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On @-independence, limit theorems
and g-Gaussian distribution

by

MARCIN MARCINIAK (Gdassk)

Abstract. We formulate the notion of -independence which generalizes the classical
independence of random variables and free independence introduced by Voiculescn. Here
Q stands for a family of polynomials indexed by tiny partitions of finite sets. The analogs
of the central limit theorem and Poisson limit theorem are proved. Moreover, it is shown
that in some special cases this kind of independence leads to the g-probability theory of
Rozejko and Speicher.

1. Introduction. In this paper we are concerned with a certain gener-
alization of the classical notion of independence of random variables. The
classical case describes properties of a commutative probability system, i.e.
the set of complex measurable functions defined on a measurable space with
a normalized positive measure. In [17] D. Voiculescu showed that in order to
define a reasonable and essentially different independence cne should con-
sider more general concepts of random variables and probability systems.

DEFINITION 1.1. A probability system is a pair (A, ¢), where A is a
unital C*-algebra and ¢ is a state on A.

Here A plays the role of a noncommutative analog of a set of complex
random variables and ¢ is a “noncommutative” probability measure. One
can define the distribution of an element of A.

DEFINITION 1.2, Let (A,) be a probability system and a € A. A fun-
ctional Ti, on the *-algebra C[X] of complex formal polynomials is called
the distribution of a if

fio(P) = p(P(a))
for every P € C[X].

From the well-known Gelfand-Naimark theorem we easily get
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PropPoSITION 1.3. If (A, @) is a probability system, a € A and a = a*,
then there exists a probability measure p, on R such that supp u, C o(a)
and

Szr:“,uu(dm):(p(a”), n=12...,

R
where g(a) denotes the spectrum of o.

Therefore, the hermitian elements of A play the role of real random
variables, Observe that Definition 1.1 restricts our considerations to the
case of random variables with all moments finite.

In [17, 18] D. Voiculescu introduced the concept of free independent
systems of random variables. This allowed him to develep an alternative
probability theory. Namely, one can consider the notion of free convolu-
tion and the analog of Fourier transform which linearizes that convolution.
Moreover, one can prove the central limit theorem which involves the so-
called semicircular Wigner distribution instead of the Gaussian measure.
A review of the theory can be found in [19]. The combinatorial approach
to these questions is presented in [13, 14, 12]. It is based on properties of
the lattice of noncrossing partitions. In [6, 4] other notions of independence
of noncommutative random variables are defined. They generalize the free
independence.

At the same time, in 5] Bozejko and Speicher have constructed a family
of probability systems which is indexed by a parameter ¢ € [—1,1]. The
main ingredient of these systems is the so-called g-perturbed Fock space.
Moreover, it can be considered as a modification of the main model for the
free independence. The family interpolates between the classical case (g = 1)
and the free case (¢ = 0). Moreover, systems for ¢ = 1 and ¢ = —1 have a
direct physical interpretation. They describe bosonic and fermionic quantum
systems respectively. In [2, 7, 3, 10, 11] the foundations of g-probability
theory based on the above constructions are presented. In particular, g-
Gaussian random variables are described. However, a consistent definition of
a proper notion of independence with the interpolating properties described
above has not been formulated yet. Moreover, the results of [9] indicate
strong obstructions to obtaining such a definition.

Other kinds of independence for noncommutative systems were described
in [16].

In this paper we propose a combinatorial definition of Q-independence
of noncommutative random variables. It depends on a family @ of polyno-
mials which is indexed by all tiny partitions of finite sets. (J-independence
reduces to the free or classical independence if @ is properly defined. Sim-
ilar arguments to those in the free and classical independence theory lead
to limit theorems and calculation of moments of @-Gaussian and Q-Poisson
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distributions. Moreover, for the special choice of a family @, this notion is
consistent with the g-probability theory.

In Section 2 we set up notation, terminology and technical results about
partitions of finite sets. In Section 3 the notion of @-independence is defined
(Definition 3.3). Next, similarly to [13], we use this definition to calculate
moments of random variables in terms of elementary moments. As a con-
sequence of our main limit theorem (Theorem 3.12) we obtain the central
limit theorem (Theorem 3.13) and Poisson limit theorem {Theorem 3.14).
Finally, the special case of g-independence is described. It is shown that in
this case the distribution obtained by the Q-central limit theorem is exactly
g-Gaussian as described in [4] (Theorem 4.6 and Corollary 4.8). Moreover,
this approach allows us to find a new formula for moments of ¢g-Gaussian
distribution (Thecrem 4.9).

A part of the paper is included in the author’'s MSc Thesis at the Univer-
sity of Wroclaw written under the supervision of Professor Marek Bozejko.
I would like to express my gratitude to Professor M. Bozejko for introducing
me to noncommutative probability and for his valuable help. Special thanks
are due to Professor Wladystaw A. Majewski for many helpful discussions
during the preparation of the paper. The author wishes to express his grat-
itude to the referees for drawing the author’s attention to Speicher’s recent
work [15].

2. Partitions of finite sets. Let X, = {1,...,n} forn =1,2,... and
Ko = 0. A partition of K, is a family ¥V = {V;},es of nonempty subsets of
Kn such that V; N'V;, =@ for § # k, j,k € J and ;o ; V; = Kn. For every
partition V of IC,, we write d(V) = n. Let V = {Vj}jes be a partition of X,
for n > 1. We define the equivalence relation ~y on K, by the following
condition: if v,w € K, and v < w then

vepyuw e [FieJVuek,:v<usw=ue V)
We denote by [A| the number of elements of a finite set A.

DEFINITION 2.1. Let V = {V;};es be a partition.

{a) If d(V) = 0 or d(V) > 1 and every equivalence class of ~y consists of
one element then V is called a finy partition.

(b) ¥ {V;| > 2 for every j € J then V is called nondegenerate.

(¢) If |V;| = 2 for every j € J then V is called a 2-partition.

