

(3851)

R. Mortini

[vR] M. von Renteln, A simple constructive proof of an analogue of the Corona theorem, Proc. Amer. Math. Soc. 83 (1981) 299-303.

[Ru] W. Rudin, The closed ideals in an algebra of analytic functions, Canad. Math. J. 9 (1957) 426-434.

[Rud] —, À generalization of a theorem of Frostman, Math. Scand. 21 (1967), 136-143.

[SrWa] T. P. Srinivasan and J. K. Wang, On the closed ideals of analytic functions, Proc. Amer. Math. Soc. 16 (1965), 49-52.

Département de Mathématiques Université de Metz Ile du Saulcy F-57045 Metz, France E-mail: mortini@poncelet.univ-metz.fr

58

Received February 27, 1997

STUDIA MATHEMATICA 129 (1) (1998)

On quasipositive elements in ordered Banach algebras

by

GERD HERZOG and ROLAND LEMMERT (Karlsruhe)

Abstract. Let a real Banach algebra A with unit be ordered by an algebra cone K. We study the elements $a \in A$ with $\exp(ta) \in K$, $t \ge 0$.

1. Introduction. Let $(A, \|\cdot\|)$ be a real Banach algebra with unit 1. A wedge K is a closed convex subset of A with $\lambda K \subset K$, $\lambda \geq 0$, and K is called a cone if in addition $K \cap (-K) = \{0\}$. A cone K is called normal if there exists $\gamma \geq 1$ with $0 \leq x \leq y \Rightarrow \|x\| \leq \gamma \|y\|$, and K is called solid if $\operatorname{Int} K \neq \emptyset$. A cone K is called an algebra cone if $1 \in K$ and $a,b \in K \Rightarrow ab \in K$. If $K \subset A$ is an algebra cone, we consider A as an ordered Banach algebra. As usual $x \leq y :\Leftrightarrow y - x \in K$.

Let A^* denote the dual Banach space of A and let K^* denote the dual wedge of K, i.e.

$$K^* = \{ \varphi \in A^* : \varphi(a) \ge 0, \ a \in K \}.$$

The cone K is called polyhedral if there exist $\psi_1, \ldots, \psi_n \in A^*$ with $K = \{x \in A : \psi_k(x) \geq 0, k = 1, \ldots, n\}$. Of course in this case dim $A \leq n$.

The most common examples of ordered real Banach algebras are generated in the following way: Let E be a real Banach space ordered by a solid cone K_E . The Banach algebra L(E) (the linear continuous endomorphisms of E) can be ordered by the algebra cone

$$K = \{T \in L(E) : Tx \ge 0, x \ge 0\}.$$

The operators in K are called *positive*. For a survey on positive operators see e.g. [1], [3], [7], and the references given there.

Now let $A_c = A \times A$ denote the complexification of A (see e.g. [2]), and identify $a \in A$ with $(a,0) \in A_c$. The spectrum of $a \in A$ is denoted by $\sigma(a) := \sigma((a,0))$, and r(a) := r((a,0)) denotes its spectral radius. Moreover, we define

$$\tau(a) := \max\{\operatorname{Re} \lambda : \lambda \in \sigma(a)\}.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 46H05.

Quasipositive elements

We call $a \in A$ positive if $a \ge 0$, and quasipositive if $\exp(ta) \ge 0$, $t \ge 0$. Now let

$$Q:=\{a\in A: a \text{ is quasipositive}\}, \qquad \qquad -Q:=\{a\in A: -a\in Q\},$$

$$H := \{a \in A : \exists \lambda \in \mathbb{R} : a + \lambda 1 \text{ is positive}\}, \quad -H := \{a \in A : -a \in H\}.$$

Moreover, for $\varphi \in K^*$ let

$$H_{\varphi} := \{ x \in A : \varphi(x) \ge 0 \}.$$

Remarks. 1. We have $K \subset H \subset Q$.

