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Mapping properties of integral averaging operators
by

H. P. HEINIG (Hamilton, Ont.) and G. SINNAMON (London, Ont.)

Abstract. Characterizations are obtained for those pairs of weight functions » and v
b
for which the operators T f(z) = Sa (Z)) F{t) dt with o and b certain non-negative functions

are bounded from L, (0, 00) to LE(0,00), 0 < p,q < o0, p > 1. Sufficient conditions are
given for T to be bounded on the cones of monotone functions. The results are applied
to give a weighted inequality comparing differences and derivatives as well as a weight
characterization for the Steklov operator.

1. Introduction. In this paper we study mapping properties of the

operator

b(w)
(1-1) Tfz)= | fo)d, fzo,

a{z)
where o and b are increasing, differentiable functions satisfying a(0) = b(0)
= 0, a(z) < b(z) for z € (0,00) and a(o00) = b{oo) = 0. Specifically,
conditions on. the weight functions « and v are given which are eguivalent
to

b(z) 1/g
(1.2) (

( S f) qv(m) dm)

aje

For example (see Theorem 2.2}, if 1 < p < ¢ < oo then (1.2) holds if and
only if

S §

éC(os:fpu)l/p, 0<p,g< o

(1.3} sup ( E(St) ul—f”)l/p’ (§u) e K < o,
(=) 8

ale
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158 H. P. Heinig and G. Sinnamon

where the supremum is taken over all x,? such that ¢ < & and a(z) < b(t).
Moreover, the least constant C' in (1.2) is comparable to K: K < 0 <
2p1/‘I(p’) r' i

Weight characterizations for the corresponding Hardy inequality

(1.4) (050 (Mg:) ) "o(z) dm)”q < C'(c:gfpu)l/p

0
follow easily from well-known results ([3], [10}). If 1 < p £ ¢ < co, (1.4)
holds if and only if

b(t)

e oo /g
(1.5) sup( | ul“’) ( S v) < o0,
>0t g ¢
Of course, this condition implies (1.3), but is actually more restrictive. For

example, if b(z} = 2a(z) = x, v(z) = 27, and u{z) = z* then (1.3) is
satisfied ([12]) if and only if a/p = (8 + 1)/g + 1/p', while (1.5) if and only
if this equality holds with 3 < —1.

In another direction, let f € CM(R*) with £(0) = f(o0) = 0; then it is
known (Gurka [10, Ex. 8.6], Grisvard [6], Jakovlev [8]) that for 1 < p < oo,

Ha) e do < © | |£'(2) P27 d,

(1.6)

"SZ
j

Ot g o g

() — P

| f(2)]Pz~* de < C S %L- dx dy

_ oo
where A # 1 /p. It is natural to ask which of the right sides of (1.6) is larger,
the one involving the derivative of f or the one involving differences of f. On
applying the weight characterizations of (a special case of) the operator T'f,
we answer this question by showing that for OV -functions the ineguality

TT =) - fyP T -
(1.7) (Sj [S] %@ﬁ%dmdy <C é [F ()Pt~ NPdg, 1 < p < oo,
is satisfied if 0 < A < 1.

The paper is divided into three sections. Section 2 contains the main re-
sults, namely the weight characterizations for the operator T given by (1.1),
in the case 1 < p < g < oo (Theorem 2.2) and the case 0 < g<pp>1
(Theorem 2.5). Corollaries yield a result of Sawyer ([12]) and a weight char-
acterization of the related Steklov operator studied by Batuev and Stepanov
([2]). Although both are characterizations, our weight conditions have a
somewhat different form than the ones given in [2].

There is considerable current interest in mapping properties of the Hardy
operator defined on the cones of monotone functions. In Section 3 we pro-
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vide simple sufficient conditions on weight functions under which the op-
erator T" of (1.1) defined on a cone of monotone funetions is bounded on
weighted Lebesgue spaces. In addition we give weighted extensions of {1.7),
complementing the weighted results for the inequalities in (1.6) (see [4], [7],
[10, p. 99]). In particular, we establish (1.7).

The notation is standard. xz denotes the characteristic function of the
set B; if 0 < ¢ < 00, then ¢’ denotes the conjugate exponent of g defined by
1/g+1/¢ =1, and similarly for p. Expressions of the form 0/0, co/oc, and
000 are taken to be zero, and A =~ B means that A /B is bounded above and
below by positive constants. Let Z, R, and RT denote the sets of integers,
real numbers, and positive real numbers respectively, while C(”)(E) denotes
the space of functions on E whose nth derivative is contimuous. Finally,
inequalities (such as (1.2)) are interpreted to mean that if the right hand
side is finite, so is the left hand side and the inequality holds.