The set of all partitions (respectively tiny partitions, 2-partitions} of Ky,
will be denoted by P(n) (respectively Pt(n), Pz(n)), and P = (U L, P(n)
(respectively Pt, Pa) will denote the set of all partitions (respectively tiny
partitions, 2-partitions).
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If V = {v1,...,ux} is a subset of KC, and v1 < ... < v; then we write
Vﬂ(‘l)]_,...,'vk).

ExXampPLE 2.2. Let n = 8, and define V1 = {(1,4),(2,5,8),(3,6),(7)},
Vo = {(11 3, 7)7 (2’ 4, 6)1 (5: 8)}’ Vs = {(11 5)7 (2v 4): (3’ 7)7 (67 8)}: and Vg =
{(1,5,86),(2,3),(4,7),(8)}. Then Vi, Vs, V3 are tiny partitions, while V, is
not tiny because 2 ~y, 3 and 5 ~y, 6. Moreover, Vs is a 2-partition, and
Va, Vs are nondegenerate partitions.

If V = {V;}jes is any partition of K, then let X' = K,/~y and K" =
Ujeg, Vs where

(2.1) Jo={jeJ:|V;| =2}
Let n' = |K'l and n" = |K"|. We can write K’ = {w,...,wn} and
K" = {w1,..., vy} where in both cases the labeling respects the natural

orders on K' and K" induced from K. For j € J, let V} = {k € K :
v € V; where [v]~, = wi} and for § € Jo, let VP = {l € Kor 1 v € Vj)
From this construction we immediately get

PROPOSITION 2.3. Let V = {V;}jes be o partition of K,. Then V' =
{Vi}ies is a tiny partition of Kns and V* = {V#}jez, is a nondegenerate
partition of K.

We will write V** instead of (V*)* and inductively piamT
(V(t)")%5 The definitions of V't and V* lead to

(2.2) d(Vt) 4V} and d(V*) <d(V).
Moreover, we have

ProrosiTION 2.4. If d(V¥) = d(V)} then V' =V, and if d(V*) = d(V)
then Vs = V.

instead of

Proof. If d(V*} = d(V) then every equivalence class of ~y has exactly
one element and X' = K,. Similarly, if d(V*) = d(V) then Jy = J, and
K'=K, =

Inequa;iities (2.272 and Proposition 2.4 imply that there is mg € N such
that V™ = V)™ for every m > mg. Let VT = PE0™

The main properties of the operations -f, %, .7 are described by the
following

PROPOSITION 2.5, Let V = {V;},er be a partition. Then
(a) VE=Y if and only if V is tiny,

(5) V¥ = V7,

{c) V* =V if and only if V is nondegenerate,

(d) yIr Vst — vtT =yTt — ths =T

(e) VT is tiny and nondegenerate.
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DEFINITION 2.6. A partition V will be called admissible if VT = (), where
0 denotes the single partition of Ko (cf. [13}).

REMARK 2.7. We will show in Lemma 2.11 that our notion of admissible
partition is equivalent to that given in [13]. It is also called a noncrossing
partition (see [12]).

ExaMPLE 2.8. For partitions from Example 2.2: Vf =V for i = 1,2,3,
Vi e P(6) and Vi = {(1,4),(2),(3,86), (5)}. Further, V{* € P(7) and V}* =
{(1,4),(2,5,7),(3,6)}, Vi € P(4) and V§* = {(1,3), (2,4}, V}* = Vi, i =
2,3. Consequently, d(V{) = 7 and V¥ = {(1,4),(2,5,7),(3,6)}, V§ = Vs,
VI =V, dVF) =4 and V] = {(1,3), (2,4)}.

LeMMA 2.9. Let V be a partition. Then the following conditions are equiv-
alent:

(a) V is admissible,

(b) V* is admissible,

{c) V* is admissible.

Proof. This is an cbvious consequence of Proposition 2.5(d). =

LEMMA 2.10. If V = {V;}jes is o tiny admissible partition such thai
d(V) > 1 then there is jo € J such that |V, | = 1.

Proof. Proposition 2.5(a) implies that V* = V. Suppose that |Vi} > 2
for every j € J. Then V* = V from Proposition 2.5(¢c), hence V** =V and
the definition of VT leads to V¥ = V # @, which contradicts the assumpt-
ion. =

In the sequel we will need the following characterization of admissible
partitions:

LEMMA 2.11. A partition V = {V;};es is admissible if and only if
(23) Vi keJ j#kYv,v €V Vwe Vy:

v < w < g = (V' € Vit o < w' < wg).

Proof. Necessity. Suppose that ¥ = {V;};es does not satisfy (2.3), i.e.

there are different 7, k € J and v1, vy € Vj, w1, wa € Vi such that
(2.4) vy < wy < vp < Wa.
We show that V' does not satisfy (2.3) either. Indeed, the inequalities (2.4)
imply that v, v, w1, wy are in different equivalence classes of ~y and
[V1]my < W)y < [U3]ey < [wo)n, . Moreover, [Uijny, (vl € Vf and
1]y [Wa]my € Vi, s0 {VF] > 2 and |VF| 2 2. Finally, the operation -*
does not remove the sets ij, Vi from V* and preserves the relation (2.4) for
corresponding elements. As VT also satisfies the negation of (2.3), the set
VT cannot be empty.
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Sufficiency. Firstly, observe that if )V satisfies {2.3), then so do V? and
V', This results from the fact that both -* and -* preserve the inequalities
from (2.3). Secondly, let us show that if a tiny partition V = {V;} ;s satisfies
(2.3) then there is § € J such that |V;| = 1. This will be done by induction
with respect to the cardinality of J. If J = {4}, then from Definition 2.1
we have d(V) = 1 and |V;| = 1. Now, assume that our statement is true
for every partition with |J| < p for some p € N, and let ¥V = {V;},c; be
such that |J} = p. Choose some jo € J. Then either [Vj,| = 1 or |V;,| > 2.
The first case ends our proof, while in the second one we fix vy, vy € Vio
such that v; < vy. Let J' = {j € J : vy < w < vy for every w € V;}.
Definition 2.1(a) and the condition (2.3) imply that J’ # §. We can define a
partition V' = {V/};¢r in the same way as in the construction of V*, where
J' replaces Jo. Obviously, V' is also tiny and |J/| < |J \ {s}| < p. Thus,
from the inductive assumption there is j € J” C J such that |V;] = |[V/| = L.

