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On analytic semigroups and cosine functions
in Banach spaces

by

V. KEYANTUO ({PuertoRico} and P. VIETEN (Kaiserslautern)

Abstract. If A generates a bounded cosine function on a Banach space X then the
negative square root B of 4 generates a holomorphic semigroup, and this semigroup is the
conjugate potential transform of the cosine function. This connection is studied in detail,
and it is used for a characterization of cosine function generators in terms of growth
conditions on the semigroup generated by B. The characterization relies on new results
on the inversion of the vector-valued conjugate potential transform.

Introduction. In a Banach space X, consider a closed linear operator
A which generates a cosine function C{-) (see e.g. Fattorini [6] or Goldstein
7] for more information about cosine operator functions). Then A generates
a holomorphic semigroup 7(-) of angle 7/2. The semigroup and the cosine
function are related by the abstract Weierstrass formula

Ttz = Lt S e/ EC(NEdr, >0
0

On the other hand, assume that A generates a Co-semigroup 7'(-). T(-)
is uniformly bounded, then one can define the fractional powers (—4)* of
—A for 0 < & < 1. We restrict ourselves to the case o = 1/2. First define
the operator J with domain D(J) = D(4) by

Jz =;}§,\ 120y = A)N(~Ajzd), € D(J).
0
Then J is closable and, by definition, (—A)/? := J (see e.g. Yosida [15,
p. 260]).

The operator B := —(—A)"/? is the generator of a holomorphic semi-
group Tz(-) which has an explicit representation (see {15, p. 268]):
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S e_t /(4T)T(’7‘)CB ;—3'/—2,
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2./ H
Combining the above facts, we see that whenever A generates a uniformly
bounded cosine function C(-), the negative square root of A generates a
bounded holomorphic semigroup of angle /2 given by the formula

Te(t)z = zeX, t>0.

2Tt
(1) Tﬂ(t)ﬁ,’ = ; (S) mC’(’r)mdﬂ", ze X, t>0.

It is our intention in this paper to study this connection in more de-
tail. Tn the first part, we introduce the following general transformation: if
F:(0,00) — X is measurable, and if the integral {o” (| F(7)]|/(t* 4+ 7)) dr
converges for all ¢ € (0,00), then we define

o0

citt)== |
0

m_f(’r) d’r, te (0,00),

and we call Cf the conjugate potentiol transform of f. We provide a vector-
valued inversion theory for the conjugate potential transform in the spirit of
[13], using Widder’s results on the inversion of convolution transforms [14].

In the second part we consider the relationship (1) and prove that Tp(-)
has the semigroup property iff C'(-) satisfies the cosine functional equation.
A similar relationship was studied by Dettman [4] in connection with the
Cauchy problem. Our approach is operator-theoretic.

A remarkable feature is the following: by using the sine function S()
associated with the cosine function, one can recast formula (1) in the form

27 ¢
(2) Te(t) = = 5 Prp ds(r), =zeX.
Now, if we do not assume that A generates a cosine function but rather
that it generates a sine function which is Lipschitz-continuous in the strong
operator topology, then we prove that the representation (2) implies that in
fact A generates a strongly continuous cosine function. This is to be com-
pared with Arendt [1] where a similar phenomenon occurs in the relation-
ship between resolvents and integrated semigroups. More precisely, Widder’s
theorem holds for general Banach spaces only in an integrated form while it
holds in all Banach spaces in the usual form for resolvents of densely defined
linear operators.

The results of the first section can then be used to recover C(:) from
Tg(+) in the representation (1). We provide an explicit representation to that
effect. Another interesting fact is that since the transform of Section 2 was
studied for general vector-valued functions, it can be used, along with the
inversion formula, to relate the solution of the second order Cauchy problem
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associated with A to that of the first order Cauchy problem associated with
the negative square root of A.

1. Inversion of the conjugate potential transform. If f : (0, o0} —

X is measurable with §37(|| f(£)]|/(s? + £2)) dt < co for all s € (0,00) then
we define

Cf(s) = % F&)dt, s e (0,00).

O e B

5% 4 t2

In this section we give an inversion formula which recovers any bounded
continuous function f from the transformed function Cf, and we characterize
those functions F : (0,00) — X which can be represented as

Fls)=2 | 52— dd(t), s€(0,00),

5 +t2
where ¢ : (0,0¢) -+ X is Lipschitz-continuous.

