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Stable elements of Banach and Fréchet algebras
by

GRAHEAM R. ALLAN (Cambridge)

Abstract, We introduce an algebraic notion—stability—for an element of a com-
mutative ring. It is shown that the stable elements of Banach algebras, and of Fréchet
algebras, may be simply described. Part of the theory of power-series embeddings, given
in [1] and [4], is seen to be of a purely algebraic nature. This approach leads to other
natural questions.

1. Introduction. In (5], we introduced the notion of a stable inverse-
limit sequence of groups, and gave various applications, mostly in the theory
of Fréchet algebras. The main idea of the present paper is a development of
the example of §3.4 of [5]. In fact, we may define a purely algebraic netion
of a stable element of a commutative ring R (see §2 below). It will turn out
that, if 4 is a commutative Banach algebra, then z € A is stable if and
only if z has finite closed descent (see [2], recalled in [4], page 271). If A
is a commutative Fréchet algebra, then the property of stability precisely
characterizes the elements having locally finite closed descent ([4], page 276).

It turns out that & portion of the theory of embedding formal power
series (given for Banach algebras in [1], and extended to Fréchet algebras in
[4]) uses only the algebraic property of stability. This viewpoint leads often
to more illuminating proofs. It also suggests other very natural questions,
that may be of interest in the theory of automatic continuity.

We refer to [5], §1, for generalities on inverse-limit sequences (IL-se-
quences) (of sets, or of groups), the abstract Mittag-Leffler theorem and the
basic properties of Fréchet algebras. As in that paper, we write ILG for
the category of IL-sequences of groups and homomorphisms. One point of
notation should be mentioned: we write L for the inverse-limit functor on
ILG. Thus, in particular, if say

g2 g
G GG Gy G
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is a sequence in ILG, then

L(G) = 1m(Grign) = {(a) € [] Gn: 7 = gn(tnss) (2 n}
nzl
Note that L is a left-exact functor from ILG to the category of groups and
homomorphisms. (See [5], §1.)

For convenience, we shall summarize the content of [5], §2, but omitting
proofs and comments. Except in §6, all the groups considered in this paper
will be abelian, being the additive groups of rings or algebras, so we shall
write the group operation as addition.

Let G, H be groups and f : G — H be a homomorphism. As a temporary
notation, for any n € H let [n] + f : G — H be the mapping defined by
([7]+ £)(7v) = n+ f{v) for all ¥ € G. If G = (G; gn)nz1 is 2 sequence in ILG
then, for any v = (n) € [,.5.1 Ga, We define [y] + G to be the IL-sequence
(G Y] + gn); we call [v] + G a perturbed sequence of G.

A sequence G in ILG is stable if and only if every perturbed sequence of
G has a non-empty inverse limit. Thus, the sequence

Gy <& Gy 2 .

in ILG, is stable if and only if, for every choice of v, € Gy, (n = 1), we may
simultaneously solve the equations z, = yn + gn (nt1) for 2, € Gy (n > 1).

There are two more-or-less trivial classes of examples of stable sequences:
Let G = (Gh; gn) be a sequence in ILG. Then:

() If gn(Grt1) = Gp for each n, then also ([yu] + gn)(Gn41) = Gy, for
every choice of 7, € Q. Hence L{[y] +G) # @ for every perturbed sequence,
ie. G is stable.

(i1) If each gy, is the trivial homomorphism g, (z) = 0 (z € Gpy1) then,
for every choice of v, € Gy, we solve Tp, = Y+ gn(2rny1) (n 2 1) by putting
T = ¥y, for all n; so again G is stable,

g
.MGHP“LGTL,HLF-...,

These trivial examples are special cases of:

THEOREM 1.1. Let G = (Gy; gn) be o sequence in ILG. Then G is stable
provided it satisfies either of the following conditiona:

(i) each Gy, is a complete metrizable topological group and each homo-
morphism gy is continuous with gn(Gny1) dense in Gy

(ii) each Gy, is o Hausdorff topological group and each homomorphism
Gn B8 continuous with gn(Gni1) compact.

By a Mittag-Leffler sequence, we shall mean an IL-sequence (Gy;gn)
where each Gy, is a complete metrizable topological group and, for sach

n 21, gn 18 a continuous homomorphism with gn(Gri1) = Gp. Thus, part
(i) of Theorem 1.1 states that every Mittag-Leffler sequence is stable.
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LeMmMmA 1.2. Let G be a sequence in ILG. Then the following are equiv-
alent:
(i) G is stable;
(ii) every subsequence of G is stable;
(iil) some subsequence of G is stable.

(The notion of a subseguence of an IL-sequence is given in [5], page 279.)
The point of the idea of stability lies in the following theorem.

THEOREM 1.3. Let 0 — § = H L K = 0 be a short ezact sequence in
ILG. If G is stable, then the sequence

L) L(s)
0-— L{G) — L(H) — L(K) — 0
is also exact.

ReMARK. For sequences of abelian groups, there is a converse to Theo-
rem 1.3 ([5], Theorem 16).

LEMMA 1.4. Let 0 — G = H Bk = 0 be a short esact sequence in
ILG. Then:

(i) i H is stable, then K is stable;
(ii} if G and K are stoble, then H is stable.

COROLLARY 1.5. Let G = (Ghn;gn) be a sequence in ILG. Suppose that
each G, has a normal subgroup H, such thot:

(1) gn{Gnt1) G Hn (n 2 1);
(ii) the sequence H = (H,;7,) is stable (where G = gn/Hni1

Then G 18 stable.

EXAMPLE. Various examples of stable and non-stable sequences are given
in [5], Here is another example of a stable sequence. Let A be any Fréchet
algebra, with its topology defined by an increasing sequence (pr)nz1 of sub-
multiplicative seminarms. Let K, = ker p, and consider the IL-sequence X
defined by

: Hn+l

K Ky Ky Ky
where cach 7, is an inclusion mapping. Each ideal K, is closed, so that
is not a Mittag-Leffler sequence (except when p, is actually a norm for all
n > some ng). We shall prove that the sequence K is stable,
Thus, let a, € K, (n > 1). Then, for any given m > 1 and for all
n > m, we have pp(an) < pnlan) = 0, Le. Pmlan) = 0 for all n > m.
The series 3 . @n is thus certainly convergent in the Fréchet topology
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of A. We define z, = ¥;», a for each n. Then z, € Ky and, for every n,
T = jn(Tns1) + an. The stability of K is thus proved.

2. Stable elements of commutative rings. If G is an {abelian) group
and if T: G — G is an endomorphism, then we say that T acts slably on G
if and only if

e R PLINye P
is a stable sequence in ILG. We shall sometimes write [G;T] for such a
sequence. '

Now let R be a commutative ring (not necessarily with an identity); for
z € R, let Ly : R — R be the multiplication mapping, L.(y} = =y (y € R).
We say that z is a stable element of R if and only if L, acts stably on R,
In this definition, the group G is the additive group of R; we are regarding
L as being, in particular, an endomorphism of that group.

More explicitly, the element = of R is stable if and only if, for every
sequence {b,) in R, there is a sequence (an) in R such that

ap = QT+ b, (m=1,2,..).

LeMMma 2.1. Let R be o commutative ring and let x € R. Then the
following are equivalent:

(i) = is stable;
(ii) ™ is stable for all n > 1;
(iil) =™ is stable for somen > 1.

Proof This follows immediately from Lemma 1.2, on observing that,
for each n > 1, [B; L;»] = [R; L7 is a subsequence of [R; L],

Lemma 1.4 and Corollary 1.5 have immediate implications for stable
elements. Let R, § be commutative rings and let £ € R. Then any ring
homomorphism ¢ : B — 5 gives rise, in a natural way, to a morphism
@ ¢ [B L] — [S; Ly(y)] in the category ILG. Explicitly,

[R; Lg] :
5J, “”l ‘Pl (PJ,
(85 L) : Loty L (u s F I

5 &—— 8§ +— L
This correspondence is, in an obvious sense, functorial; it is also ezact, in the

sense that, for any = € R, a sequence of ring homomorphisms B 5 § YT
is exact if and only if the sequence

[R§ Lm] - [SQch(m)] ""Q"P" [T§ Lqpocp(w)]:
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in TLG, is exact {which is immediate from the definition of exactness in
ILG).