Further, observe that the above first step implies that for every m & N,
if VO™ £ () then V)™ and (VEI™)? satisfy (2.3). Moreover, (V#)™)¢ is
tiny. So, using the second step, one can prove that it contains a singleton.
Thus

)m+1

V) = a((VENT ) < d((VEITY < (v
provided that d(V*)™) £ 0. Hence d(VT) =0 and V' = 0. u

Let V = {V;}jes and W = {Wi }zex be two partitions such that d(V) =
d(W). We say that W is finer than V if for every k € K thereis j € J such
that Wy, C Vj. In this case we write W < V. Let us remark that if W <V
and V is a tiny partition, then so is W.

Let us end this section with some remarks and technical lemmas about
2-partitions.

LeMMA 2.12. Let V = {Vi}ses be a 2-partition and V; = (v;,w;) for
every j € J. Then the following conditions are equivalent:

(a) VT =V,

(b) V is tiny,

(¢) wj > v+ 1 for every j € J.

Proof. {a)=(b). This follows from Proposition 2.5(e).

(by=(a). [Vj| =2forje J,s0 V¥ =V = .

(b)<={c). This is a simple consequence of Definition 2.1. w

LeMma 2.13. If V is g 2-partition such thot VT = V and d(V) > 4,
then there exists a pair (,k) € J x J such that v; < v < wy < wp and
v+ 1= Wy

Proof. We use induction with respect to n, where d())) = 2n.

In =2 then {(1,3),(2,4)} is the only 2-partition such that VT = V.
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Now, let V = {(vj, w;)}j=1,..n+1 be a 2-partition such that VT = V. Let
7o be such that v;, = 1. Then either v; + 1 = w;, for some j =1,...,n+1,
7 # jo, and this ends our proof, or a partition V' of K,,, obtained from V
by excluding the pair (vj,,w;,) satisfies the condition (c) of Lemma 2.12. In
the second case the statement results from the inductive assumption. m

For a 2-partition V = {V;};e7 where V; = (v;,w;) for j € J, we define
(2.5) V)= (G, k) e x J: v < <wy <w}
Then we have

LEMMA 2.14. (a) If V € P, then V¥ € Py and VT € Py.
(b) If V € Py, then i(V*) = i(V) and i(VT) = i(V).
(¢) If V € Py and V' € Py, then i(V*) = i(V).

Proof. (a) If V* = {V}};e then |VF| < 2 for every j € J. The definition
of the operation -* implies that V** = {V ¢}, where Jy = {j € J : [V}|
> 2} is defined as in (2.1) and |V}*| = Wf\ =2 for every j € Jo.

(b} This is a simple consequence of the observation that if v; < w <
wj < wg, then j, k € Jp and v* < vff < w}® < wl® where V/* = (v, w}®) for
4 € Jg. The second equality results from the definition of the operation i

(¢) Use a similar argument to that in (b). m

The above lemma justifies the following

DEFINITION 2.15. The number 4(V7) is called the indez of the partition
V & P such that VT € P,. For simplicity, the index of V will be dencted
by (V).

‘We denote by S, the set of all permutations of the set . Let V =
{Vi}jesr € P(n) and o € S,. Then V° € P(n) is a partition defined as
follows:

(2.6) Vo ={V7}jes, where V7 ={o(v):veV;}
Recall that a permutation of the form
1 ... v=1 v v+1 v42 ...0n
71",,:(1 oo v=1 v+l v w42 ... n)
forv=1,...,n —1is called an inversion. Now let

(2.7)  m(V) = min{k € NU {0} : there are k inversions 01,...,0% € Sp
such that YTorTo2-ToxT — g}

Here a similar convention as in the paragraph following Proposition 2.3 is
used.

LEMMA 2.16. If V € Py then i(V) = m(V}.
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Proof. Observe that if 1V is a tiny 2-partition then

( U=, ut 1= wy

iV)—1 if {oru=w;, u+1=1wy, v; <
oru=uy, u+Ll=u w; <wy
for some j, ke J

(2.8) (V™) =« k
u=awy, u+1=uy
i(V)+1 if [ oru=wy, utl=wg, vj >0
or u =1, U+1=10g, w;>wy
L for some §, k € J,

for every u = 1,...,d(V). Thus, i(VT") > i(V) ~ 1 for every 2-partition V
and inversion o. Hence, for every k < 4(V) and every sequence of inversions
o1,...,0% we have §(VT71To2-Tok) > (P} = k > 0. Lemma 2.11 implies
that VTerToz-TouT £ § Go, (V) < m(V).

In order to prove that i()) > m(V) we construct by induction a sequence

o1, .., 04y) of inversions and a sequence Vy, Vy,.. ., Vi(vy of partitions such
that V; = V% and i(V)) = i(Vi_1} — 1 for [ = 1,...,4(V). Suppose that
for some & < (V) we have partitions Vo = V,Vq,..., ) and inversions

o1,...,0k such that V) = VET and i(V)) = i(Vi_q) ~ L for il = 1,..., k.
The conditions imply that 4(Vx) = (V) — k > 0, so using Lemma 2.11 we
get Vi # 0. Proposition 2.5(d) and Lemma 2.14(a) imply that VT satisfies
the assumption of Lemma 2.13, hence if VI = {(v;,w;)};cs then there
are J,k € J such that j # k and v; + 1 = wy. Let oy = Ty, and Vipr =
VI Then, using (2.8), i(Vit1) = i(Vk) — 1. From the above construction
i(Vipyy) =0, so Lemma 2.11 implies that Vi, =0 =

3. Q-independence, A family Q of polynomials indexed by all tiny
partitions will play the crucial role in this section.

DerFINITION 3.1. For V = {V;}jes € P?, let Qy be a formal polynomial
in commuting variables from the set
XV ={X4:ACV for some j € J},
of the form
QEN) =3 awy [[ Xw,
wey kEK

where W = {Wy}iex, and gy are real coefficients. Then Q = {Qv}vep:
is called a consistent family of polynomials.