Before we state the inversion formula we introduce some notations. For
2 CR open and f: 2 -+ X differentiable, we set

Df(s)=f'(s) and Af(s)=sf'(s), sef2
For n € N, we denote by F,, the polynomial

k=0
and put Eg(s) = 1. If f € C*" then we put
EJ[f] = Eo(D)f and EZ[f] = Ba(4A)f.
With these notations the inversion formula takes the following form:

THEOREM 1. If f :

0,00) — X is bounded and continuous then, for all
€ (0, 00),

A
Jim ECS(s) = f(s)-
This theorem will be proven using Widder’s results on the inversion of
convolution transforms (see [14] and Theorem 2). This is possible because the
operator C can be “translated” into a convolution transform in the following
way:
If £ : (0,00) — X is any function then, for u € R, put I'f{u) =

fle"). It
f € Lo ((0, 00), X) then



140 V. Keyantuo and P. Vieten
2T e
= — fle)de
T(Cf)s) =~ (S) prer L)
9 & U '
== 5 [ du= K If(s),
where the convolution kernel K € L1(R) is given by
2 et
K =tmriy

The convolution transform g — K * g can be inverted by using the following
theorem, which is a special case of [14, Chapter 7, Theorem 7].

THEOREM 2. Let K : R — R be a measurable funciion with the following
properties:

(i) The bilateral Laplace transform of K converges in a strip symmetric
about the imaginary azis.

() F(s) = {7 _e K (u)du has no zeros in a sirip |R(s)| < o, and
E(s) = F(s)™! can be written as

~ S
B =] (1- a),
k=0
where the numbers ax € R\ {0} are such that limy 00 Yo 1/ar = 0 and
Y heo 1/ef < oo.
Ifg:R - R is bounded and continuous then K x g € C*(R), and, for
all s € B,

s 11 (1= )<=l =000,

We next show that the kernel K (u) = 2r*e%(e** + 1)~ satisfies the
assumptions of the foregoing theorem. The bilateral Laplace transform
o o w

—su 2 —su_ €
F(S)m S [ K(U)d’UJ:"?; S e ? Wdu
—oo -

of K exigts in the strip |R(s)| < 1, and, by substitution,

27 ¢ 1

Hence F has no zeros in the strip |R(s)| < 1. Moreover, by [8, p. 484],
E(s) = F(s)™* can be written as

-1 () - 1L (-2

k=0 k=0

E(s) = cos(sm/2)
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where ar = k+ 1 if k£ is even, and g, = —k if k is odd. Moreover,

nh_}n;azak—o and kzo — < 0.

Hence K satisfies the assumptions of Theorem 2. Since
E(s) = lim E.(s)
=00
we can use Theorem 2 for the proof of the following propaesition.

PROPOSITION 3. Let g : R — X be bounded and continuous. Then Kxg €
C=(R,X) and, for all s € R,

Jim BPIK + g)(s) = g(s)-

Proof We first consider a real-valued bounded and continuous function
g : R— R. Since K satisfies the assumptions of Theorem 2 it follows that,
for all s € R,

(4) lim B2 K *g](s) = g(s).

In order to prove the conclusion for X-valued functions we make the follow-
ing observations:

(a) Let K, = EP[K] for n = 0,1,2,..
proven that

. By induction it can be easily

e(2n+1)u
n e L 1)2ntl>
where ¢, is a positive constant depending only on n. In particular, K, is
positive for all n.
(b) Let K, denote the Fourier transform of K. Then, by (3),
== ey B (iw)
"~ cos(iwn/2)

K, (u)=

Consequently, S(fw K,(t)dt = K(0) = 1. Since, by (a), K, is positive we
have || K| L, = 1.

(¢) Since K, belongs to Li1(R) for all n € N it follows that
EPIK +g] = EF[K]*g=Kn*g.

Ifg: R — X is bounded and continuous then K * g belongs to C® (R, X).
For u,s € R define 75(u) = ||g(s) — g(s -+ u)|. Then 7, : R — R is bounded
and continuous. So we may conclude from (a)~(c) together with (4) that
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limsup ||g(s) — 7 [K = g](s)]|

TT— 00

= limsup H OSO Kn(u)(g(s) — gls —u)) duH

=00
< lim | Kn(u)rs(~u)dt = lim Knx7,(0) =7(0) =0.

In order to deduce Theorem 1 from Proposition 3 we note that N AF) =
D(I'F}if F € CY((0,00), X), and

(5) I (EZ[F)) = E7[T'F]
for f € C**((0, 00), X).
Proof of Theorem 1. Let f : (0,00) — X be bounded and continuous.
Then F = Cf belongs to C*°((0, 00}, X}, and by (5),
D(BR(F)) = BD[TF] = B [K = ).