Ifz € R and if I is an ideal of R, then L,(I) C I, so that, in an cbvious
sense, L, acts on both [ and on R/I. If ¢ : R — R/ is the quotient mapping,
then L, acts stably on R/I if and only if ¢(z) is a stable element of R/I.

LEMMA 2.2, (i) If ¢ : R — S is a surjective homomorphism of commu-
tative rings, and if x is stable in R, then @(z) is stable in S.

(ii} Let I be an ideal of the commutative ring R and let ¢ € R. Suppose
that Ly acts stably on both I and on R/I. Then x is a stable element of R.

Proof. This follows immediately from Lemra 1.4 and the discussion
just given.

LeMMa 2.3, Let 1 be an ideal of the commutative ring R and let x € 1.
Then z is stable as an element of I if and only if it is stable as an element
of R.

Proof. (i) Let z € I be stable as an element of I. Since Ly (R) C I, the
stability of « (as an element of R) follows from Corollary 1.5.

(ii) Conversely, let z € I be stable as an element of R and let (bs) be
a sequence in J. Then there is some sequence (a,) in R such that a, =
an+1Z + by, for all n. But z € I and each b, € I, so that a,, € I for every n.
Thus # is stable in 1.

If B is a commutative ring with identity, we can form its unitization R,
by putting the obvious multiplication on R & Z1 {where “1” is the adjoined
identity); if R is an algebra over the field k then R will, instead, be the
unital algebra R$ k1. We shall not make any notational distinction between
these cases. In either case, R is naturally embedded as an ideal of R;. The
corollary below therefore follows at once from Lemma 2.3.

COROLLARY 2.4. If R is a commutative ring without identity and if
x € R, then ¢ is stable in R if and only if z is stable as an element of R

In view of this corollary, we shall usually take rings to be unital.

ExaMpLES. (i) Firstly, remark that, if z is an element of a commutative
ring R having the property that Rt™ = Rz™1! for some integer m, then z
is a stable element of R. (We say that such an element has finite descent.)

To see this, let I = Rz™:; then L(I) = I, so that LJ* acts stably on I (by
the trivial case (i) just before Theorem 1.1). But also, L7" acts trivially (and
so stably) on R/T; so, by Lemma, 2.2(ii), z™ is stable. Hence, by Lemnma 2.1,
x is gtable.

In particular, nilpotent elements and units (i.e. invertible elements) in
any commutative ring are examples of stable elements. Every element of a
field is stable.
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(ii) There are non-trivial examples in which the nilpotents and the units
are the only stable elements of a ring. Let D be an integral domain (with
identity) and let R = D[X], the polynomial ring with coefficients in D.
Recall that R is also an integral domain and that the units of R are just the
units of D (embedded in R as the constant polynomials).

PROPOSITION 2.5. The set of stable elements of R == D[X] consists just
of 0 and the set of units (of D).

Proof Let f(X) € R be non-zero and not a unit.
CASE (a): deg f =0, i.e. f(X)=d, say, where d is a non-zero, non-unit

element of D. Then, if d were stable in R, we would, in particular, have
some sequence (g (X)) such that, for all n > 0,

gn(X) = dgnya (X) — X"

Let the coefficient of X™ in gn+1(X) be ap,. Then a simple calculation shows
that the coefficient of X™ in go(X) is

d"a, — d" = d"(dan — 1) # 0,

since D ig an integral domain in which d is non-zero and not a unit.
So deg gy = n for all n, a contradiction.

CasE (b): deg f > 1. Then, if f were stable, there would be a sequence
(hn(X)) in R such that, for all n > 0,

(*) b = Fhpet + 1.

Let N > 1; then there is some m > N such that h,, # 0, since, for example,
from (*) we see that hy, Ayy1 cannot both be zero. But then, by repeated
application of (%), it follows that degh, > 1 +-deghpyy for al m < m — 1.
In particular, deg hg > N, for every N, and again there is a contradiction.

(iil) Rings of formal power series will be important later in this paper.
There is a simple description of the stable elements of such rings.

THEOREM 2.6. Let R be any commutaiive ring, and let F = R[[X]]. Then
an element f(X) of F is stable in F if and only if f(0) is stable in R.

Proof. Firstly, since the mapping f — £(0) is a surjective homomor-
phism from F onto R, it is immediate from Lemma 2.2 that, if f{X) s stable
in F, then f(0) is stable in R.

Conversely, let f(X) € F be such that £(0) is stable in R. So, writing
HX) =74 35, e X", we see that r is a stable element of R and (r)rz
is some sequence in R. Let (gn)n>1 be any given sequence in F; we have to
find a sequence (hy) in F such that

hn(X) = R (X)f(X) + gn(X)  (n21).
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Write o o0
0u(X) =D BRXP h(X) = ol XF,
k=0 k=0

where the bgf) are given, but the a,g“) are to be found. Then, in terms of

these coefficients, we wish to satisfy the equations

[= ] [v.o) oo o
Z al) Xk = (Z aq(,ﬂle) (7" + Zka) + E bR Xk
k=0 k=0 k=1 k=0
foralln > 1.
Equating constant terms, a first necessary condition is:

al® = ol r 450
But the stability of r in R means precisely that we can find a sequence
(aglo))nzl in R that satisfies these equations.
The induction step is very similar: we suppose that, for some k& > 1,
sequences (ag))nzl have been found for ¢ =0,...,k — 1. Then, again using
the stability of r in R, we may find a sequence (ag“))nzl such that, for all n,

k—1
ag“) = agﬂlr + (Z amlrk_i + bg“)).
i=0

Thus, suitable sequences {(ag“)) :n > 1, k > 0} are definable by induction
on k, and the proof is complete.

COROLLARY 2.7. For every commutative ring B, X is a stable element
of R[X]]. If k is a field, then every element of k[[X]] is stable.

(iv) Combining examples (ii) and (iii}, it follows that it is possible to have
a commutative ring A (with identity), a unital subring B and an element
@ € B such that ¢ is stable as an element of A, but not stable as an element
of B. In fact, let 4 = C[[X]] with B = C[X] embedded as a subalgebra of
A in the usual way. Then X is not stable in B (by Proposition 2.5}, but is
stable in A, by the last corollary.

To see thal the opposite is also possible, let B = C[[X]] and then. let
A = B[Y] = C[[X]][Y], where X, ¥ are independent indeterminates. Then
X is stable as an element of B, but it is not stable as an element of A, since
X % 0 but X is not a unit of B. (Recall the well-known fact that B is an
integral domain.)

Note further that, by the main result of [1], it is possible to define an
algebra-norm on C[[X]], and so also on C[[X]][Y]. Thus, in (iv), all the rings
considered may be taken to be complex normed algebras. Later (Corol-
lary 4.8 and the remarks following) we shall see the effect of completeness
assumptions.
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Let B be a commutative ring and let & € R. There are two ideals, as-
sociated with x, for which we use a special notation. The first is I(z) =
Mn»; Rz™; the second ideal, Ip(x), is the set of all & € R such that there
is a sequence (@n)nzo In R with a = ¢g and an = an 3z for n = 0,1,...
Otherwise expressed, if we let Lo(z) = lm[R; L], then Ip(z) is the pro-
jection of Lo(z) outo its first coordinate; ie. Io(x) = mo(Lo(x)), where
7o((T0, @1, ..+, &n))) = zo, for all (zo,21,...,2n) € Lo{z). Tt is evident
that I(z) and Ip(z) are ideals of R, and that Ip(z) € I{x). Also, notice that
the projection of Ly(z) onto any of its coordinates is, again, the ideal Iy(z);
thus, In(z) = 0 if and only if Lg(z) = 0. In cases where there might be
doubt about the intended ring, we may write I (x), LE(z), IF(z) in place
of I(xz), Lo(x), Iy(x) respectively.

LeMmA 2.8. Let R be a commutative ring and let © € R. Then:

(1) Ly (Io(z)) = Ip(z); in particular, L, acts stably on Iy(x);
(i) z is stable if and only if L, acts stably on R/Iy(z);
(iii) Lo(z) = I{z) if and only if Ly(I(z)} = I(z);
(iv) if z is stable, then L, acts stably on I(z);
(v) let w: R~ § = R/In(x) be the quotient map; then I5 (7 (x)) = 0.