- 2. If $1 \in \text{Int } K$, then we get the trivial case Q = H = A.
- 3. Since K is closed under multiplication we have

$$a \in Q \Leftrightarrow \exists \varepsilon > 0 \ \forall t \in [0, \varepsilon] : \exp(ta) \ge 0.$$

4. We have $a \in (-Q) \cap Q \Leftrightarrow \exp(ta) \geq 0, t \in \mathbb{R}$.

A function $f: A \to A$ is called *quasimonotone increasing* (in the sense of Volkmann, see [8]) if

$$a \le b, \ \varphi \in K^*, \ \varphi(a) = \varphi(b) \Rightarrow \varphi(f(a)) \le \varphi(f(b)).$$

We will prove the following assertions:

THEOREM 1. Let A be ordered by an algebra cone. Then

- (1) Q is a wedge;
- (2) $(-Q) \cap Q$ is a closed subspace of A;
- (3) $(-H) \cap H$ is a subalgebra of A;
- (4) $a \in Q$, $\tau(a) < 0 \Rightarrow a^{-1} \le 0$;
- (5) $a \in Q \Leftrightarrow the function f: A \rightarrow A defined by <math>f(x) = ax$ is quasi-monotone increasing;
 - (6) $Q = \overline{H} = \bigcap_{\varphi \in K^*, \varphi(1)=0} H_{\varphi};$
 - (7) $a \in (-H) \cap H \Rightarrow \pm a + r(a) \ge 0$;
 - (8) $(-H) \cap H$ is closed;
 - (9) If K is polyhedral then Q = H;
 - (10) $a \in (-Q) \cap Q \Rightarrow a^2 \in Q$;
 - (11) $a \in Q \Leftrightarrow \lim_{h \to 0+} h^{-1} \operatorname{dist}(1 + ha, K) = 0;$
 - (12) If K is normal then $a \in Q \Rightarrow \tau(a) \in \sigma(a)$.

REMARKS. 1. With a similar proof to that in Section 2 it can be shown that $a \in Q$ if and only if the function $f: A \to A$ defined by f(x) = xa is quasimonotone increasing.

- 2. In general $H \neq Q$ (even if dim $A < \infty$) (see Examples 2 and 3).
- 3. In general $(-Q) \cap Q$ is not a subalgebra of A, since if $a, b \in (-Q) \cap Q$ then ab is in general not in Q (see Example 2). Moreover, if $a \in (-Q) \cap Q$ then a^2 is in general not in -Q (see Examples 2 and 3).

To prove (12) of Theorem 1 we will use the following proposition (see [5]).

PROPOSITION 1. Let A be ordered by a normal algebra cone. Then

- $(1) \ a, b \in K, \ 0 \le a \le b \Rightarrow r(a) \le r(b),$
- (2) $a \in K \Rightarrow r(a) \in \sigma(a)$ (comp. Theorem of Perron-Frobenius).

2. Proofs

Proof of Theorem 1. (1) Obviously Q is closed, and $a \in Q \Rightarrow \lambda a \in Q$, $\lambda \geq 0$. Moreover, $a, b \in Q \Rightarrow a + b \in Q$, according to Trotter's product formula:

$$\lim_{n \to \infty} (\exp(a/n) \exp(b/n))^n = \exp(a+b).$$

Hence Q is a wedge.

- (2) Since Q is a wedge, -Q is also a wedge. Hence $(-Q) \cap Q$ is a closed subspace of A.
- (3) Obviously $(-H) \cap H$ is a subspace of A. Now let $a, b \in (-H) \cap H$. There exists $\lambda \geq 0$ with $\pm a + \lambda 1 \geq 0$ and $\pm b + \lambda 1 \geq 0$. Hence

$$\lambda^2 1 \ge \pm \lambda a, \quad \lambda^2 1 \ge \pm \lambda b,$$

and

$$\pm ab + \lambda(a \pm b) + \lambda^2 1 \ge 0$$

Now, since

$$ab + 3\lambda^2 1 \ge ab + \lambda(a+b) + \lambda^2 1 \ge 0$$

and

$$-ab + 3\lambda^{2}1 > -ab + \lambda(a-b) + \lambda^{2}1 > 0$$

we see that $(-H) \cap H$ is closed under multiplication.