Since I'f : R — X is bounded and continuous we can apply Proposition 3
to I'f. Hence

lim. BA(FI(s) = lim T(B[F])(log )
= lim BEP[K « I'f](logs) = I'f(logs) = f(s)
for all s € (0,00). w

In the following section we need the injectivity of C on Ly ([0, 00), X).
Therefore, we prove the following corollary to Proposition 3.

COROLLARY 4. Let f € Lo ([0, 00), X). If Cf =0 then f =0.

Proof. Since I' : Loo([0,00), X) — Lo (R, X) is an isometric isomor-
phism, and I'(Cf) = K = I'f for f € Lo([0, 00}, X), it is sufficient to prove
that K g = 0 implies g = 0 for g € Ly (R, X). If K % g = 0 then, for all
hely (]R),

: 0= (Kxg)sxh=Kx(g*h).
Since g*h: R — X is bounded and continuous, Proposition 3 implies that
o0
0=gx*h{(0)= S g()h(~t)dt for all h € Ly(R).

— 00

Consequently, g = 0. w

.The inversion formula in Fheorem 1 is the key for a characterization of
those functions F : (0, 00) -+ X which have a representation
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F6) = 2§ o, s 0,

where ¢ : [0,00) — X is Lipschitz-continuous. Our next task is to state and
prove such a characterization. To this end, we need some more notations,
and we recall some facts about vector-valued Lipschitz-continuous functions,
which may be found in [13, Chapter 1, Section 3].

For Lipschitz-continuous functions ¢ : [0,00) — X we introduce the
Lipschitz norm

©) el = sp { L =200 0 << o).

By Lip([0, 00), X} we denote the space of all Lipschitz-continuous functions
¢ : [0,00) — X with ¢(0) = 0. The space Lip([0, co), X) supplied with the
norm defined in (6) is a Banach space. Moreover, we have the following
proposition (see e.g. [13, Proposition 1.3.5]). .

PROPOSITION 5. The mapping which assigns to ¢ € Lip([0, 00), X) the
operator Ty : L1([0,00)) — X defined by
Toh = | h{t) do(t)
0
is an isometric isomorphism.
Ify: 2 — X, 2 CR, is any function, and if 2* € X*, then z* o) stands
for the scalar-valued function given by z* o 14(t) = z*(¢(t)), t € £2.

THEOREM 6. Let F : (0,00) — X be any function, and let M be o positive
real number. Then the following two assertions are equivaelent:

(i) There exists ¢ € Lip([0, 00), X), with ||¢|luip < M, such that, for all
a>0, :

) F6) = | i 900
(i) F € 0((0,50), X) and

®) sup B[ < M.
neNU{T}

Proof. (i)=(ii). Let ¢ € Lip([0, c0), X') have Lipschitz norm equal to
M. Then F defined by (7) belongs to C*((0, 00}, X). In order to prove (8)
it is sufficient to show sup,cy | B2 [z 0 Fllle < M for all z* € X* with
lz*]] < 1. If * € X* has norm less than or equal to one then z* o ¢ is a
scalar-valued Lipschitz-continuous function with |\z* ¢ ¢llLip < M. Hence,
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z* o ¢ has a Radon-Nikodym derivative fu» with || foe

oo < M. Moreover,

for s € (0,00),
* — _?_oo s *O
2* o Fls) = - é Frp dE o))
2T s
e mfm*(t) dt=ch;"(3)-
T (S] 5% 442
A

Therefore, we have to show || E
an immediate consequence of

|EZ I (C fo Moo = I1Kn # Tfar oo < 1 Enllz, | T farlloo < M.

(ii)=>(i). Let F & C°°((0, o0}, X) satisfy (8). Then for n € N U {0}, the

operators T), : L1{[0, 00)} — X defined by

oo

T.h = | h(t)EL[FI(t) dt

)
each have norm less than or equal to M. We claim that the family (T7,)
converges pointwise to an operator T : L, ([0,00)) — X with ||T'] < M. To
gsee this we rewrite T,k in the following way:

[Cfer]lleo £ M. But by (5), this estimate is

Toh = Sht)EA 1(t) dt

g e*h(e*)ER [F(e*) du= | Iih(u)BE[IF)(x) du,

where I7 : L1([0,00)) — L1(R) is given by I'th(u) = e*h(e*). Since I7 is an
isometric isomorphism it is enough to show that the operators S, : L1 (R) —
X given by Spg = S g(w)EZ[I'F|(u) du converge towards an operator
S Ia(R) —» X. To see thls, take s € R and consider K,(u) = K(s — u).
Then, by Proposition 3,

[« o]

Jim SpK, = Lm | K (s —u)EPIF|(u)du
oo

= lim K« EP[TF|(s) = lim K, x I'F(s) = T'F(s).