Proof. (i) This is immediate from the definition of Iy(x).

(i1} This follows from (i) and Lemma 2.2.

(iii) One implication is obvious from (i). For the converse, let L, (I{z)) =
I{z) and let y € I(z). Then y = y1z, say, for some 3 € [{z). A simple
induction now shows that y € Ip(z), so that (iii) is proved.

(iv) Let x be stable and let (a,) be any sequence in I(z). Then there is
a sequence (b,) in R such that

(*) bn = bpy1% + an,

for all n > 1. Suppose that, for some k > 0, we know that b, &€ Raf
for all n > 1. Then, from (*), we immediately deduce that, for every n,
bn € Rx*t! 4 I(z) C Ra*+1. It therefore follows, by induction on k, that
bn € Rx® for all n and k, L.e. b, € I(z) for all n. Thus L, acts stably on I(x).

(v) Write £ = 7 (=) and consider the short exact sequence, in ILG,
0—Tp -5 R -2 R/Ty — 0,

where R'= [R;L.], Ty = [lp{x);L;] (with I, = L,{Ix(z)) and R/Zy =
[S; Le); J is a sequence of inclusions, and Q a sequence of quotient mappings.

By (i), each mapping L, is surjective, so that the sequence Zp is stable;
the inverse limits of the three sequences are, respectively, Lo(z), Lo(z) and
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Lo(€). From Theorem 1.3 we therefore have a short exact sequence
0— Lg(z‘) — LD('.L‘) — Lo(£) — 0,
from which we deduce that Ly(£€) = 0, and hence also Ip(£) = 0.

QuesTioN. If R is any commutative ring and if z is a stable element
of R, can it happen that Io(z) 5 I{z)? In view of Lemma 2.8(v}, this is
equivalent to asking whether there is an example for which Iy(z) = (0} but
I(z) # (0). We suppose that such an example probably exists, but have not
been able to find one. :

3. Stable elements and rings of power series. Let R be a commu-
tative ring and let F = Fg = R[[X]], the ring of all formal power series in
the indeterminate X, with coefficients from R. The algebraic background
needed is a very small subset of [11], Chapter 7. In particular, recall that
f(X) is a unit of F if and only if f(0) is a unit of R. This is analogous to
the result in Theorem 2.6, that f(X) is stable in F if and only if f(0) is
stable in R.

LeMmA 3.1. Let R be a commutative ring and let z,y € R. Then y €
Io(z) if and only if y = (X — z)g(X), for some g(X) € F.

Proof. (i) Let y € Io(z); then there is a sequence (yy,) in R such that y =
112 a0d Yn = Ypy12 for all n > 1. Then, setting g(X) = =% o, Yy X",
a simple calculation shows that (X — 2)g(X) =y12 = . -

(i) Conversely, suppose that ¥y = (X — z)(ao + a1 X + aeX? +...), for
some sequence {a,} in K. Then comparing coefficients shows that y = —aoz
and @, = an41z (n > 0). Thus y € Io(x).

LEMMA 3.2. Let R be a commutative ring and let © € R. Then x is stable
if and only if , for every f(X) € Fr, there exist g(X) € Fr and r € R such
that

F(X) = (X —z)g(X) +r.
Moreover, in that case, the element r is uniquely determined mod Io(z).

Proof. Suppose firstly that « is a stable element of R. Let f(X)
> n>o @nX"™ be an element of F.

By the stability of z, there is a sequence {(b,) in R such that b, =
bry12 + an for all n > 1. Define g(X) = 37,5, b, X"~ L, Then

(X —2)g(X) = ~bo+ ¥ o X" = f(X) -,
n=>1

say, where r = ag + byz € R.
Conversely, if the condition on Fg holds, let (a,,) be any given sequence
in R and define f(X) = ¥~ @nX™ By the hypothesis, thereis a series, say
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g(X) =3 5o bnX", in Fg and r € R such that f(X) = (X - 2)g(X) +r.
Then equating coefficients gives

ag = —bpx +7, n=bn_y —bpz (ﬂ, = 1),

which proves the stability of x.
Moreover, in the case where  is stable, if also f(X) = (X ~2)g1(X)+r,,
then r ~ ry € (X ~ z)Fg, Le. r —r1 € Iy(z), by Lemma, 3.1.

REMARK. Before the next result, we note that both Fr and R itself have
a natural structure as R-modules. An R-homomorphism T : Fr — Risa
ring homomorphism that is also an R-module homomorphism. Otherwise
expressed, it is a ring homomorphism such that T(r) = r for every r ¢ R
(regarded as the subring of constant series in Fg).

THEOREM 3.3. Let R be a commutative ring, let 2 € R and suppose that
Io(z) = 0. Then z is stable if and only if there is a unital R-homomorphism
0y : Fr — R such thei 6,(X) = z.

Moreover, in the case where % is stable, the homomorphism 8, is uniquely
determined, im 6, = R and ker §; = (X —x)Fg, so that R = R[[X]]/(X -z).

Proof. Let z be stable. By Lemma 3.2, for each f(X) € Fgr, we have
f(X) = (X —2)g(X) +r, for some g(X) € Fg and a uniquely determined
element r € 2. We then define 8,(f(X)) = r. Because of the uniqueness of
7, it is very simple to see that f, is an R-homomorphism, with 6,(X) = z.

For each r € R (regarded as a “constant series” ), we have 6, (r) = r, so
that imf, = R. If f(X) € kerd, then f(X) = (X — 2)g(X), i.e. f(X) €
(X — 2)Fgr, and the converse assertion is clear. Moreover, if @ is any R-
homomorphism from Fg to R such that #(X) = z, then the representation
f(X) = (X — z)g(X) + r shows that 8(f) = r = 8,(f); so 8, is uniquely
determined.

Conversely, suppose that there is an R-homomorphism # : Fr — R such
that 8(X) = . As an R-homomorphism, f is surjective; but, by Corol-
lary 2.7, X is stable in g and so, by Lemma 2.2, z = 8(X) is stable in R.
This completes the proof.

ReEMARK. If T : B — § is a homomorphisim of commutative rings,
there is a corresponding homomorphism, say f(X) — (T'f)(X), Fr — Fs,
obtained by applying T" to the coefficients of a series. Thus, if f(X) =
2o anX™, then (TF)(X) = (Ta,)X™. It is clear that this correspondence
is an exact functor. '

'UHEOREM 3.4. Let R be a commutative ring and let x € R. Write Sp =
R/Iy(z), let 7 : R — Sy be the quotient mapping, and let £ = mw(x). Then
the following are equivalent:

(i) z is stable in R,
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(i) there is an R-homomeorphism ¥, : Fr — Sp such that ¥, (X) = &.

Moreover, in the case where x is stable, the homomorphism ¥, is uniguely
defined, im ¥, = Sy and ker ¥, = (X —2}Fr + Io(z).

Proof. (i)=+(ii). Let = be stable in R. Then ¢ is stable in Sp (by
Lemma, 2.8(ii)). By Lemuma 2.8(v), Ip(§) = 0 and so, by Theorem 3.3, there
is an Sp-homomorphism 6 : Fg, — S such that §(X) = £.

Then, using the notation explained just before this theorem, we define
¥, : Fr ~+ Sg by setting T (£(X)) = 8((zf)(X)), for all f(X) € Fp. It is
clear that then ¥, is an R-homomorphism with W, (X) = £. (We are regard-
ing Sp as an R-module, as a quotient of R. That ¥, is an R-homomorphism
now means that ¥, is a ring homomorphism with ¥, (r) = w(r) forall r € R.)

The uniqueness of ¥, (subject to ¥, (X) = ¢) follows from Lemmas 3.2
and 3.1, in a very similar way to the uniqueness part of Theorem 3.3, as
does the description of ker &,,. The fact that ¥, is surjective is clear.

(ii)=>(i). If an R-homomorphism ¥ exists, with ¥ (X) = ¢, then, since ¥
is necessarily surjective, it follows as in the proof of Theorem 3.3 that £ is
stable in Sp. By Lemma 2.8(ii), this implies that = is stable in [&. The proof
is complete.

