples 2 and 3).
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To prove (12) of Theorem 1 we will use the following proposition (see
[5])-

PROPOSITION 1. Let A be ordered by a normal algebra cone. Then

(Da,be K, 0L a<b=rla) <rd),

(2) a € K = r(a) € o(a) (comp. Theorem of Perron-Frobenius).

2. Proofs

Proof of Theorem 1. (1) Obviously Q is closed, and a € Q = Aa € Q,
A > 0. Moreover, a,b € @ = a +b € Q, according to Trotter’s product
formula:

Jim. (exp(a/n) exp(b/n))™ = exp(a + b).
Hence @) is a wedge.
(2) Since @ is a wedge, —@ is also a wedge. Hence (~Q) N Q is a closed
subspace of A.

(3) Obviously (—H) N H is a subspace of A. Now let a,b € (—H)n H.
There exists A > 0 with £+a + A1 > 0 and &b+ Al > 0. Hence

M1 > +da, A1 A,
and
kab -+ Ala £ b) - A1 > 0.
Now, since
ab+ 331> ab+Ma+b)+ 3120
and

—ab 4+ 32?1 > —ab+ Aa —b) + A\*1 > 0,
we see that (—H) M H is closed under multiplication.
(4) Let a € @ with 7{a) < 0. According to the spectral mapping theorem

(see e.g. [2]) we get r{exp(a)) < 1 and therefore exp(ta) — 0 as t — oo.
Hence

=]
a™t = - S exp(ta) dt < 0.
0
(5) Let f(z) = az (z € A) be quasimonotone increasing. The function
z(t) = exp(ta), t > 0, is the solution of the initial value problem
o' (t) = ax(t), =(0)=1, tz0.

According to a theorem of Volkmann on differential inequalities in ordered
Banach spaces (see [9]), we have (t) > 0 for t > 0. Hence a € Q.
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Now fix a € @ and let z > 0 and ¢ € K* with o(z) = 0. We have
exp(ta) > 0 for t > 0. Therefore exp(ta)z > 0 for ¢ > 0, which implies

plowlta)s) |

t>0,
t
and for t — 0+ we obtain p(az) > 0.
(6) We first show that
Qc () He
pek™, p(1)=0

Fix ¢ € Q. Now let ¢ € K* with (1) = 0. According to (5) the function
f: A — A defined by f(z) = az is quasimonotone increasing. Since 1 > 0
we have @(a) = p(al) > 0,ie a € H,.
Obviously H C Q, hence H C Q. Now it is sufficient to show that
(| H,cH.

‘PEK*NP(]-):O
Let o ¢ H. Since H is a closed convex subset of A there exists ¢ € A such
that

pla) <(z), zeH.
Since K C H, we have ¢(Az) 2 ¢(a) for € K and A 2 0. So 3(z) > 0 for
z > 0,ie ¥ € K* Since R1 C H we have (1} = 0 and ¢(a) < 0. Hence
a @ Hy.

(7} Leta € (—H)NH, e > 0and Ay = r(a)+e. We have T{a — Apl) < 0.
Hence +a — Agl are invertible and 7((£a — A1)™) < 0. Since (—H) N H is
an algebra we have

(da ~ A1)t —ml—-(lxi)—l— li(i— “)ke (-Q)NnQ

° Ao Ao S Ter AN ‘
Hence according to (4) we have +a — Agl < 0, and so a+ Apl > 0. Letting
g — 0+ we obtain +a + r{a)l > 0.

(8) Assume that (ax)}2, is a sequence in (—H) N H with limit a. Ac-

cording to (7) we have
0 < ax + apl1 — a+ ol

Therefore o € (—H)N H.
(9) Wehave K = {2z € A:9p(z) 20,k =1,...,n} Let a € Q. For
k=1,...,n we have
Pi(1) = 0= gx(a}) 2 0,

0o ) o

k — oo.
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Hence for

_ AN
)\—max{ (1)

we have ¢ + Al € K. Hence e € H.
(10) Let a € (~Q) N Q and consider p &€ K* with (1) = 0. Since
—a,a € @ we have p(a) = 0. Since exp{at) > 0 for ¢ € R, we have

0 %im plexp(ta))
L0 e

k=1,...,n, ¢k(1)>0},

=p(a®) > 0.