Hence, Sng converges for all g in the subset £ = {K, : s € R} C Li(R).
We know from (3) that the Fourier transform of K has no zeros. Hence, by
Wiener’s Tauberian theorem [15, Theorem XI.16.3] it follows that x is total
in [1(R). In addition, the family (S,) is bounded, since ||S,| = || Tn|| < M.
Hence, by the uniform boundedness principle, (S,) converges pointwise to
~an operator § : L1(R) — X. In particular, SK, = I'F(s). Consequently,
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(Tr.) converges pointwise to an operator T': L; ([0, 00)) — X with ||7']| < M,
and S and T are related by Th = S(I' h).
Now, by Proposition 5, there exists ¢ € Lip([0, co), X), with ||¢||Lip <
|IT|| < M, such that T has a representation
o0
Th= | h(t)dé(t), h € L1([0,00)).
0

Let
ks(t) = ; 52 + 2
Then ik, (u) == Kiog s(1). Consequently,
2 o
F(s) = ['Fllogs) = SKiegs = 8(Tiks) = Tk, = - { = v
0

2. A characterization of uniformly bounded cosine functions.
Let us first recall the following definitions: A mapping T'(-) : (0,00) — L(X)
has the semigroup property if

| T(t+u) =TT (W), tu>0,
and T(-) is a Cp-semigroup if, in addition, T'(-) is strongly contimious in
[0,00) and T(0) = Id. A mapping C(-} : R — L{X) satisfies the cosine
functional equation if
(9 CH)Cu) =L[Ct+u)+C{t-u)], tuclR,

and S(-) : R — L(X) satisfies the sine functional eguation if S is strongly
measurable with

(10)

I.\Jh—l

u
=={[St+o)+8(t-0)do, tuck
0

If, in addition to (9), C{(-} is strongly continuous with C(0) = Id then C(-)
is a cosine function. 8(-) is a sine function if, in addition to (10), S(-) is
non-degenerate, that is, S(t)z =0 for all t € R implies x = 0.
If C(-) is a cosine function, then the generator A of C(-} is defined by
DAY ={zec X :CHz e C} R X)}, Ar=C"(0)z forze D(A).

The generator A of a sine function §(-) is given by the condition that =
belongs to D(A) if and only if there exists y € X such that, for all 7 € R,

(11) S(q*)cc=m+§(¢—cr)5(cr)ydo'.
0

In this case Az = y. Note that y is uniquely determined by (11) since
8(-) is non-degenerate. If we assume that the sine function is exponentially
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bounded, with densely defined generator, one can provide equivalent defini-
tions using the Laplace transform (see [9] and [12]).

If ¢ : R -+ L(X) is strongly continuous and even, and if §: R — L({X)

is defined by

i

St ={c(rydr, teR,

0
then it follows by straightforward calculations that C(-) satisfies the cosine
functional equation if and only if §(-) satisfies the sine functional equation.
Consequently, C(:) is a cosine function if and only if §(-) is a sine function.
In this case the generators of C(-) and 5(:) are the same.

Let A be the generator of a bounded Cy-semigroup T{-}. Then, by [15,
Chapter 1X.11] (see also the Introduction), we can define B = —(—A}/2,
and B is the generator of a bounded Cy-semigroup T'g(-). If A generates a
cosine function C(-) then we have the fundamental relation (see the Intro-
duction)

(12) To(t) =2 | -t sCr)a

BN T T 5 B+ TV

and if S(:) is the sine function generated by A then

(13) %mmﬁT_i—wm.
L

Unless otherwise stated, integrals involving operator-valued functions will
be understood in the strong operator topology benceforth. Qur main goal in
this section is to show that the converse of the above assertion holds. More
precisely,

THEOREM T. Let A be the generator of a bounded Cly-semigroup and let
Tp(:) be the Co-semigroup generated by B = —(~A)Y2. Then A generates
a bounded cosine function if and only if there exists a strongly Lipschitz-
continuous function S(}:[0,00} — L(X) such that

257 ot
14 =21 -2 _
(14) Ts(t) Wgt$+ﬂdS&L t> 0.

Before we prove Theorem 7 we need a couple of lemmas and propositions,
and we make a few remarls.