4. Stable elements of Banach and Fréchet algebras. In view of
the ring-theoretic nature of the last two sections, we shall begin with a
few simple results in the context of topological rings. By a topological ring
we shall mean a non-zero ring A equipped with a topology 7, such that
(1) A is a topological group under addition, and (ii) the ring multiplication
is separately continuous. A topological algebra is a non-zero complex algebra
which is a topological ring and also a topological vector space. An F'-ring is a
complete metrizable topological ring; an F-algebra is a complete metrizable
topological algebra (in which case, the multiplication is necessarily joiutly
continuous [6]). Normally our interest is only in Hausdorff topological rings
and algebras (and, indeed, chiefly in Banach and Fréchet algebras). However,
in certain results (especially Theorems 4.6 and 4.7) it is convenient to be able
to make use of the non-Hausdorff case. We remark that the few simple results
that apply to F-rings contain (very simple) algebraic results as special cases:
this is because an arbitrary ring may be made into an F-ring by giving it
the discrete topology.

Let A be a commutative topological ring and let = € A. Then = is said
to have finite closed descent (FCD) if and only if, for some integer m 2 0,
Az™+! ig dense in Az™. (Conventionally, when m = 0 then Az™ means
A, even when A has no identity element.) We write §4(z) = d{z) for the
least integer m with this property, and call §(z) the closed descent of z; we
may also write “5(z) < co” to mean that z has FCD, and “0(z) = 00" to
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indicate that = does not have FCD. The notion of “finite closed descent”
was introduced for topological algebras in [1], but not given a name until [2];
elementary properties are summarized in [4], §1. For the most elementary
properties, it makes little difference that we are now dealing with rings rather
than algebras.

It is trivial that, in any topological ring A, any element x having finite
descent—i.e. such that Az™T! = Az™ for some m (see Example (i) after
Corollary 2.4)—has FCD. In particular, if # is either invertible or nilpotent,
then = has FCD.

LEMMA 4.1. Let A be a commutative topological ring.

(i) If B is a subring of A then, for allz € B, dp(z) < 00 = §4(x) < co.
If B= A, then, for every x € B, dg(z) < oo if and only if 64(z) < oo.
(ii) If I is an ideal of A, then, for every x € I, 6;(z) < oo if and only if
5_4(9:) < 00.
(iii) If A does not have a 1, and if Ay is the unitization of A, then, for
every z € A, §a(z) < oo if and only if 64, (z) < co.

Proof. (i) Let x € B C A and let 65(z) = k < oo. Then Bz*"2 js dense
in Ba* so, in particular, %t € Bzh+2 C Azh+%. Thus AzkF+ C Axk+?, so
that 04(z) <k +1=dp{x)+ 1

Now suppose that B = A and let € B with 4(z) = m < oc. Then
Ax™*1 ig dense in Az™; but B is dense in A, so Bz™* is dense in Az™.
Since Bz™1! C Bz™ C Az™, it follows that d(z) < m.

(ii) If I is an ideal of A and if 2 € I then we show that §4(z) < oo =
dr(z) < co. So, suppose that §4(z) = r < oc. Then

Az™? C Iz™t C Ix™ C Ax.

Since Az™? is dense in Ax”, it follows that Jz"*! is dense in Iz", so that
51(2) S 5A(ﬂ:)

(iii) This follows immediately from (i), since A is embedded as an ideal
in A+.

An important property that holds for an clement z of FCD is that
(with the notation explained just before Lemma 2.8) Ip(z) = I(z). This
follows because L, maps I(x) bijectively onto itself (see [1], Lemma 1, also
Lemma 4.2 below). The crucial point here is that, if z has FCD, then the
sequence of annhilators, (Ann "), is constant for sufficiently large n (where
Anny = {a € A : ay = 0}). Given the algebraic nature of much of this
paper, it seems worth giving the slightly more general result.

Lemma 4.2. (i) Let A be a commutative topological ring and let x € A
have 6(z) = m < co. Then Annz" = Annz™ for alln > m + 1.
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(i) Let A be a commulative ring end let x € A be such that, for some
k> 1, Annz*t! = Annz®. Then L, maps I(z) bijectively onto itself.

(iii) Let A be a commutative topological ring and let z € A have FCD.
Then Ly maps I(z) bijectively onto itself.

Proof (i) We have §(z) = m, so that Az" is dense in Az™ for all
n > m. If a € Aonz" for some n > m + 1, then adz™ = 0; but Az"
is dense in Az™, so that adz™ = 0. In particular, az™"* = 0 and thus
a € Ann g™, Since (Ann z™) is certainly an increasing sequence, it follows
that Annz™ = Anna2™*' for all n > m + 1 (and that Annz™ C Anng™t!
for all n).

(ii) Suppose, firstly, that y € Az® and that Ly (y) = 0. Then, say, ¥ = az
for somea € A, az**! = 0.Soa € AnnzF+! = Anna®, whencey = az® = 0.
Thus L, is injective on Az*, so certainly also on I(z) C Az".

We must now show that L, maps I(z) onto itself. Thus, let y € I(z)
and, for each n > 1, let D, = {a € A : az™ = y}. Then D, # @ and clearly
Lo(Dy1) € Dy, for each n. So, writing just Ly for each L;|Dy, there is an
TL-sequence {of sets and mappings), say D,

k

L L L
D: Dl(_‘“D2¢_°’_D3+..’L”_

Suppose that a,b € Dy, for some n; then ¢ — b € Anng™ C Annz*. Thus,
for every n > 1, LX(D,) is a singleton; i.e. the subsequence D' of D, where
Ly Ly LG
D': Dy ¢ Dpp1 <= Doy — .+,
has each mapping with singleton range. Thus L(D) 22 L(D’) is a singleton—
and, in particular, L(D) # §. But if (¢x)n>1 € L(D), then a1 € Dy N I(z),
i.e. there exists a1 € I(z) with Lz(a1) = v
(iii) This follows at once from (i) and (ii).

COROLLARY 4.3. Let A be a commutative topological ring and let z € A
have FCD. Then I(z) = Ip(z). Fora € I(z) let (an)npo be o seguence in A
such that

a = ag, G, = U415,

Then the sequence (an) lies in I(z) and is uniquely determined by a. The

mapping a — (an) is an isomorphism between I(x) and Lo(z), the inverse
limit of the sequence

g = a1 &, ay = as®, N

Ade gk gl

Proof. This is immediate from Lemma 4.2(jii).

We now begin to establish the connections between stability and the
property of having FCD.



80 G. R. Allan

PROPOSITION 4.4. Let A be o commutative F-ring and lef © € A have
FCD. Then:

(i) « is stable in A;
(i) if §(x) = m, then I(z) is dense in Az™;
(i) I(z) = 0 if and only if © is nilpotent.

Proof. (i) Let 6(z) = m and set I = Az™. Then, writing L, = Lgl|I,

we see that im I, is dense in I. Thus the IL-sequence, say 7,
T ITerde
is a Mittag-Leffler sequence, so is stable by Theorem 1.1(i).

The image of x in the quotient ring A/ is nilpotent—so stable (see
Example (i} following Lemma 1.4). The stability of # in A now follows from
Lemma 2.2(ii).

(if) This follows from the Mittag-Leffler theoremn (e.g. [4], Theorem 1)
applied to the IL-sequence 7.

(iii) If §(z) = m then, by (ii), I(z) is dense in Az™. Hence, if I(x) = 0
then also Az™ = 0; in particular, z™t! = 0, so that x is nilpotent. The
converse is clear.

REMARKS. For a commutative topological ring R, let F(R) be the set of
-elements in B that have FCD. We record a few simple comments about the
set F(R).

(i) Ifz, y € F(R) then zy € F(R) (see the argument in Proposition 6.5).
It is also clear that, if z € F(R), then Az € F(R) for every A € C.

(ii) Even when R is a commutative Banach algebra, F(R) is not always
closed under addition. For example, let R = Ll(IR'F;e_tz). (A convenient
reference for a discussion of the basic properties of such algebras is [8], §7.)
Let u, v be the elements of R defined by

_ + _f=1 for 0Kt <1
uy=1 we®, we= {0 23T
Then §(u) = §{v) = 0, but 1 + v = 1( o), which certainly does not have
FCD.