(4) Let $a \in Q$ with $\tau(a) < 0$. According to the spectral mapping theorem (see e.g. [2]) we get $r(\exp(a)) < 1$ and therefore $\exp(ta) \to 0$ as $t \to \infty$. Hence

$$a^{-1} = -\int_{0}^{\infty} \exp(ta) dt \le 0.$$

(5) Let f(x) = ax $(x \in A)$ be quasimonotone increasing. The function $x(t) = \exp(ta)$, $t \ge 0$, is the solution of the initial value problem

$$x'(t) = ax(t), \quad x(0) = 1, \quad t \ge 0.$$

According to a theorem of Volkmann on differential inequalities in ordered Banach spaces (see [9]), we have $x(t) \ge 0$ for $t \ge 0$. Hence $a \in Q$.

Now fix $a \in Q$ and let $x \ge 0$ and $\varphi \in K^*$ with $\varphi(x) = 0$. We have $\exp(ta) \ge 0$ for $t \ge 0$. Therefore $\exp(ta)x \ge 0$ for $t \ge 0$, which implies

$$\frac{\varphi(\exp(ta)x)}{t} \ge 0, \quad t > 0,$$

and for $t \to 0+$ we obtain $\varphi(ax) \geq 0$.

(6) We first show that

$$Q \subset \bigcap_{\varphi \in K^*, \, \varphi(1) = 0} H_{\varphi}$$

Fix $a \in Q$. Now let $\varphi \in K^*$ with $\varphi(1) = 0$. According to (5) the function $f: A \to A$ defined by f(x) = ax is quasimonotone increasing. Since $1 \ge 0$ we have $\varphi(a) = \varphi(a1) \ge 0$, i.e. $a \in H_{\varphi}$.

Obviously $H \subset Q$, hence $\overline{H} \subset Q$. Now it is sufficient to show that

$$\bigcap_{\varphi \in K^*, \, \varphi(1) = 0} H_{\varphi} \subset \overline{H}.$$

Let $a \notin \overline{H}$. Since \overline{H} is a closed convex subset of A there exists $\psi \in A^*$ such that

$$\psi(a) < \psi(x), \quad x \in \overline{H}.$$

Since $K \subset \overline{H}$, we have $\psi(\lambda x) \geq \psi(a)$ for $x \in K$ and $\lambda \geq 0$. So $\psi(x) \geq 0$ for $x \geq 0$, i.e. $\psi \in K^*$. Since $\mathbb{R}1 \subset \overline{H}$ we have $\psi(1) = 0$ and $\psi(a) < 0$. Hence $a \notin H_{\psi}$.

(7) Let $a \in (-H) \cap H$, $\varepsilon > 0$ and $\lambda_0 = r(a) + \varepsilon$. We have $\tau(\pm a - \lambda_0 1) < 0$. Hence $\pm a - \lambda_0 1$ are invertible and $\tau((\pm a - \lambda_0 1)^{-1}) < 0$. Since $(-H) \cap H$ is an algebra we have

$$(\pm a - \lambda_0 1)^{-1} = -\frac{1}{\lambda_0} \left(1 \mp \frac{a}{\lambda_0} \right)^{-1} = -\frac{1}{\lambda_0} \sum_{k=0}^{\infty} \left(\pm \frac{a}{\lambda_0} \right)^k \in (-Q) \cap Q.$$

Hence according to (4) we have $\pm a - \lambda_0 1 \le 0$, and so $\pm a + \lambda_0 1 \ge 0$. Letting $\varepsilon \to 0+$ we obtain $\pm a + r(a)1 \ge 0$.

(8) Assume that $(a_k)_{k=1}^{\infty}$ is a sequence in $(-H) \cap H$ with limit a. According to (7) we have

$$0 \le \pm a_k + ||a_k|| 1 \to \pm a + ||a|| 1, \quad k \to \infty.$$

Therefore $a \in (-H) \cap H$.

(9) We have $K = \{x \in A : \psi_k(x) \geq 0, k = 1, \dots, n\}$. Let $a \in Q$. For $k = 1, \dots, n$ we have

$$\psi_k(1) = 0 \Rightarrow \psi_k(a) \ge 0,$$

$$\psi_k(1) > 0 \Rightarrow \psi_k\left(a - \frac{\psi_k(a)}{\psi_k(1)}1\right) = 0.$$

Hence for

$$\lambda = \max \left\{ -\frac{\psi_{k}(a)}{\psi_{k}(1)} : \ k = 1, \dots, n, \ \psi_{k}(1) > 0 \right\},$$

we have $a + \lambda 1 \in K$. Hence $a \in H$.