REMARK 8. (i) If F : R — L(X) is a strongly Lipschitz-continuous
function then, as a consequence of the wniform boundedness principle, F
is Lipschitz-continuous with respect to the operator norm. Therefore, it is
enough to prove Theorem 7 for Lipschitz-continuous sine functions,
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(ii) If the densely defined operator A generates a Lipschitz-continuous
sine function S(-) then A generates a bounded strongly continuous analytic
semigroup T'(-) given by

S e“Tz/(‘“)TS('r);E dr
0

(15) T@m:EE%ﬁ

(see Arendt—Kellermann [3]). If we proceed as in the Introduction, we find
that the semigroup T'z(-) generated by the negative square root B of A has
the representation

(16) %@=%Mﬁﬂ §(r)dr.
0

It is well known that there are operators that generate sine functions but
do not generate cosine functions (see 3], [9] and [5]). Proposition 10 below
states that the semigroup property corresponds to the cosine functional
equation via (12) and to the sine functional equation via (13).

(iif) In the case where X has the Radon-Nikodym property (see [13] or
[1]), the assumption on S() implies the existence of a derivative S/(\) =
C(-) which is bounded. The cosine functional equation for C(-) combined
with strong measurability implies that C(-) is strongly continuous (see [6,
Theorem 1.1, p. 24] or [11]; these results extend the corresponding facts for
the semigroup functional equation [10]).

For gur further investigations it is useful to introduce the Poisson kernels

1 3

B = sovar

§>0, celk

We note that the family (P,) has the following semigroup property:

(17) Ps*Pth.g-{-t; s,t>0.
If f is bounded and measurable on R then we let
o0
Pft)= | RP(r)f(r)dr, teR
— 0

We note that Pf == 0 implies f = 0 if f € Lo (R, X) is even. This follows
from Corollary 4 since, for even functions f € Lo (R, X),

PI(E) =2 | P(r)f(r) dr = (Cflfo,0))(B)-
)
In the sequel we write Q; = —P}.
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LeMMA 9. If f : R — X i3 odd and Lipschitz-continuous, and if

(18) OSO Q:(7)f(r)dr =0

then f(r) =0 forallT € R.

Proof. It is enough to prove the lemma for scalar-valued functions. Then
the vector-valued case follows by applying the Hahn-Banach theorem. Let
f be an odd, scalar-valued Lipschitz-continuous function with the property
(18). Then f has an even, bounded Radon-Nikodym derivative f'. By partial
integration it follows that

for allt >0,

= S @e(m)f(r)dr = S Px(T)j”(T) dr.

Since the operator P is injective on even functions we conclude that f' = 0.
Consequently, f is constant. But a constant function which is odd must
be 0. m

ProposiTION 10. Let T'(:)
continuous.

1 [0,00) — L(X) be bounded and strongly

(i) If C() : R — L(X) 1s bounded, strongly continuous and even, and
if C(-) and T(-) are related by

oo

T(#) == | d

_mmC(T)CET, t >0,

then T'() has the semigroup property if and only if C(-) satisfies the cosine
functional equation. Moreover, T(0) == C(0).

(i) If 8() : R — L(X) 4s strongly Lipschitz-continuous and odd, and if
S(:) and T(-) are related by

100
"';;S t2+T2 >0,

then T(.) has the semigroup property if and only if S(-) satisfies the sine
functional equation.

Proof. We first prove (ii). By partial integration it follows that
oo o0
T(t)= | P(r)dS(r)= | Qu(r)S(r)dr.
-0 —00

Consequently,

T(s)T(t) = DSO OSO Qs(a)Qt(,r) 8(0)8(r) dr do.
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The semigroup property of the Poisson kernels gives

Qstt(T) =
Since S and ), are odd it follows that

o0

| Qurel0)S(e) do

(Ps * B)(7) = (Qs ¥ B)(7).

L Prgalr) =

T(s+t)=

= | | Qe-nP(r)dr5(o)de

| | Qo)Pn)S(e+7)drdo
=4 |

—00 — 00

1
Qs (O’)Pt(T)é"[S(O' +7)+ S{o — 7)] dr do.
Integrating the right hand side of the above equation by parts gives

Tis+t)= | | QS(U)Qt(T)(%S[S(a+g)+5(a— @)]dg)deg.
0

— 00 00

If 5{-) satisfies the sine functional equation then it follows directly that 7'(-)

has the semigroup property in {0, co). That T(-} has the semigroup property

in the closed interval [0, co) follows from the strong continuity of T'(-).
Conversely, if T() has the semigroup property then we obtain

oo oD

P le (cr)@() S(0)S(r)drde
MT ogo Qs(0)Qu( 'r)( § S(o + o) +Sa~g)}dg)d7dg
-0 —OQ 0

for all 5,¢ > 0. Since the functions

{o,7) — E[S(o +0)+ 8o —g)]de and (o,7) > S(a)S(r)
0

are odd in ¢ for 7 fixed, and in 7 for o fixed, it follows from Lemma 9 that

S(0)(r) = 5 | [8(o +2) + S(o - o) da

& e

whence S(-) satisfies the sine functional equation.