Hence .
de [ He=@
PEX™, p(1)=0
(11) If a € Q then
lim h~ldist(1 + ha,K) =0,
h—+0-

according to a theorem of Redheffer and Walter (see [6]). Now let for a € A
the limit above be 0 and assume that a ¢ Q. Then there exists p € K™ with
(1) = 0 and p(a) < 0. Moreover, there exists a sequence (b,)32; in K such
that

lim |nl + a — nby| = 0.

00
Hence 0 < limy— o0 @(nby, — nl) = w(a), which is a contradiction.

(12) Let a € Q. Since Q is a wedge and since 7(pa) = pr(a) for 4 > 0, as

well as o(pa) = po(a) for p > 0, we can assume without loss of generality
that

ol@) c{AeC:|mA| < n/2}.
We have exp(a) = 0. According to the spectral mapping theorem and Propo-
sition 1 we have
r(exp(a)) € o{exp(a)) = exp(c{a))-
Now there exists Ao € o(a) with exp(A) = r(exp(a)). Hence Re do = (a)
and since |Im Ag| < 7/2 we have Ao = 7(a). =

3, Examples. We illustrate our results by some examples.

LLet B=R* Kg={z R 1220, k=1,...,n}, and let L(E) be
ordered by the induced cone K. Obviously K is solid, normal and polyhedral.
It is well known that

Q=H={TeL(E): t; >0, i#j}.
Hence (~Q) N Q are exactly the diagonal matrices.

2. Let B = R®, Kp = {z ¢ R3 : z3 > /73 + 23} (note that K} = Kg),
and let L(F) be ordered by the induced cone K. For a characterization and
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properties of K see [4]. We do not know an easy represenfation of ¢ in this
case, but it is easy to check that

a1 B Y
i § as

if 3 > max{on,aa}. Hence T € (—Q) N Q if o3 = g = ay. For v = 1 and
all other entries 0 we have T' € Q and T' ¢ H. Now generate T1 by setting
v = 1 and all other entries 0, and T3 by setting 8 = 1 and all other entries
0. Then

0 0 0
TWTh=|0 0 0]&Q
010

since exp(NTy) = I + 1175 € K. Hence (—Q) N Q is not a subalgebra of
L(E). Moreover, consider T3 = T} + T5. We have T3 € (—Q) N Q. According
to Theorem 1(10) we have T2 € Q, but T2 ¢ —(@ since

1 0 0
exp(-T5)=[0 2 1| ¢K
0 -1 0

3. Let 1°° denote the Banach space of all real bounded sequences (¢,)5%,
endowed with the supremum norm || - ||ce. Let

Z nn n, (cn)z_o=0 € lm}:
n=0

E= {weCmRR) (s) =

endowed with the norm

z]| = sup sup(e™![z™ (s)]).
neNy sk
Note that ||z] = ||{cn)e%p]loo- Now let Kg = {z € E : z(s) = 0, s € R},
and let L(F) be ordered by the induced cone K (note that Kg is solid, for
example the function 2z € C*° (R, R) defined by «(s) = cosh(s) is in Int Kg).
Let D € L(F) denote the operator Dz = z’. We have

(exp(tD)z)(8) =x(s +1t), teR,

hence D € {(—@Q) N Q. Moreover, =D ¢ H: Let z be defined as z(s) =
1 + sin(s). Then 2 € Kg but (=D + A)z ¢ Kp for A € R. Next by
Theorem 1(10) we have D? € @. Of course, from the theory of the Cauchy
problem for the heat equation on an infinite strip we have

[

1
—_ S e (e et z(rydr, t>0,

(exp(tDz)_w)(s) = it

—oa
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which also shows that D? € Q. On the other hand, D2 ¢ —Q: Let x(s) =
1+ sin(s); then z € Kp and exp(—~tD?)z ¢ K for ¢ > 0, since
(exp(—tDH)z)(s) = 1 + & sin(s), t>0.

The same function # shows that DigqQ.

It would be interesting to know whether D? is in H or not. Numerical
experiments indicate that maybe D? + I > 0.

Next, since D? corresponds to the double left shift in 1°° we have o(D%) =
{z € C: |z} £ 1}. Hence according to Theorem 1 (4) we have

(D*-A)"1<0, A> L
Finally, according to Theorem 1(6), D? can be approximated by elements
of H. For example, set
D2 = exp(hD) -+ exp(—hD) — 2I
[ B2

Then D} € H, h > 0 and limp—o4 D? = D? in L(E).
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