REMARK 3.2. A consistent family Q of polynomials is determined by the

system {gw,v : V € P, W < V} of coefficients, so for convenience, the latter
will also be denoted by .
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Now, let (A, @) be a probability system, {4, }ier be a family of *-subal-
gebras of 4, and () be a consistent family of polynomials.

Further, let (a1, ..., an) be a system of elements of .4 such that for every
v = l,...,n there is 4, € I such that a, € A;,. We define the partition
V = {V;}ies € P(n) associated with (ai,...,a,) by the following condition:
(3.1) Yo,weKn: [FedJ:iveVAweV))si, =1,
Observe that this partition is tiny if and only if 4, # 7,41 for every v =
1,...,n~ L

For simplicity, ¢{A) denotes @©{ay, . ..ay,) where A = (v1,...,v) C Kp
is an ordered subset. If V = {V;};es is a partition of K, then (V) =
[Liese(V;) and ©¥ = {p(4) : A C V; for some j € J}. We denote by
Alg(a) the *-subalgebra of A generated by an element a.

Now we can formulate the following

DerFINITION 3.3. (a) Suppose that Q = {Qv}yep: is a consistent fam-
ily of polynomials. We say that a family {A;}:ez of subalgebras of A is
independent with respect to @), or briefly Q-independent, if

(3.2) p(o1...an) = Qu(e¥)
for every n € N and for every system (ay,...,an) of elements of A such
that a, € A;,, 91 # 93 # ... # in, where V is the partition associated with

((1.1, ey an).
(b) A family {a;}iez of elements of A is called Q-independent if the
family {Alg(a;)}icr is Q-independent.

EXAMPLE 3.4. Let
1 W=V,
wy = {0 WAV,
Then we obtain the classical independence of random variables.
ExAMPLE 3.5. The results of [18] and {13] clearly show that the free

independence introduced by Voiculescu (see [17]) is a special case of our
notion of Q-independence. In this case

- { 1 if V¥V is admissible,
vy 0 if V is not admissible.
The values of gwy for W # V are determined by the above condition
(cf. [15]).
EXAMPLE 3.6. “Boolean” independence (see [16]):
v = 1 if [Wy| =1 for every k € K,
wv 0 otherwise.
This kind of independence is important for nonunital subalgebras (1).

(*) Precise calculations of gy v for Examples 3.4-3.6 can be fouad in [15].
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ExaMPLE 3.7. Let ¢ € [-1,1]. Following [10], if a consistent family Q
satisfies

(3.3) wy =g, VePn?p,
then we obtain the “g-independence” (cf. [5, 2]).

Let us fix some @-independent family {.A4;};cz of subalgebras of A. To
simplify our terminology, the value @(a; ... ayn) will be called a moment of
the system. (a1,...,a,). The value ¢(ay, ... a,,) where v; < ... < v; and
iy, = ... = 1y, Will be called an elementary moment of (a,...,a,). The
next three lemmas show how (3.2) can be used to express the moment of
(a1,...,an) in terms of elementary moments.

Leyma 3.8, Suppose that as, ..., a, € A satisfy the following conditions:

(1) ay € .Aiv, where i, # i 7£ 75 Ty
(ii) there is vo € Ky such that iy, #* i, for v # vg.

Then plar...an) = @{ay)p(ar ...

Proof. Firstly, suppose that (a.,)} = 0. Let ¥V = {V;},c be the associ-
ated partition of KC,,. By (i), V is tiny, while (ii) implies that ) is degenerate,
ie. there is jo € J such that V;, = {vg}. Observe that for every partition
W = {Wi}lrek finer than V there is kg € K such that Wy, = {v}. By (3.2)

we have
> awwelaw) ]

olar...an) = > awye(W) =
w<y W<y ke K\ {ko}

Oug—1Gug+1 « - - O )

w(Wg) = 0.

Secondly, for arbitrary ((a.,) we can write Gy, = al + ©(ay,)1 where
¢{af,} = 0. Now
wloy...an) = p(ay . ..avo_lagﬂawnﬂ cealp)
+ o(av, Jplar . ..
= () p(as - ..
REMARK 3.9. If (ay,...,a,) is such that e, € A;, for v=1,...,n and
V is the associated partition, then we can write a1...an = b1 ... b, where
bw € A;, and the partition associated with (by,...,bn) is V. Moreover,
w(V) = o(V).
COROLLARY 3.10. If (a1,...,a,) is such that ay € A;, forv=1,...,n
and the associated partition V is admissible, then

(8.4) wlay...0,) = (V).