150 V. Keyantuo and P. Vieten
(i) Define S(-) : R — L{X) by
t
sty ={c(r)
0

Since C(-) is even it follows that S(+) satisfies the sine functional equation
if and only C(.) satisfies the cosine functional equation. Moreover,

T(ty= | P(r)C(r)dr= | Pr)ds(r).

Hence it follows from (ii) that C'(-} satisfies the cosine functional equation
if and only if T'(-) has the semigroup preperty.
Moreover, since the family of Poisson kernels (P} is an approximate
identity it follows that
o0
T0) = t1_1>1(§l+ T() = tljf(l)'l-*- S PO

T)dr = C(0). m

If A generates an integrated semigroup U(-) then, for all z € X and
7T >0,

T T

S U{c)xdo € D(A) and U(r)z =T+ AS Ulo)zde

0 0

(see Arendt [1, Proposition 3.3]). If we consider sine functions instead of
integrated semigroups then, by Arendt [2], we obtain the following result.

LemMMA 11. Let S() be a sine function with generator A. Then, for all
zeX and TR,

19) | (r -0)S(0)zdo € D(4),
o

Proof Let 7 € R, » € X and set @, = [[(r — 0)§(c)x do. Then

T

S(t)zr = 8(t)§ (r -

0

S(m)z =724+ A\ (7 — 0)S(0)z do.

[ e e |

o)5(c)z do

o
(r—a){[S
1}

Nlrw—‘

(t+ o) + St — o)z dodo

Lot t—or

=51
0
S T—a [ S S{e)z do — S S(Q)mdg] do
=51
0

Nlp—l

t t
t-+o
T—0) S S{e)z dodo.

t~a

l\:ll—l

icm

Analytic semigroups and cosine Sfunctions 151
It follows that
d 17
(20) 750 =S {7~ )S(t+0) - St — o))z do.
0

In particular, 8'(0)z, = z,. From {20) we infer

2 sz, = ET(TH— )8(0)z d L 5
7 =3 t a)S(o)m Tty § (r —t+0)S(o)zdo,
whence
42 1 t+T t—7
7 S(ta, = 5[ § S(o)zdo — rS(t)z — § S(¢)do — TS(t)m}
1 tr
=3 S S(o)zde — 75(t)z = [S{7) — 7S (D).

t—
Therefore,
t

Stz =t

0

- 0)58"(0)zr do + £t (0)z, + S(0)z,

t
= toe + |t~
0
Consequently, =, € D(A) and Az, = S(7)z —Tz. =
PROPOSITION 12. Let B generate a Cy-semigroup Tg(-) on X and let A
be the generator of a strongly Lipschitz-continuous sine function S(-). If

)8 (o)[S(1) — 7]z do.

1T ¢
(21) Ta(t) =~ _&WdS(T), t>0,

then B2 = —A.

Proof Tp is infinjtely often differentiable in ¢+ > 0; this follows eas-
ily from the representation (21) (actually, Tg(-) is analytic). Hence Ty (t)z
belongs to D(B™) for all t > 0,z € X, n €N, and

T

B"Ta(t)e = S-Ts(t)e

In order to prove that B? = —A, we use integration by parts combined with
the estimates |[|S(T)z| < M'r|j:o|| and [[{; S(e)zde|| £ M72||z|| for some
namber M > 0, and the fundamental formula of Lemma 11, equation (19},

for sine function generators:
o 9

=1 SR dS(r)e

dz
BTg(t)z = —5Ta(t)e
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o] dz T
= | ~5P(n)d (m+A§ = J)S(cr)a:dcr)
—00 0
o0 d2 r o0 d P S ,
= —A -SDO I 2Pt(T)(§S(O')$dO') dr = Aj)o o (TS (T)x dr
= -4 | Pi(r)dS(r)z = ~ATx(t)s.

—00
Let 2 € D(B?). Then
} — - 2 — . 2 — 2
tgr&_ —ATp(t)x = t£r51+ B*Tg(t)x = 11—13(1)1:% Tp(t)Bz = Bz

Since A is closed and lm,. o+ Tg{t)r = = it follows that z € D{A) and
— Az = B%z. Conversely, if z € D(A) then

00

i *Tp(t)e = — lim AT =—1mAd\ P
t1—1+I(111+B B( o t-i%l+ B(t}m t—lprél“*' __Sm t(T)dS(T)x

ool

= — lim S P,
oQ

-+

(1) dS(T)Az = — tlirg{F Tg(t)Az = —Az.

Consequently, the closedness of B? implies that z € D(B?) and B%z =
~Az.

Now we are in a position to prove the main theorem (Theorem 7).