(iii) Given a commutative F-ring R, let B, = {z € R : 2" € a"+t'R};

evidently F(R) = |J),,», £n. But clearly

E, = ﬂ {z € R dist(z"™, 2" R) < 1/m},
m21l
so that each E, is a Gy-set and then F(R) is a Gs,-set.
(iv) Generally, F(R) need not be closed, even when R is a commutative
Banach algebrai For example, let R again be the radical Banach algebra
R =L'(R*;e""), considered in (ii). If f € R has a non-zero constant value
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on [0,6] {for some § > 0), then Rx f = R ([3], Theorem 4). Clearly, such
clements form a dense subset of R, so that certainly F(K) is dense in R.
But, as remarked in (i), not every element of R has FCD; thus F(R) is not
closed in K.

It is a simple remark that F(R) is only open in case F(R) = R. This is
because, always, 0 € F(R), so that if F(R) were open it would contain a
neighbourhood of 0, and so in fact F(R) = R.

(v) If 12 is any compact Hausdorff space, then the uniform algebra 4 =
C(f2) has F(A) = A (since, for every f € C(f2), f and f? generate the same
closed ideal).

The Volterra algebra V = L[0,1] is a commutative radical Banach al-
gebra in which each element either generates a dense principal ideal, or is
nilpotent. Thus F(V) = V.

(vi) If A = A(A) is the familiar disc algebra, then it is clear that no
function (apart from f = 0) in A that has a zero in int A can have FCD.
However, certain functions f with f~1(0) C 8A do have FCD; the simplest
example is fo(2) = z — 1. Using well-known properties of A(4), it may be
shown that Afy = Af2 = {f € A: f(1) = 0}.

Let A be a commutative F-ring, with topology 7, and let z € A have
FCD. From Corollary 4.3, it follows that, although I(z) is not generally
closed in A, it carries a complete metrizable topology, 7, say, as the inverse
limit of the sequence

Ade ad= Ade
We can describe convergence in 7, explicitly as follows. We know that L,
maps I{z) bijectively; write L ! for the inverse of this bijection. Then, for
a sequence (yi) in I(z) and element y € I(z), we have yx — y (72) if and
only if, for every r > 0, L2 (k) — L;7(y) (1), as k — oo. We have the
following lemma; it extends Lemma 6 of [4] to F-rings.

LEMMA 4.5. Let T+ A — B be a continuous homomorphism of commu-
tative F-rings. Let z € A have FCD, and let y = T'(x). Then:

(i} y has FOD in B and T(I(z)) € I(y);

(i} T (z) : I(z) — I{y) is continuous for the topologies Tu, Ty;

(itl) #f T(A) is dense in B, then T(I(x)) is 7y-dense in I(y).

Proof. (i) This is immediate.

(ii) Let 2 € I(z), zx — # € I(z) in the topology 75; then, for every
P >0, L37{(m) — L;7(2) (7). But T(L77(2)) = Ly (T(z)); s0, in- the
topology of B, L;"(T(zk)) — T(Lz"(2)) = Ly (T(z)), for all r 2 C.

- Thus T(zx) = T(2) (1y)-

(iii) First we show that T(J(x)) is dense in I(y) for the topology o of

B. Let 6(z) = m; then I(z) is dense in Az™. Since T(A) is dense in B,
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it follows that T'(I(z)) is o-dense in By™. But T(I(z)) C I(y) C By™, so
T(I(z)) is o~dense in I(y).

Since, for every z € I(z), T(L;"(2)) = L;’"(T(z)), it follows that
T(I(z)) is dense in I{y) for the topology 7.

For the rest of this section we shall be considering algebras, rather than
more general rings. Although, to be definite, we take the algebras over the
complex field, all the results of this section would apply equally to rea)
algebras.

Let F = F¢ = C[X]], the algebra of all formal power series in one
variable, with complex coefficients. If A is any algebra with identity, then
we regard C[[X]] as a subalgebra of A[[X]] in the natural way. The following
result is fundamental for what follows.

THEOREM 4.6. Let p be any submultiplicative seminorm on F. Then X
has FCD relative to the p-topology.

Proof. See [4], Lemma 4. (The main ingredient in the proof is Theorem 1
of [1].)

THEOREM 4.7. (i) Let A be a commutative normed algebra and let x be
a stoble element of A. Then z has FCD.

(i) If A is a commutative Banach algebra, then an element z of A is
stable if and only if it has FCD.

Proof. (i) Because of Corollary 2.4 and Lemma 4.1, we may assume
that A has an identity. Next, if @ has finite descent, i.e. if Az™ = Ag™+L
for some m > 0, then certainly z has FCD. We may, thus, assume that «
does not have finite descent in A. Equivalently, we may assume that, for all
m >0, 2™ & I(x).

Since z is stable, by Theorem 3.4, there is a surjective homomorphism
Py 1 Fa — A/Ip(x) such that ¥, (X) = m(z) (where 7 : A — A/Iy(z) is the
quotient mapping). Let &, = &, |F; then O, is a homomorphism.

‘ Suppose that @, were not injective. Then, since the non-zero proper
ideals of F are just the principal ideals FX™ (m 2 1), it would follow that
2™ & Io(z) for some m > 1, contrary to the assumption that z™ ¢ I(z).
Thus &, is injective.

. je't P be the quotient seminorm on A/Iy(z), derived from the norm [l
of 4;ie.

p(n(@) =inf{la+y 1y € Iz)} (ae A).

By Theorem 4.6 and Lemma 4.1, 7(z) = &, (X) has FCD relative to the
p-topology on A/Iy(z); let §(m(z)) = m. Then, for every € > 0, there is
a € A such that p(r(a™ — az™1)) < &. By the definition of p, there is then
some y € Ip{z) such that |&™ — gzm™tl — v <e Butye Iy(z) C Agmtl
and so 2™ € Az™H, ie. d4(z) < m. B ,
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(i1} This is immediate from (1) and Proposition 4.4.

CoROLLARY 4.8. (1) Let A be a commutative Banach algebra, B a subal-
gebra of A (not necessarily closed). If x € B is stable in B, then z is stable
in A.

(ii) Let C be any commutative algebra, A a commutative Banach algebra
and let T : C — A be a homomorphism. If z is ¢ stable element of C, then
T'(z) is stable in A.

Proof. (i) Let z € B be gtable in B. Then B is a normed algebra so, by
Theorem 4.7(1), « has FCD in B. By Lemma 4.1, x has FCD in A, so that
z is stable in A by Theorem 4.7(ii).

(ii) Let z € C be stable in C. By Lemma 2.2(i), T(z) is stable in the
subalgebra iIm 7" of A. By (i), T(z) is then also stable in A.

REMARKS. (i) We have already seen (in Example (iv) following Corol-
lary 2.7) that there exists an incomplete normed algebra A, with a subalge-
bra B and an element z € B, such that x is stable in B, but is not stable
in A.

(ii) Even when 4 is a Banach algebra and B a closed subalgebra, there
may be some x € B that is stable in A but not stable in B. Recall remarks
{v), (vi} following Proposition 4.4: let A be the closed unit disc in C, let
A =C(A) and let B = A(A), so that B is a closed subalgebra of A. Let
u(z) = z (¢ € A}; then u is stable in A4, but not stable in B.

(i) Let A = C[0, 1] and let B be the subalgebra of polynomial functions,
normed as a dense subalgebra of A. Let u(¢) = ¢t (0 < ¢t £ 1); then u
has FCD in A, so is stable in A. By Lemma 4.1(1), v also has FCD in
the dense subalgebra B. However, u is not a stable element of B = C[X],
by Proposition 2.5. So, in particular, an element of an incomplete normed
algebra that has FCD is not necessarily stable.