Proof. Let V = {V;}jes. If |J| = 1 then (3.4) is obvious. Now, assume
that we have (a1, ..., an) with associated partition V with [J| = p+ 1. By
Remark 3.7 we can write-ay ..., = b - - . by where the partition associated

Cyg — 18wy 41 « + an)
Qyp e 1Gggeped + <+ an). ]
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with (b1,..., by} is V', ie. it is a tiny partition. We note (Vt)T = VT = Q.
Then, by Lemma 2. 10, there is jo € J such that V} = {wp} for some
wy = 1,...,n'. Hence, by Lemma 3.8,
ga(b]_ AN bnf) = (,D( wg)ﬁo(bl e -bwg—lbw0+1 bnr)
= CP(IGFD)(p(bl P bwu—lbw0+1 bnt)
= @(Vio)lbr . bug—1bwgt1- . bae).
Next, consider the partition associated with (by,. .., bug—1,Pugs1,-- -1 bnr)-
If it is degenerate then we can repeat the above procedure. Hence

Wby .. bpr) = ( 1 cp(V:.,-))gD(cl )
jeN\Js

where Jp is defined for V* as in (2.1) and the partition associated with
(c1y---,cnr) is V8, This partition has fewer than p+ 1 elements, and (V)T
= VT = (). Thus by the inductive assumption we have
1l ey =[] #tv
icJa JEJa

Lavma 3.11. Let a, € A;, forv=1,...,n and let V = {V;};cs be the
nssociated partition. Then
(35) Qﬁ(al [N Gn) = th’vt(‘D(V) + U
where U is o sum of products of elementary moments and each product
contains af least |J| + 1 factors. :

ey ...onn) = (V) =

Proof. Let a1...an = bi...b, where the partition associated with
(b1,...by) is V. Then (3.2} implies

Pbr )= D awyreW) = quep(V)+ Y
w<yr WLV, WVt

W = {Wilrex and W <V, W # V then |K| > |J|. Therefore, p(W) =
[Tiex ©(Wk) is a product of at least |J| + 1 elementary moments. m

aw, vt <P(W)-

Now, we can formulate the following

THEOREM 3.12. Let ay n,03,N,.--,any € A be Q-independent and
identically distributed for every N € N. Moreover, suppose that for every
8 € N the limit

R(s)= Jim No(at )
exists. Let Sy = a1 v + ag v + ...+ ann- Then, for everym € N,
Jm oS = Y awwR()
VeP(m,)

where R(V) = [];c; R(Vj]) forV={V;:j e J}.
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Proof Let m € N and My = ©(S%). Then

N
My =p((an+.. +axy)") = ¥

00 s =1

@(0i,N - G N )

Observe that if the partitions associated with (a4, v,...,a:, ~) and with
(ag,w, .-,y ,n) are equal then w(ay,n.. ., n) = wlog ... 00 ~)

This follows from Definition 3.3(a) and from the fact that all ay v, ... ,73.}\;, N
have the same distribution. For a given partition V = {V; : j € J} € P(m)

such that |J| = p there are Apy = N(N — 1)...(N — p + 1) systems

(@iy Ny - - -, ai,,~) for which V is the associated partition. Hence
My=3 by 3, o)
p=1 VeP(m), |J|=p
where (V) = @(a;, » - .. ai,, n) for some {a;, n,...,a,, ) with associated

partition V. So, from Lemma 3.11,
o(V) = quee [ [ 0(V3) +U
JET
where U is a sum of products of moments of aj y,...,an,n with at least
p-+ 1 factors. Then

Jm Ay yo(V) = gueye H R(|V;]). m
jed
As a corollary we get the following version of the central limit theorem.

THEOREM 3.13. Let {an}nen be a sequence of Q-independent and iden-
tically distributed elements of A. Assume that p(a,) = 0 and ¢(a2) = o2.
If

S ! {1+ ...+ )
= . tan),
N=yle N
then, for every m € N,

. 0 if m is odd
Y t
]\;EIIDQL‘D(SN) = {EVE'PQ(M) gyeyeo™ if m s even.
Proof Let a; v = N™Y2y for j = 1,...,N. Then the aj N are as in

the preceding theorem. Let us calculate:
R(1) = lim Ng(ayy) =0,
N -+00
R(2) = lim No(Nla) = p(a}) = o,

R(s) = lim_ N=5Pp(a%) =0, s>3.

Now, we can easily complete the proof by using Theorem 3.12. »
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The next theorem gives a -version of the Poisson limit theorem.

THEOREM 3.14. Suppose thatay n,...,ann € A are Q-independent and
identically distributed for every N € N. Moreover, assume thot

lim Nelad v) =a
Neoo ’

for every s €N and Sy = a1 v +aay +...+ayn. Then

.
R SN S
p=1 VeP(m)},|J|=p

for every m € N.
Proof. R(s) =a for every s€ N, so R(V) =o!’|. u

4. ¢-Gaussian distribution. In this section we consider a consistent
family @ of polynomials which satisfies the following supplementary condi-
tion (cf. Definition 3.3):

(4.1) gy, v = g™ for every V € Po NP,

where ¢ is a fixed number from [—1,1] (see Example 3.7).
The central limit theorem (Theorem 3.13) for this kind of Q-indepen-
dence defines the so-called g- Gaussian distribution p, . with moments

0 if m is odd,
(4.2) fha,o(X™) = { ZVE’Pz(m) gWVlg™  if m is even.

In the sequel we will describe some ¢-Gaussian random variables and find
another useful formula for moments of gy .

Let us recall the definition of a probability system based on the g-defor-
med Fock space (for details see [5]). If H is a Hilbert space, then F(H) =
@, H®™ will be called the full Fock space over H. Here H®® = C(2 is the
one-dimensional Hilbert space spanned by the so-called vacuum vector (2
with ||£2]| = 1. Let ¢ € [—1,1]. Then, for n > 0, we define an operator e
on H®" by

(4.3) péom =1,
and
(4.4) POA®...0f) =Y ¢ fn)®... @ fom)
ocESn
where n > 0, f1,..., fn € H and [(c) is the number of inversions of o € 5y,

ie. (o) = |{(v,w) € Ky x Kp 1 v < w and o(v) > o(w)}|. The operator
P =@, Pq(”) is strictly positive for ¢ € (=1,1) ([7]). We can define the
following sesquilinear form (-,-}; on the set of simple tensors in F(H):

(4.5) (£, g g = (7, Pyg™)
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for every n,m > 0 and £ & H®", g{™) ¢ H®™, The completion of the
linear span of simple tensors with respect to the scalar product (-, -}, will be
denoted by F,(H). Now, we define a state w on the C™-algebra B(F,(H))
of all bounded operators on Fy(H) by
(4.6) W) = (2, A0,  AcBFM).
Thus we have defined the probability system (B(F,(H)),w).