Proof of Theorem 7. Assume first that A generates a bounded cosine
function €'(-). Then 4 is the generator of a sine function S(-) which is given
by

t
sty =\ c(r)dr.
0
Hence, since C(-) is bounded, S(') is Lipschitz-continuous, and (14) follows
from (12).

Conversely, assume that there exists a Lipschitz-continucus function
S() 1 [0,00) — L(X) such that T(-) and S(-) are related by (14). We
may assume without loss of generality that §(0) = 0. Then S(-) can be
extended to an odd, strongly Lipschitz-continuous function & : R — L(X)
by putting S(t) = —S(-— ) for £ < 0. Then

.= 1 [s,0]
Tg(t) = 5 Py(r)ds(r) = ~ 5 Py(r)dS(T
Therefore, Proposition 10 J.mplies that S(-) satisfies the sine functional equa-
tion. Moreover, if S{tjz = 0 for all £ € R then it follows from (14) that
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T{t)z = 0 for all £ > 0, whence z = 0. Consequently, S {*) is a sine function,
which, by Proposition 12, is generated by ~B2 = A.

It remains to show that S(-) has a strong derivative C(-). Let z € D{A).
Then

t
Stz =t + | (t — 7)8(7) Az dr.
0
Hence S(t)x is continuously differentiable and we can define
¢

Stz =2+ {S(r)Azdr, tek
0

b(z)(t) =

Since S(-) is Lipschitz-continuous we have
(22) 18(@)loo = [|S()zllip < {ISC)Lipllz]-

Hence & : D(A) — Cy(R, X) is a bounded linear operator. Consequently,
9 has a unique bounded linear extension to D(A4) = X. Define C(t)z =
@{z)(t). Then, for every t € I§,

sup [|C(t)z]| < ||S{)Lip-

ll=ll<1
Hence, C(t) € L{X) for each t € R, and C(-) : R — L(X) is bounded and
strongly continuous. Moreover, C(-) is a cosine function, since S(-) is a sine
function, and C(-) is generated by A since S() is.

Combining Theorems 1, 6 and 7 we obtain the following

COROLLARY 13. Let A be the generator of a bounded Cfy-semigroup,
and let B = —(—A)Y? generate the semigroup T(-). Then A generates
o bounded cosine function if and only if there exists M > 0 such that

|BATE()| €M foralln=0,1,2,... andt > 0.

In this case, the cosine function C(-) generated by A is given by

C(t)e = O(—~t)e = lim EATR|()x, t>0,z€X.
n—r
We now provide an explicit description of EA[T5](t). We claim first that
EATg)(t) = pn(tB)Ts(t), where p, is a polynomial of degree 2n. This
statement is certainly true for n == 0, with po(¢)} = 1. For any polynomial p
let us define (Bp){t) = £[p(t) + p'(¢)]. If the statement holds for n > O then

ABZ[T](t) = Apn(tB)Ts(T) = t[Brn(tB)Ts () + pn(tB) BT (@1
= (&pn)(tB)T5(t)-
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Consequently, B2 1 [Tg](t) = pr1(tB)Te(t), where

k=0
is a polynomial of degree 2n + 2 = 2(n - 1),
Secondly, we describe the p,,’s explicitly. Let p,(t) = agnt®™-Fag, -
=+ ...+ a1t + ap. The polynomial p,, is uniquely determined by the equation

= Ea{f [Po}

11!;271_1

2n
(23) B2l =pa(t)e’ = > agt? - z— = Zb;f’
=0 i=0
where b = E;“;E“’z” ;/(I = 7). On the other hand, since A(#!) = It we
have
oC Eﬂ[tl] o0 fil n—1
24 Art) — n — bl I

i=
where ¢; = E,(1)/1!. Combining (23) and (24) we have

I
(25) Z =¢, (=0,1,...,2n
i=
Let o = (ag,...,a2,) and v = (cg,...,c2n)- Then (25) may be written as
Aa = ~, where
1 0 . 0
1 1 0 0
/2 1 10 - 0
/6 1/2 1 1 0 0
A= .
1 1 0
\ . 1 10
/@en) -~ . . . ] 1)
Cousequently, o = A1y, where
( 1 0 . 0
-1 1 o - 0
/2 -1 1 0 . 0
-1/6 1/2 -1 1 0 0
AL = . C
-1 1 0
\ . -1 1 0
yeny - . . . L 11
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Since eg =g = ...
ELTB](2):

ProPOSITION 14. If Tg(:) is o differentiable semigroup which is gener-
ated by B, then

ER [T8)(t) = [aza(tB)™ + ... -+ 01 (tB) + ao] Tx(2),

= Can.1 = 0 we obtain the following representation of

where

0= i S [ )T (- 25)] #=0

and [k/2] denotes the greatest non-negative integer not exceeding k/2.