We now turn to the problem of characterizing stable elements of commu-
tative Fréchet algebras. A Fréchet algebra is an F-algebra whose topology
may be defined by an (increasing) sequence (pp)n>1 of submultiplicative
seminorms. The basic theory of Fréchet algebras was introduced in 7] and
[10]; a brief summary, with discussion of a mumber of examples, was given
in [4], §2. We remark, in particular, that a (commutative) Fréchet algebra
A may be represented (not uniquely) as the inverse limit, A = lim(A4y;dy,),
of a Mittag-Leffler sequence of (commutative) Banach algebras (A,) and
continuous homomorphisms d, : Apy1 — An. Such an inverse-limit repre-
sentation will be called an Arens-Michael representation of A. Associated
with such a representation are continuous homomorphisms m, : A — A,
such that 7, = d,, o 7,11 for all n; it is important to recall that, for each.n,
7 (A) is a dense subalgebra of A,.
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In [4] (pages 276-277), we made the following definitions. Let A be a
commutative Fréchet algebra and let  in A. Then z is said to have locally
finite closed descent (LFCD) if and only if, for every continuous, submulti-
plicative seminorm p on A, the element x has FCD relative to the p-topology.
Equivalently, if A = H{L]l(.A.n;dn) is an Arens-Michael representation of A,
then z € 4 has LFCD if and only if, for each n, z,, = m,(x) has FCD in
the Banach algebra A,. (Remark that, by Lemma 4.1(1), the element z,
has FCD in the normed algebra m,,(A) if and only if it has FCD in A,.) In
particular, if A is a commutative Banach algebra, then 2 € A has LFQD if
and only if it has FCD.

Again, let A be a commutative Fréchet algebra and let z in A. Then z is
called locally nilpotent if and only if for every continuous, submultiplicative
seminorm p on A, there is some positive integer N (which may depend
on p) such that p(z") = 0, Again, if A = lim(An;dn) is an Arens-Michael
representation of A, then z € 4 is locally nilpotent if and only if, for each n,
Zp, is nilpotent. If 2 is locally nilpotent, then x has LFCD and also z € rad A.
Also, if A is a Banach algebra, then & € A is locally nilpotent if and only
if it is nilpotent. (See [4], Proposition 3; also examples on pages 277-279
of [4]).

THEOREM 4.9. Let A be a commutative Fréchet algebra, and let z € A.
Then z is stable if and only if it has LFCD.

Proof. (i) Let 4 = lim(4,;d,) be an Arens-Michael representation of
A, with 7, : A — A, the canonical homomorphism (for each n)MHzeAd
s stable then, for every n, by Corollary 4.8(il), @, = 7,(z) is stablé in A,,
le. iy has FCD in A,, by Theorem 4.7. So 2 has LFCD.

(ii) Conversely, let z € A have LFCD, i.e. suppose that, for each n, 2,
has FCD in A,,. We wish to prove that z is stable in A. One quick method
would be to use Theorem 4 of [4] to show that there is & homomorphism
Y : F — A/I(z) with ¥,(X} = 7(z) and then Corollary 4 of [4], which
implies that I{z) = Ip(z). We would then observe that the method of [4]
could, with minimal changes, have defined ¥, from Fg4, rather than just
from F. We could then use Theorem 3.4 ((ii)=>(i)) to deduce the stability
of z.

However, our aim in this paper is to show that the stability results of §3
(especially Theorem 3.4(i)=(ii)) may be used to give an alternative proof
of [4], Theorem 4 (and Corollary 4). We thus wish to give a proof of the
stability of = that does not use the theory of power-series embeddings.

To do that we shall, in the next section, extend the theory of IL-sequences
to a theory of “IL-squares”. This extension has a certain elegance and in-
terest in its own right. The completion of the proof of Theorem 4.9 will be
a by-product (§6.1).
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5. Inverse-limit squares. OQur aim is to prove a result that will say
that “a stable limit of stable sequences” is itself a stable sequence. To this
end we define an IL-square to be a commutative diagram, say G, of the form,

f Fiz fis
G G — Gyg ...

Tgu T‘qw g1a

Fa1 Faz faa
Gz — Gop +— Gpa «— ...

Tgﬁl TQ‘.M 423

fa1 faa fas
G31 (__-‘3_ G32 — G33 —_— ..

TF]a‘l TQ‘SE gss

In this diagram, each row and each column is an IL-sequence of groups and
homomorphisms; the groups are not required to be abelian, Let G . denote
the ith row of G, regarded as an element of ILG. Let G; = L(G;+), th?re L
is the inverse-limit functor. Then, for each i (because of the commutativity of
the diagram), the mappings (g,;);>1 define a morphism gy« : Git1,« —»_gz-,*
which, in turn, via the inverse-limit functor, defines a group homomorph1_sm_,
say g; : Git1 — Gy. We refer to the IL-sequence Geor = (Gs; g;) as the limit
column of the square G.

Explicitly, an element of (41 is a sequence, say Zitle = (@it1,5)5215
where ;41,5 €.Gy41,; and Tiq1, = f7;+1’j (m@_|.1,j+1) for all j. Then

gi(Tig1p) = gij (Bit1,5)a21-

In a precisely analogous manner, there is defined the limit row, grf,w, of
the square, which is an IL-sequence (Hj; f;), where, for each j, H; is the
inverse limit of the Fth column, say G.; = (Gi,j)ial, and e.ac¥1 homomor-
phism f; : Hj41 — Hj is obtained by applying the inverse-limit functor to
the sequence of columns. o

There is also a natural way to define an inverse-limit of the square G

itself, namely we define L{G) to be (2 ;)i ;z1 where z;; € Gy; and z4; =

fig(®iga1) = 91,3{Fiy1,5) for each 4, 7. _ N
A little reflection on the definitions will make the following proposition

clear:

' ProPOSITION 5.1. Let G be an IL-square of groups and homomorphisms.
Then there are natural isomorphisms

L(G) = L{Grow) = L{Goa1)-
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The reference to “natural isomorphisms” in the last proposition can be
understood in a technical way. There is, in a rather obvious sense, a category
of IL-squares of groups and homomorphisms that we shall denote by ILSG.
It does, we think, add clarity to consider, briefly, a more general situation.
Let G = (Gx;9ou)rea be an IL-system, of groups and homomorphisms,
indexed by a directed set (4, <); the homomorphism gy, : G, — Gy is
defined whenever A < pin A. It is required that, whenever A < p < v, then
Fav = Gap © Guv. There is an extensive discussion of such systems in, for
example, Chapter 8 of [9].

For fixed A, there is a category of IL-systems indexed by A. If § =
(Gx; gap) and M = (Hy; hay,) are two such systems, then a morphism ¢ :
G — H is a system (¢x)rca of group homomorphisms ¢ : Gy — Hj such
that, whenever A < y in A, the square

Tou
G =—"2-G,

¢AJ pr.l
by

Hy < g,

commutes. If G is a system indexed by A, then its inverse limit is the group

LG = {@) € [] 6ri o = grulam) (A< )}
Agd

We shall consider only a directed set A that has a totally ordered cofinal
subsequence, say C = {A; < Ay < ...} (so that, for every A € A, there is
some n with A < A,). Then there is a natural isomorphism between L(G)
and the sequential inverse limit lim(G),; gn), where g, = ga,x,,, . Moreover,
there is a natural notion of stability for systems indexed by A, which turns
out to be equivalent to the stability of any cofinal subsequence. We shall now
explain this in more detail for the category ILSG of inverse-limit gquares.

In the case of ILSG the index set is, of course, N x N, with the directed
ordering (my,n1) < (ma,ng) if and only if both my < ma and n1 < ng.
Let G be an IL-square of groups and homomorphisms. The simplest choice
of totally ordered cofinal subsequence is the diagonal sequence (G, n;dn),
where dn H Gn+1,n+1 — Gn,n is defined by dn = fi,jQ’vZ,j+1 = gﬁ,jfiv{—l,ji note
that the commutativity of the square has been used,

It is convenient to have an explicit description of what it means for an
IL-square to be stable. To make the accownt reasonably self-contained, this
may be taken as a definition. Since we are now giving general theory, we
do not wish to assume that the groups are abelian, and we shall write the
group operations as multiplication.

We need the notion of an ollowable perturbation of G. Let elements a; 4,
bi; € Gi; be given, for each i, j. The elements are required to satisfy the
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conditions
() @i+ i (biger) = big - 9i5{aitn,)
for all 4, . We then define the perturbed mappings

fij=aigtiis  9ij = bi5.9i4
for all 7,7. The perturbed square G' is then the IL-square (of sets and map-
pings) obtained from G by replacing each f; ; (respectively, each g; ;) by the
corresponding mapping f] ; (respectively, by the mapping g; ;). It is readily
checked that the conditions (*) that define an allowable perturbation are
precisely the conditions needed to ensure that the perturbed square §' is
still a commuiative diagram.