Let C*(f)? = f and
(4.7) C(fHhe..efk)=fe/®. . 8f

forevery fEH, n>0and f1 ®...® fn € H®™. (4.7) defines the so-called
creation operator C*(f) on Fy(H). Its adjoint operator C(f), called the
annihilation operator, satisfies C(f)2 = 0 and

(4.8) C(H(fi®... @)= ¢ HAFMA®. . @fir1®fin®... 8 fr

i=1

forn >0 fi®...9 f. € H®", The creation and annihilation operators
obey the following “g-commutation” relations:

(4.9) C(g)C*(f) — qC™(f)C(g) = (9. /).

The aim of the next lemmas is to show that the distribution of the “po-
sition operator” C{f) + C*(f) is ¢-Gaussian within the probability system
(B(Fy(H)),w) for every f € H.

Define (n)g =1+g+...+q" ! for n =1,2,... We start with

LemMA 4.1. Let C = C(f) for some f € H. Then
0
w((C+CH)" m{
(c+om={x.

where Ay is the set of sequences (i3, ..., tax) with values in {1,*} such that:

O Wiy =1 =174 ==} =k,
) [{F=1 . rgy=1}<|{i=1,...,r 145 =«}| for all v < 2k.

Proof, We have
(4.10) w(C+CHM = Y

'il,...,ine{l,*}

if n is odd,
in)EAn 2 w(C...C") ifn is even,

,,,,,

(2,0 ...C ),

For every sequence {i1,...,4,) the vector Ci»...C% 2 is either zero or a
nonzero multiple of f& for some k € NU {0} (we set f®9 = ). Note that
f®* is orthogonal to {2 for every k > 0. Therefore,

w((C+C™ = 3 (2,0t

(f25:04s00 ) EBa
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where B, is the set of all sequences (i1, ... ,4,) such that Ci» .. .Ci1Q2 = A2
where A # 0.

For a fixed sequence (41,...,i,) define a(r) = [{7 = 1,...,r : i; = *}|
and B(r)={j=1,...,7:4; = 1}| for every r = 1,...,n. In order to prove
our lemma we should show that B, = 0 for n odd and B, = A,/ for n
even. To this end we prove the following three simple statements:

1O Ch 2= A0, A# 0= aln) = B(n).
Let & = C¥ .. . Ch 2 forr=1,...,nand & = 2. If £, £ 0 then &, # 0

for r = 1,...,n or more precisely & = A.f®* where k, € NU {0} and
Ar # 0. From {4.7) and (4.8) we have

(4.11) CFpeF = pBHY k= 0,1,2,...,
0 k=0
Rk __ y
(4.12) CfeF = { (Kl FI2F5D itk > 0.

Hence, 4, = = if and only if k. = k._; + 1, and 4, = 1 if and only if k, =
kp.y—1, for every r = 1,...,n. Thus, a(n) = #(n) because ky = k, = 0.

2. a(n) = B(n) = Cin...C12 = A2.

If % ... C" 42 5 0 then from a(n) = B(n) we derive that &, = ko =0
as in the proof of statement 1.

3.0 ...CR=0«3r=1,...,n:a(r) < B(r).

Necessity. Let rg = min{r = 1,...,n : & = 0} — 1. Then {41 =
Ctro+1€,, = 0 and &, # 0. Because kerC = Cf2 and ker C* = {0}, we
conclude that ,,41 = 1 and &,, = A2 where A # 0. Statement 1 implies
alry) = B(ry), hence alrp + 1) < B(re + 1).

Sufficiency. If rp = min{r = 1,...,n: a(r) < B(r)} — 1, then a{rg) =
B{ro) and afrg--1) < B(ro+1). Obviously a(ro+1) = a(re), thus B(re+1) >
B{ro). This implies that i,,41 = 1, B(ro -+ 1) = B(rg) + 1 and a(ro) = B(ro)-
From statement 2 and (4.12) we conclude that &, = A2, &1 = C(A2)
=9, and consequently &, = 0. a

In the next lemma we will need the following disjoint union decomposi-
tion:

k
(4.13) A= 4,
g=1
where
(4.14) A = (i, ..., iak) € Ap tig = ... = iy = #,daq1 = 1}

fors=1,...,k We also set A = for every k € N.
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REMarRK 4.2. Let ke Nand s = 1,..., k. Then there is a one-to-one cor-
%

respondence between elements of Aiﬂl and | J,_,_4 A,(:): for (iy,...,%2k+2) €
Ag:_gl we define
y * fori=1,...,5—1,
TERE
! g forl=ws, ..., 2k
Clearly, (if,...,15,) € Ufﬁs_l A,(:).
Conversely, for (1f,...,i,) € U’:_._s_l Ag) we set
* forl=1,...,s,
=41 for { =8 +1,
i forli=s+2,...,2k+2.

LeEMMA 4.3. Suppose that k, s, (41,...,92k42) € Agc21 and (3,. .., th,) €
Ur_,_, A" are as in Remark 4.2. Then
Chawta O = (s), ]| f]I2C ... CH 0.
Proof From (4.11) and (4.12) we have
g times
Cimr | Q= Ot G Tm . O o= Oitts | Clasa (95
= (SlallfIP™se . giesa g2
s—1 times
= (8)g|lf]|2C 22 ., . Cls+2 0% ... C* 2
= (s)gllf?C* ...C"02. w
LEMMA 4.4. Let (i1,...,02%) € A and let Pliy, ..., 40) be the set of

2-partitions {(v;,w;)}j=1,..x of Kar such that Ty, = %, Gy, = 1 for j =
1,... k. For everyV € P(i1,...,12k) define an operator By = Bag ... By By,

where
B, =Y Yu=u,
b Gj qu = Wy,
and C; = C(f;) for some orthogonal system fi,..., fu of vectors from M
such that || ;|| = |Ifll fori=1,...,k. Then