Finally, if we consider the Laplace operator on one of the spaces L,(R),
1 <p < oo, Cy{R) or BUC(R) (with maximal distributional domain for
Ly(R), 1 < p < oc), then the semigroup T's(-) corresponds to the classical
Poisson transform, for which an inversion theory has been set out in [13].

References

1] W.Arendt, Vector-valued Laploce transforms end Cauchy problems, Israel J. Math.
59 (1987), 327-352.

[2] =, personal communication.

[3] W. Arendt and H. Kellermann, Integrated solutions of Volterra integrodifferen-
tal equations and applications, in: Volterra Integrodifferential Equations in Banach
Spaces and Applications {Proc, Conf. Trento 1987), G. Da Prato and M. lannelli
{eds.), Pitman Res. Notes Math. Ser. 190, Longman Sci. Tech., Harlow, 1989, 21-51.

[4] J. W.Dettman, Inidial-boundory value problems related through the Stieltjes trams-
form, J. Math. Anal. Appl. 25 {1969), 341-349.

5] 0.El Mennaoui and V. Keyantuo, Trace theorems for holomorphic semigroups
and the second order Cauchy problem, Proc. Amer, Math. Soc. 124 (1998), 1445—
1458.

6] H. O.¥attorini, Second Order Linear Differential Equations in Banach Spuces,
North-Holland, Amasterdam, 1985.

7] 1. A. Goldstein, Semigroups of Linear Operalors and Applications, Oxford Math.
Monographs, Oxford Univ, Press, New York, 1985,

i8] E.R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs,
1975,

0] M. Hieber, Integrated semigroups and differentiol operators on L7 (RM y-spaces,
Math. Ann, 291 (1991), 1-16,

[10] E. Hille and R. 8. Phillips, Punctional Analysis and Semi-Groups, Amer. Math.
Soc. Collog. Publ. 31, Amer. Math. Soc. Providence, R.I., 1957.

[11] 8. Kurepa, A cosine funclional equation in Banach algebras, Acta Sci. Math.
(Smeged) 23 (1962), 255-267.

[12] H. R. Thieme, Integrated semigroups and integrated solutions to the abstract
Cauchy problem, J. Math, Anal. Appl. 152 (1990), 416-447.



156 V. Keyantuo and P. Vieten

[18] P. Vieten, Holomorphie und Laplace Transformation Banachraumuwertiger Funk-
tioner, Ph.D. thesis, Shaker, Aachen, 1995.

[14] D.V.Widder, An Introduction to Transform Theory, Academic Press, New York,
1971.

[168] K. Yosida, Functionel Analysis, Springer, New York, 1980.

Department of Mathematics
University of Puerto Rico

Rio Piedras

Puerto Rico 00931

E-mail: keyantuo@upracd.upr.clu.edu

Fachbereich Mathematik

Universitat Kaiserslautern
Erwin-Schrddinger Strasse

87663 Kaiserslautern, Germany
E-mail: vieten@mathematik.uni-kl.de

Received December 30, 1996 (3813)
Revised version June 9, 1997

icm

STUDIA MATHEMATICA 129 (2) (1998)

Mapping properties of integral averaging operators
by

H. P. HEINIG (Hamilton, Ont.) and G. SINNAMON (London, Ont.)

Abstract. Characterizations are obtained for those pairs of weight functions » and v
b
for which the operators T f(z) = Sa (Z)) F{t) dt with o and b certain non-negative functions

are bounded from L, (0, 00) to LE(0,00), 0 < p,q < o0, p > 1. Sufficient conditions are
given for T to be bounded on the cones of monotone functions. The results are applied
to give a weighted inequality comparing differences and derivatives as well as a weight
characterization for the Steklov operator.

1. Introduction. In this paper we study mapping properties of the

operator

b(w)
(1-1) Tfz)= | fo)d, fzo,

a{z)
where o and b are increasing, differentiable functions satisfying a(0) = b(0)
= 0, a(z) < b(z) for z € (0,00) and a(o00) = b{oo) = 0. Specifically,
conditions on. the weight functions « and v are given which are eguivalent
to

b(z) 1/g
(1.2) (

( S f) qv(m) dm)

aje

For example (see Theorem 2.2}, if 1 < p < ¢ < oo then (1.2) holds if and
only if

S §

éC(os:fpu)l/p, 0<p,g< o

(1.3} sup ( E(St) ul—f”)l/p’ (§u) e K < o,
(=) 8

ale
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