The IL-square G is called stable if and only if, for every allowable per-
turbation, the pertirbed square G’ has non-empty inverse limit. Even more
explicitly, the IL-square G is stable if and only if, for every choice of @, ;,b; ; €
G; (for all 4, j) that satisfies the condition (), there exist z;; € Gy ; (for
all 4, §) such that

Tiyg = i, fi,{Bi,541) = 83,5905 (Tigr4)s
for all ¢, 7. It follows from the general discussion that:

ProposiTION 5.2, An IL-square G is stable if and only if its diegonal
sequence (G i;d;) is o stable IL-sequence.

REMARKS. (i) The interested reader may care to write a direct proof of
Proposition 5.2, without reference to more general [L-systems.

(i) The diagonal sequence is merely the simplest choice of totally ordered
cofinal subsequence. The proposition is equally true with any other choice.

(iii) The reduction to sequences means that we do not need to give sep-
arate proofs in the category ILSG for results corresponding to Lemma 1.4
and Corollary 1.5, already given for IL-sequences. We also have, correspond-
ing to Theorem 1.1:

TaeorEM 5.3. Let G € ILSG. Then G i3 stable provided that either of
the following conditions holds:

(i) each Gy j is a complete, metrizable topological group and all the ho-
momorphisms f; ;, gi; are continuous with dense range; '

(ii) each Gy ; 1s a Housdorff topological group, oll the homomorphisms
figs 0i.5 are continuous and either every f; ; or every g;,; has compact range.

Proof We simply note that either of the alternative conditions implies
that the diagonal sequence has the corresponding sequential property. We
then apply the corresponding part of Theorem 1.1 to deduce the stability
of the diagonal sequence. The proof is then completed by applying Propo-
sition 5.2. '
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REMARK. An IL-square § that satisfies condition (i) of Theorem 5.3 may
be called a Mittag-Leffler square,

As explained at the beginning of the section, our main interest in IT-
squares is concerned with connections (if any) between the stability of the
individual rows and columns and stability of the limit row and limit column.
First, there is the following simple result.

THEOREM 5.4. Let G € ILSG be a stable square. Then the limit row and
timit column are stable sequences.

Proof. It clearly suffices to prove stability of the limit row; we use the
notation set out before Proposition 5.2.
Counsider, then, the limit row

fi-1 Fi
growl Hl(f—1H2+fi...+j——-Hj(-—J—Hj+1...,

where H; = L(G, ;) and f; : H;.q — Hj is given by

fil{@ige1)iza) = (Fig(2s541))in1s

for all Ly i1 = (-'E'i,j-i—l)'izl < Hj+1.
Now let ay; € Hy (7 = 1) be given. Then, say, a.; = (as;)i>1, where,
for all 4, 7,

i = Gij(Git,g).
Define b; j = 1;;, the identity of G; 4, for all 4, j. Then the sets of elements

(ai,5), (bi,;) define an allowable perturbation of G. Since ¢ is stable, there
exist elements z;; € Gy ; (for all ¢, §) such that,

Tig = @i,ifi g (Tiga1) = bi 55 (Big1,5) = gi5 (Big1,g)-

Let 2.5 = (2i,5)i>1 for all 7. Then a, ; € Hy and zuj = au ; f5 (4 j1)-
The stability of G,y is therefore proved.

We shall next give examples to show that the connection between the
stability of an IL-square and the stability of its rows and columns is not
quite straightforward. The first example will show that the converse to The-
orem 5.4 ig false,

EXAMPLE 5.5: A non-stable IL-square in which the limit row and the limit
column are both stable. Let A be a commutative Banach algebra, with an
element z € A such that z is not nilpotent, but with I{z) = 0. For example,
A conld be the disc algebra A = A(A), with z being the coordinate function,
z(z) = z (z € 4). It follows, from Proposition 4.4(iii), that # does not have
FCD, s0 is not stable (Theorem 4.7(ii)).
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Now consider the IL-square
L Lo Ly
A —— A « A
LzT LmT Ly
Lo Ly Ly
A« A+ A ¢
LmT LET Ly
La La La
A« A« A ¢
S

in which every arrow is L,. Then the diagonal sequence is

2 2 2
L L
A&;A@,w_ &2

which is non-stable, being a subsequence of
Ad pde n e

So, by Proposition 5.2, the square & is also non-stable.
But, since I(x) = 0, the limit row and limit column are both isomorphic
to the trivial stable sequence, 0 «— 0+ 0+ ...

EXAMPLE 5.6: A stable IL-square that has all its rows and all its columns
non-stable. Suppose that we have a commutative Banach algebra A contain-
ing elements x, y such that zy has FCD, but neither  nor y has FCD. Then,
by Theorem 4.7(ii), as elements of A, xy is stable, but neither & nor y is

stable. _
Then let & be the following IL-square:
P G R
L,T L,,T L]
A e L, 4 Lo 4 Lo
LUT LyT L,A
YR S B
LUT LFT Ly
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in which every horizontal arrow is L, and every vertical arrow is L,. Then,
by definition of stable element, each row and each column is non-stable. Byt
the diagonal sequence is

P P N Gt I
which is stable. It follows from Proposition 5.2 that the square 8 is also
stable.

To complete the example, we must give a suitable Banach algebra A.
Let A* = {(z,w) € C? : |z| < 1, |w| < 1}, the unit bi-disc in C?, and let
B = P(A?) be the bi-disc algebra, i.e. the uniform closure in C(A?) of the
set of complex polynomials in z, w. We also write z, w for the coordinate
functions, considered as elements of B. Now let I = B{zw)?; then [ is a
closed ideal of B, so that A = B/I is a commutative, unital Banach algebra.
Let g : B — A be the quotient mapping, and define z = q(2), ¥ = q(w).

Then (zy)? = 0, so zy has FCD in A. Using elementary consideration of
Taylor series it is simple to show that (a) neither z nor y is nilpotent, but
(b) I{z) = 0 = I(y). It then follows from Proposition 4.4 that neither = nor
% has FCD. The example is therefore complete,

EXAMPLE 5.7: An IL-square in which every row and every column is
stable, but with neither the square, nor its limit row, nor its limit column
being stable. Let

.A: Alif—lAgJE—A3<f—a-...,
be any non-stable IL-sequence of groups and homomorphisms. For each
n > 1,let jn 1 A, — A, be an identity mapping. Then we “extend” A to

an IL-square § as in the following diagram (with the sequence 4 shown in
bold type):

f1 Ja gz .?z
Ay —— A, + :

Tii f3 T.fzfa Tf:fa

Ffi1fe A £y Ja

Ay — Ay Ay ¢ Ay
T;ﬁ Js ng Tfu‘s

fifa faf f
Al Al .A3 +-B—-4—- A5 4——-—5 Ae %ja e

A[jl s TJS ng

Then every row, and every column, is 'eventﬁa,lly just a sequence of identity
mappings, so is trivially stable.
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But the diagonal sequence is, say,
fifa fsfs fefe
.A’: Al Ag‘ A5( ceey
which is a subsequence of .4, and therefore non-stable, by Lemma 1.2. Hence
also the square S is non-stable (Proposition 5.2).

Moreover, it is also simple to see that the limit row Spw & A, and
is therefore again non-stable. The limit column is isomorphic to the “even
index” subsequence, say A", of A, namely

AT Ay ‘fzfs Ay ‘f4f5 Ag ‘fsfv -

s0 it is also non-stable.

A useful criterion for stability of a square is as follows.

THEOREM 5.8. Let G € ILSG have the properties:

(i) every row is stable;

(ii) the limit column is stable.
Then G 1s stable and so, in particular, the limit row is stable.

Proof Let a;j,bi; € Gij (all i, §) be elements defining an allowable
perturbation of G, i.e. such that, for all 4, j,

aig fig(Diga) = bi3Gij{@iv1,5)-
Then, for each 7, by the stability of the ith row, there are y;; € G4

(4 2 1) such that gi; = @i, fi,j (¥i5+1)-
Define d;; = y;_ jlbz-,jgi,j (¥i+1,5). Then a simple calculation shows that

dq,,] == fi’j(d{,,j+1), for all 4, j.