(4.15) C...Cie= Y By
VEP (i1, yizn)
Proof We use induction with respect to k.
We have Ay = {{x,1)}, P(x,1) = {V}, where V = {(1,2)} and By =
C1CY. Obviously CC*2 = || f[i212 = C,C} 12, which proves (4.15) for k = 1.
Suppose now that (4.15) holds for every sequence of length 2k for some
k€ N. Let {21,...,92%42) € Agt1. (4.13) implies that thereis s =1,..., k+1
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such that (¢1,...,%2642) € Ascﬂzl. Forr =1,...,s, denote by P{") the set of
all partitions V from P(i1,...,42k42) such that (r, s+ 1) € V. Clearly,

s
(416) IP(?:]_, sy Z-gk_!.z) - U P(r)
r=]

and P AP = pfor r # ', Let V € Plia,...,42x42). Then V € P for
some r = 1,...,s. Assume that V ={Vi,..., Viy1} where V; = (v;,w;) for
j=1,..., k-1, and vy < ... < Upy1. We define the partition 7,V of Kax
by T,V = {V{,..., Vi} where V] = (v}, w}) and

vy ifj<r, o
) . i —2 f
(4.17) 'u;-: virr—1 ifr <5 <s, w;:{wj ffj,ir’
vy ~2 ifj 2> s, wiypn—2 dj=zr,

for j = 1,...,k. Observe that T,V € P(i},...,i5;) where (i],...,15,} corre-
sponds to (41, ...,%2k+2) as in Remark 4.2. To see this it is enough to notice
that (4.17) implies
v | if < s,

YiT Vv -2 52
and the definition in Remark 4.2 gives
y ") if v} < s
Byt 5 7 . 7
vg iv§+2 if ’Uj > 8

Similarly one can show that 1/, = 1 for every j = 1, ..., k. It is easy to see

}:iuj =% foreveryj=1,...,k.

that 7, is a bijection between 7;(’") and P(i,. .., ih). Now we can calculate:
By = Bapra. .. BesaCrCt...Cr...CI0

= Bopy2.. Bo2Cr(fe® ... @ [ @... @ f1)

=¢" || f|*Bakt2- .- Bet2(fs ® - . @ fri1 @ fr1®...® f1)

= ¢ "||f|*Bak+2 - - - Bow2Bs ... BryrBroy ... B12 = ¢ 7| f|* B 2.
Thus,

Y e=3 ¥ o=l Y Bwne

vep(ill"':i2k+2) r=l VG’P(") r=1 Wep(i;r"»i{zk}
=(s)lfI? Y. Bw@=(s)lfIIPC ... Che
WEP (i -0y, ) :
where the last equality follows from the inductive assumption. Hence taking
into account Lemma 4.3 we arrive at
Byf2 = (et M0 w
VEP(i1,... iak+2)

ot Bt pmiii g et i ety e s e il e
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LEmMMa 4.5. Given V € Py(2k) let By be the operator determined in
Lemma 4.4. Then

(4.18) By = ¢ M| f|I** 0.

Proof We apply arguments similar to those in the proof of Lemma 2.16.
Let us start with the case where VT # V. Then there is v € Xy, such that
(v,u+1)€V, and B, = C and Byy1 = Cj for some j = 1,...,k. Hence

Bv.!? = sz Ce BU.},QCjO;BU_]_ ...BL2
=¢Bak ... By42CiCiBy_1... Bi2 + ||f|*Bax ... ByyaBy_y ... B1 2
=|flI?Bak ... BysaBy-1 ... B1 2.
The second equality comes from (4.9} while the third follows from the fact
that fi,..., fi are orthogonal. Repetition of the above argument leads to
By = | {4 Byr 0.

The proof is thus finished when VT = {J. Otherwise, Lemma 2.13 shows that
we can find j, k € J such that v; < v, < w; < wy and vy + 1 = w;. Thus,
Bs = Cf and B,y = Cj for some s € Ky(yr). The relations (4.9) lead to
BvT..Q = Bd(VT) e BB+20_1‘O;B5__1 .. B]_Q
= qu(vT) [ BS+QG;:GJ'BS_1 o Bl.Q = qBvTo-l n
where oy is as in the proof of Lemma 2.16. The above procedure repeated
i(V) times yields (4.18), =

As a corollary we show that moments of the position operator are the
same as in (4.2).

THEOREM 4.6. Let f € H. Then
(419) © w(C T = HP T .

VEP;(2k)
Proof. It is easy to see that
P2 = | Pl i)
(ila"'7£2M)E-Ak
Thus, (4.19) follows from Lemmas 4.1, 4.4 and 4.5. m

REMARK 4.7. Observe that for ¢ = 1 one has w((C(f) + C*(£))**) =

Ry || f||** where Ry is the number of all 2-partitions of Ky, By induction we
can prove that

Re=(2k-1=1.3-....(2k—1)

for k =1,2,... In this way, the moments of the normal distribution can be
obtained. For g = 0 we have w((C(f) + C*(f))?) = R2| fi|2* where RS is
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the number of all admissible 2-partitions of K. The R{’s are the so-called
Catalen numbers (see [8]):

k
RS = 'k_Jlr’i(z;) = w(kil)!l‘B"”'(%_l)
for k = 1,2,..., equal to the moments of the Wigner distribution with
density
flz) = ;2; 1 — 2211 (2)
(see also [17, 13]).
COROLLARY 4.8. Let g € (—1,1). Then

2 2
R

and the density fy of the measure jig1 18

Vs

o0
—Lsing [T (1 - g1 — ge 22
ﬂ' n=1

(4.20) Jo(m) =

where © = ﬁcoaﬁ, 0<h<m.

Proof. Suppose that T, (z), n=0,1,2,..., are polynomials which sat-
isfy the following recurrence relations: ;
Tﬂ(x) =1, Tl(x) =z,
2T (2) = Tngr(2) + ()gTa—i(z), m=12,...