(10) Let $a \in (-Q) \cap Q$ and consider $\varphi \in K^*$ with $\varphi(1) = 0$. Since $-a, a \in Q$ we have $\varphi(a) = 0$. Since $\exp(at) \ge 0$ for $t \in \mathbb{R}$, we have

$$2\lim_{t\to 0}\frac{\varphi(\exp(ta))}{t^2}=\varphi(a^2)\geq 0.$$

Hence

$$a^2\inigcap_{arphi\in K^*,\,arphi(1)=0}H_arphi=Q.$$

(11) If $a \in Q$ then

$$\lim_{h \to 0+} h^{-1} \operatorname{dist}(1 + ha, K) = 0,$$

according to a theorem of Redheffer and Walter (see [6]). Now let for $a \in A$ the limit above be 0 and assume that $a \notin Q$. Then there exists $\varphi \in K^*$ with $\varphi(1) = 0$ and $\varphi(a) < 0$. Moreover, there exists a sequence $(b_n)_{n=1}^{\infty}$ in K such that

$$\lim_{n\to\infty} \|n1 + a - nb_n\| = 0.$$

Hence $0 \leq \lim_{n\to\infty} \varphi(nb_n - n1) = \varphi(a)$, which is a contradiction.

(12) Let $a \in Q$. Since Q is a wedge and since $\tau(\mu a) = \mu \tau(a)$ for $\mu \geq 0$, as well as $\sigma(\mu a) = \mu \sigma(a)$ for $\mu \geq 0$, we can assume without loss of generality that

$$\sigma(a) \subset {\lambda \in \mathbb{C} : |\text{Im } \lambda| < \pi/2}.$$

We have $\exp(a) \ge 0$. According to the spectral mapping theorem and Proposition 1 we have

$$r(\exp(a)) \in \sigma(\exp(a)) = \exp(\sigma(a)).$$

Now there exists $\lambda_0 \in \sigma(a)$ with $\exp(\lambda_0) = r(\exp(a))$. Hence $\operatorname{Re} \lambda_0 = \tau(a)$ and since $|\operatorname{Im} \lambda_0| < \pi/2$ we have $\lambda_0 = \tau(a)$.

3. Examples. We illustrate our results by some examples.

1. Let $E = \mathbb{R}^n$, $K_E = \{x \in \mathbb{R}^n : x_k \geq 0, k = 1, \ldots, n\}$, and let L(E) be ordered by the induced cone K. Obviously K is solid, normal and polyhedral. It is well known that

$$Q = H = \{ T \in L(E) : t_{ij} \ge 0, \ i \ne j \}.$$

Hence $(-Q) \cap Q$ are exactly the diagonal matrices.

2. Let $E = \mathbb{R}^3$, $K_E = \{x \in \mathbb{R}^3 : x_3 \ge \sqrt{x_1^2 + x_2^2}\}$ (note that $K_E^* = K_E$), and let L(E) be ordered by the induced cone K. For a characterization and

properties of K see [4]. We do not know an easy representation of Q in this case, but it is easy to check that

$$T = \begin{pmatrix} \alpha_1 & \beta & \gamma \\ -\beta & \alpha_2 & \delta \\ \gamma & \delta & \alpha_3 \end{pmatrix} \in Q$$

if $\alpha_3 \geq \max\{\alpha_1, \alpha_2\}$. Hence $T \in (-Q) \cap Q$ if $\alpha_1 = \alpha_2 = \alpha_3$. For $\gamma = 1$ and all other entries 0 we have $T \in Q$ and $T \notin H$. Now generate T_1 by setting $\gamma = 1$ and all other entries 0, and T_2 by setting $\beta = 1$ and all other entries 0. Then

$$T_1 T_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \not\in Q$$

since $\exp(T_1T_2) = I + T_1T_2 \notin K$. Hence $(-Q) \cap Q$ is not a subalgebra of L(E). Moreover, consider $T_3 = T_1 + T_2$. We have $T_3 \in (-Q) \cap Q$. According to Theorem 1(10) we have $T_3^2 \in Q$, but $T_3^2 \notin -Q$ since