Thus, for each i, d; « = (di;)j>1 € L(Gix} = Gi. By the stability of the
limit column, there are z; ., € G; (1 > 1) such that z;, = di« - gi(2is1,4). So,
writing Zy g = (Z,‘,j)j?_]_, we find that, firstly, since Zix € Gy,

Zz,_;, f“':.” (zl).?_i‘l)
and also,
Zij = i g 95 (2ig1s) = Uiy bii 0,5 (Yita,52is1y)-

If we now set 2; ; = y;,;2:,5, then we deduce that

Zij = Yigfig(#ige1) = i fig (@ig41)  and @iy = bigi;(Tirrg)-
This proves the stability of S.

The final remark follows from Theorem 5.4.

6. Some applications of inverse-limit squares

6.1. Completion of the proof of Theorem 4.9. We have the commutative
Fréchet algebra A4, with Arens-Michael representation A 2 lim(Ay; dn), and
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"z € A that has LFCD, i.e. such that, for each n, &, = T (2} has FCD, and
50 is stable in A,. We wish to prove that z is stable in A. We shall, in fact,
give the following more general result.

THEOREM 6.1. Let the commutative F-ring R be the inverse limit of o
Mittag-Leffler sequence of F-rings, say, R = lim{Ry;ds). Let © = (Tn)nz
in R be such that, for each n, &, has FCD in R,. Then z i3 stable in R.

Proof. Consider the IL-square

Lay Lo, Lay
R Ry Ry
S
Lag Lz Ly
Ry Ra Ry
S
Lzyg Ling Ly
Ry « Ra R3

R

Then each row is stable. The limit column is (using Lemma 4.2(iil)) isomor-
phic to, say,

T Imp) & I(zg) <2 I(zs) <& ...,
where d, = dn|I(%n41). Using Lemma 4.5, if each I(z,,) is given its Fréchet
topology 7, , then T becomes a Mittag-Lefller sequence; in particular, T is
stable. By Theorem 5.8, the limit row is then stable. But the limit row is
isomorphic to

REple gl
Hence z is a stable element of R.

REMARK. The reader is referred to [4], §3, for further discussion of ele-
ments of LFCD in a commutative Fréchet algebra. It may be useful to give
a summarizing proposition:

PROPOSITION 6.2. Let A be o commutative Fréchet algebra, and let T €
A have LFCD. Then, with standard notation as above, the Arens—Michael
representation induces isomorphisms:

() I(z)  lim(I(zn); dn)
() A/I(z) & m(An/I(wn); o).
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Also,
(i) Lo maps I(z) bijectively onto itself;
(iv) I{z) = 0 #f and only if z is locally nilpotent.

Proof. This is contained in [4], Lemma 7 (for (i) and (ii)) and Corol-
lary 4 (for (iii) and (iv)). We remark that the deduction of (i) from (i} is,
in the terminology of the present paper, a direct application of the stability
of T, applying Theorem 1.3. (That is not mathematically different from the
proof in [4]—but, in that paper, the author had not isolated the notion of
“stability”.) '

The results of Corollary 4.8, true for Banach algebras, but not for general
commutative rings, extend to Fréchet algebras.

ProPOSITION 6.3. (i) Let A be a commutative Fréchet algebra, B a sub-
algebra of A (not necessarily closed) and let & € B be stable as an element
of B. Then = is stable in A.

(ii) Let C be any commutative algebra, let A be a commutative Fréchet
algebra, and let T : C — A be a homomorphism. If & € C' 1is stable, then
T(z) is stable in A.

Proof. (i) Let A = lim(An;ds) be an Arens-Michael representation of
A, with 7, : A — A, (n > 1) the canonical homomorphisms.

Let z € B be stable in B. By Corollary 4.8(ii), mn(z) is stable in Ay, for
each n. Hence z has LFCD in A, so is stable in A by Theorem 4.9.

(i) This follows from (i), just as part (ii) of Corollary 4.8 followed from
part (i).

6.2. Joint stability. Let R be a commutative ring and let z, y € K. We
say that the pair (z,y) is jointly stable if and only if the IL-square, say
S(z,y),

L L. Lo
A A+ A ¢
L,,T L,,T LvT
Lo Lo L.
A A« A
LVT LyT L,T
A Ly A few A

is stable. We immediately have the following simple criterion.
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PROPOSITION 6.4, Let R be a commutative ring and let z,y € R. Then
the pair (z,y) is jointly stable if and only if 2y ds a stable element.

Proof. In the square 8(z,y), the diagonal sequence iy

Lay Ly Ly

R R

The result now follows from Proposition 5.2

REMARKS. {i) We saw, in Example 5.6, that, even if R is a commutative
Banach algebra, it may happen that xy is stable, but neither z nor y is
stable; i.e. we may have (z,y) jointly stable, but neither = nor ¥ stable.

(ii) Although, in Example 5.7, we had a non-stable square in which every
row and column is stable, we do not know whether this can happen for the
square S(z,y). Thus, we have:

QUESTION. If @, y are stable elements of o commutative ring R, is ay
necessarily stable (i.e. is (z,y) o stable pair)?

We note that the answer to the last question is “Yes” in case B is a
commutative Fréchet algebra.

PROPOSITION 6.5. Let A be a commutative Fréchet algebra and let z, y
be stable elements of A. Then xy is stable.

Proof By Theorem 4.9, z and y have LFCD, and we have to show
that so does zy. By considering an Arens-Michae] representation of A, the
question is reduced to the case where A is a Banach algebra.

But then # and y have FCD in 4; let m = max(6(z), §(y)). Then Az™!
is dense in Az™ and Ay™*! is dense in Ay™. So

Aloy)™H 2 AgmFy™ 3 (4™ e,

so that also A(zy)™+1 2 A(zy)™. Thus §(zy) < max(8(z), 8{y)) < oco. This
concludes the proof.

6.3. Pseudonilpotents. ‘There is one other case in which we can prove
closure under forming products. We have already recalled (just before The-
orem 4.9) the definition of a locally nilpotent element of a commutative
Fréchet algebra. It is a very simple remark that the set of locally nilpotent
elements of a commutative Fréchet algebra is an ideal (included in the Ja-
cobson radical). Also, every locally nilpotent element hag LFCD, so is stable.
In fact, if @ is a stable element of the commutative Fréchet algebra A, then
2 is locally nilpotent if and only if I(x) = 0 (see [4], Corollary 4).

At least part of this survives in the context of a general commutative ring.
Let R be a commutative ring; we say that an element z € R is pseudonilpo-
tent if and only if (i) « is a stable element of B, and (i) Jo(z) = 0.
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REMARKS. (i) If R is a commutative Banach algebra, then « € R is
pseudonilpotent if and only if it is nilpotent. If R is a commutative Fréchet
algebra, then z € R is pseudonilpotent if and only if it is locally nilpotent.

(ii) Since, for a stable element & of a commutative Fréchet algebra, we
have Ip(z) = I{z) (see Lemma 2.8(iii) and Proposition 6.2(iif)), it is not
clear whether, in the definition of “pseudonilpotent”, the condition Jp(z) = 0
should be replaced by I(x) == 0. (But note the remark at the end of §2: it
could be that always In(x) = I{z).) We shall, therefore, give the following
proposition in a way that makes clear that the result would remain true if
the definition were modified.

PROPOSITION 6.6, Let R be a commautative ring and let & € R be pseudo-
nilpotent. Then, for every y € R, zy is alse pseudonilpotent.

Proof. The reader is left to make the simple verification that, for any
elements =,y € R, we have both I(zy) C I(z) and Iy(zy) C Io(z). In
particular, if In{z) = 0 (respectively, if I(z) = 0) then also Iy(zy) = 0
(respectively, I(zy) = 0).

It thus remains to show that if = is pseudonilpotent, then zy is stable,
for every y € R. For this, we consider again the IL-square given at the
beginning of §6.2. Under the present hypotheses, each row is stable; further,
since Io(z) = 0, also Lg(z) = 0 (see remarks before Lemma 2.8), so that the
limit column is isomorphic to the trivial IL-sequence,

000 ...,

which is certainly stable. The stability of the square follows from Theo-
rem 5.8; but the diagonal sequence is [R; Ly ], so the stability of zy follows
from Proposition 5.2.
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