Let v, be the measure with density f,. In [1] it is proved that the set {7, }52 ¢ “
is complete and orthogonal with respect to 4. More precisely, i

(4.21) { T (2) T (&) dig () = (n)g!6n,m
R
for n,m =0,1,2,... and {n)y! = (1)4(2)q...{n)q. Let

1 2 2
Yn(T) = an(m)1ffq(m)a T e [— ﬁ’ﬁ]

Relations (4.21) imply that {,(z)}22, is an orthonormal basis in

2 2
= L* __,___]’ dm)
Ho ([ VI-4a' Vi—q
where dx denotes the Lebesgue measure. Define
(4.22) P = 4/ (n+ Dg¥rt1, n=0,12,...,

forn=20,

(4'23) In = { \/(n)q w1 form=12,.., ) ]
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Then {, I* are bounded operators on Hp and I* is adjoint to I. Moreover,
they satisfy the g-commutation relation

0* —gl*l=1.

The correspondence

> ——
§ v(”)q!

defines an isometric isomorphism between Hy and F,(C). The operators I,
I* correspond to C'(1), C*(1) under this isomorphism. Thus, the moments of
C(1)+C*(1) are the same as the moments of [ +* in the probability system
(B(Ha),wq), where wy(T) = {thg, TWo)n, for T € B{Hp). By Theorem 4.6
the operator C(1} + C*(1) has ¢g-Gaussian distribution, as does I 4-I*. But

12" n=0,12,...,

(L4 1Y () = \/‘%1 (n+ 1)gnia(z
mn— 1 falw) + \/WTM VF@)
:\/ﬂ“(“ M+Tn+1)\/f_w¢n

wo((l +1")")

= (o, (L +1)"0)ny = | 2"ho(z)? do = 2" f, () dex = { 2™ dug ().
Hence v, is the g-Gaussian distribution. =

The following theorem gives ancther expression for moments of the g-
Gaussian distribution.

THEOREM 4.9. Suppose f € M is such that | f|| = 1. Then

1 r+1 Thw 141

S 3 Y ra)alrade - (e

ri=] rg=1 PRe=L

(424)  w((C(N+C (N =

for everyk=1,2,...
Proof Let ke N, s=1,...,k and

md= S (nC0w . .cha),
(‘il,...,igk)EAE:)

where Agcs) is as in (4.14). Moreover, set mgf) = 0 for every k € N and s < 0.
Lemma 4.3 and Remark 4.2 imply that for every k and s =1,...,k + 1 we
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have

mk+1 (8)q Z m

r=s—1
Lemma 4.1, (4.13) and the above recurrence formula lead to

w((C(f) + C* (1))

k k

Z mi = Z (r1)q Z m”)

ry=L ry=1 ro=ry—1

k-1 1

k
ri=1 rg

=ryp—1 Th™=Tp—1—1

(rp—1)gm{™

(ri)a(ra)q - -

where (r), = 0 for v < 0. By changing the order of summation we get

w({C(f) +C*(f))”°)

-1 ra+1 rol

S SHED SN 3 SR

rp=eh4-2 ryo1=—k-+3 ra=0 ry=1

(rx)

o AThot)gmy

e+l rg+1 7a+1

DD SIS D SR

T';c_"l Tig— 1'—1 ro=1 ri=1

(r2)g(ri)e-

Here, we have written (ry), instead of m(r") because both expressions are
equal to 1 for 7y = 1. If we write ry mstead of rjp1—j for j==1,...,k in the
above formula, then we obtain (4.24). =

5. Concluding remarks. To conclude our paper from a probabilistic
point of view, let us discuss the convolution induced by the notion of G-
independence.

Let M = {u: C[X] — C: p is linear}. Then M contains the set of
probability measures on R, but in general we do not assume that elements of
M are positive. Given puy, ptp € M one can define a “Q-product distribution”
p1 o pg on C[Xy, Xp] = C[X1]*C[X>], where A B denotes the free product
of *-algebras A and B. To this end let us remind that C[X1, X2] is spanned
by words of the form X7 ... XP", wheren €N, i1, ..., %, € {1, 2}, 45 # 4511
and p; 2 1. The partltmn associated with such a word is ¥ = {W,Va},
where Vi = {j = 1,...,n:4; = I} for 1 = 1,2. Observe that each V| consists
only of odd numbers or only of even numbers. Now, let

prog ua(1) =1
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and
p1og pe(XP X = > awy ] man (XI5,
WV ke K
where W = {Wileer, s = 1,2for k € K, s = [ if Wy, C V, and
Tk = ZjeWk pj-

Definition 3.3 implies that elements a;,as with distributions pg, up are
(-independent if and only if py og pe is the joint distribution of ay, ap (cf.
Definition 2.3.4 in [19]).

Now, we can define

1 #qQ p2(X?) = u1 og pa({X1 + X3)P)

for every p € N. The element g xg uz € M is called the Q-convolution of
b1, H2. It is an open problem whether this operation is positive, i.e. whether
given any pair of probability measures ui, po the distribution g *g po is
also a probability measure. Equivalently, the problem of positivity can be
stated in the following form: for every pair of probability measures u1, u,
find a probability system with two Q-independent elements a1, a» such that
t4; is the distribution of o; for i = 1,2. So far, we can answer this question
only for the cases listed in Examples 3.4-3.6. The classical case leads to a
construction of the tensor product of algebras, the free case to the reduced
free product, and the case described by 3.6 leads to the so-called Boolean
product of algebras (?).

Another open problem is to find some analytic tools for a proper descrip-
tion of (-convolution. In [18] Voiculescu defined the R-transform which lin-
earizes the free convolution of measures and plays the role of the logarithm
of the Fourier transform for the classical case. In [10] Nica generalized this
construction to the case of g-probability, while Speicher and Woroudi {[16])
did that for the Boolean convolution. It would be interesting to generalize
this congtruction to an arbitrary family Q.
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