$$\exp(-T_3^2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \not\in K.$$

3. Let l^{∞} denote the Banach space of all real bounded sequences $(c_n)_{n=0}^{\infty}$ endowed with the supremum norm $\|\cdot\|_{\infty}$. Let

$$E = \left\{ x \in C^{\infty}(\mathbb{R}, \mathbb{R}) : x(s) = \sum_{n=0}^{\infty} \frac{c_n}{n!} s^n, \ (c_n)_{n=0}^{\infty} \in l^{\infty} \right\},$$

endowed with the norm

$$||x|| = \sup_{n \in \mathbb{N}_0} \sup_{s \in \mathbb{R}} (e^{-|s|} |x^{(n)}(s)|).$$

Note that $||x|| = ||(c_n)_{n=0}^{\infty}||_{\infty}$. Now let $K_E = \{x \in E : x(s) \geq 0, s \in \mathbb{R}\}$, and let L(E) be ordered by the induced cone K (note that K_E is solid, for example the function $x \in C^{\infty}(\mathbb{R}, \mathbb{R})$ defined by $x(s) = \cosh(s)$ is in Int K_E). Let $D \in L(E)$ denote the operator Dx = x'. We have

$$(\exp(tD)x)(s) = x(s+t), \quad t \in \mathbb{R},$$

hence $D \in (-Q) \cap Q$. Moreover, $\pm D \notin H$: Let x be defined as $x(s) = 1 + \sin(s)$. Then $x \in K_E$ but $(\pm D + \lambda I)x \notin K_E$ for $\lambda \in \mathbb{R}$. Next by Theorem 1(10) we have $D^2 \in Q$. Of course, from the theory of the Cauchy problem for the heat equation on an infinite strip we have

$$(\exp(tD^2)x)(s) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-(s-\tau)^2/(4t)} x(\tau) d\tau, \quad t > 0,$$

which also shows that $D^2 \in Q$. On the other hand, $D^2 \notin -Q$: Let $x(s) = 1 + \sin(s)$; then $x \in K_E$ and $\exp(-tD^2)x \notin K_E$ for t > 0, since

$$(\exp(-tD^2)x)(s) = 1 + e^t \sin(s), \quad t > 0.$$

The same function x shows that $D^4 \notin Q$.

It would be interesting to know whether D^2 is in H or not. Numerical experiments indicate that maybe $D^2 + I \ge 0$.

Next, since D^2 corresponds to the double left shift in l^{∞} we have $\sigma(D^2) = \{z \in \mathbb{C} : |z| \leq 1\}$. Hence according to Theorem 1 (4) we have

$$(D^2 - \lambda I)^{-1} \le 0, \quad \lambda > 1.$$

Finally, according to Theorem 1(6), D^2 can be approximated by elements of H. For example, set

$$D_h^2 := \frac{\exp(hD) + \exp(-hD) - 2I}{h^2}.$$

Then $D_h^2 \in H$, h > 0 and $\lim_{h\to 0+} D_h^2 = D^2$ in L(E).

References

- G. P. Barker, On matrices having an invariant cone, Czechoslovak Math. J. 22 (1972), 49-68.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- [3] H.-J. Krieger, Beiträge zur Theorie positiver Operatoren, Akademie-Verlag, Berlin, 1969.
- [4] R. Loewy and H. Schneider, Positive operators on the n-dimensional ice cream cone, J. Math. Anal. Appl. 49 (1975), 375-392.
- [5] H. Raubenheimer and D. Rode, Cones in Banach algebras, Indag. Math. 7 (1996), 489-502.
- [6] R. Redheffer and W. Walter, Flow-invariant sets and differential inequalities in normed spaces, Appl. Anal. 5 (1975), 149-161.
- [7] H. H. Schaefer, Topological Vector Spaces, Springer, 1980.
- [8] P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157–164.
- [9] —, Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201–210.

Mathematisches Institut I
Universität Karlsruhe
D-76128 Karlsruhe, Germany
E-mail: Gerd.Herzog@math.uni-karlsruhe.de
Roland.Lemmert@math.uni-karlsruhe.de

Received June 23, 1997 Revised version October 17, 1997