2. Main results. Throughout, a and b are taken to be increasing differ-
entiable functions on R, satisfying a(0) = b(0) = 0, a(z) < b(z) for = > 0,
and a{00) = b(co) = 0. Since o~ and b~? exist and are increasing we may
define the sequence {my }rez recursively as follows: Fix m > 0 and define

Myl = a"]'(b(mk)) itk >0,
My = b_l(a,(mk+1)) if k <0.

(2.1) o = My

Clearly, a(mut1) = b(mg) for all k € Z.

LemMa 2.1. Fiz m and let {mg}rez be defined by (2.1). Then my <
Mgy Jor k € Z, By o0 Mg = 00, and N oo Mg = 0.

Proof. Since a(my) < b{my) = a(mis1) and =% is increasing, my <
me41 for all k € Z. Also, the monotonicity of {my} ensures the existence
of M~ € [0,00) and M™ & (0,00] such that my — M~ as k — —oco and
mg — M™ as k — oo, Since a and b are continuous,

(M) = lim blms) = Tim_a(mies) = a(M")
and similarly b(M1) = a(M*). But a(z) < b(z) for all z € (0,00} so
M~ =0 and M = oo as required.

In order to study weighted norm inequalities for the operator T' of (1.1),
that is,

(2.2) (T(b(g ) f)qfu(m)dm)l/ qgo(igjfpu)”p, £ >0,
0 a(x) :
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it is convenient to consider the equivalent inequality

0y (T(§ m)ewa) <o(ra)” 120
0 afx) 0

where w = 417"
We also write v,(y) = v(a™{y)) (™) (y) so that v.(y)dy = v(zx)ds if

y = a{z). vy is defined similarly.

THEOREM 2.2. Let u and v be weight functions; then there is a constant
C such that (2.2) helds for 1 < p < ¢ < oo if and only if

N T N1
(2.4) K= sup( S ul=? ) (Sv) < 00,
alz) ¢
where the supremum is taken over all © and t such thet t < z and
a(z) < b(t). Moreover, the best constant C in (2.2) satisfies
K <0 < 2pt/p) VP K.
Proof. Suppose first that (2.4) is satisfied. If ¢ is fixed and y = a(z) in
(2.4) then, with w = u! =¥,
b(t)

/e, Y /
a(tJSSI;I;b(t)( w)l ’ ( S va)l Z:K < oo,

y al(t) !
and it follows from [3, Theorem 2] that for all f > 0,
B(t)  b(1) b{t)
g 1/q 1/p
(2.5) (7 (F o) way) “<cx( | rmw)”,
alt) v aft)

where C = p'/9(p")1/?', Similarly, if « is fixed and y = b(t) in (2.4) then we
have

vy M) 1
ol () () s
and it follows from [3, Theorem 1] that
o@) |y b(a)
(2.6) ( [ (] fw)qvb(y)dy)l/q§C’K( g f:"'w)l/?.
a(z) a(z) a{z)

Rixm € (0, 00) and let {my}xez be the sequence defined in (2.1). If my, <
% < mpt1, then a(z) < a(migr) = b(my) < b(w). Writing az = a(my),
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by = b(my), and Ep = (mk1mk-|-1) we get, using Minkowsld’s inequality,
oo blz)
g 1/
( S ( S fw) v(z) dm) !
0 alz)
by b(z)

= (1{( Tt § s Yxmt | 10)'sta)ae)™

0 keZ afx) keZ Q41
o0 b.’e g 1/q
(T {(Xxm@ § 1u) oz dn)
0 ke a{z)
= () g l/q
+ (S (ZXEk(w) S fw) 'u(:c)dcc)
0 k LT
= 11 ~+ Iz,

respectively. But since for each 2 only one term of the sum can be non-zero,
oo by
n=({% xe. () ( | fu)'v() dm)lfq
0 k a(x)
M1 by
= (Z S ( S fw)qv(m) d:c)l/q
Eomy afa)
by by
= (S5 () wwa)™,
k oax u

where the last equality follows from the change of variable v = a(z). Apply-
ing (2.5) and using the fact that 1 < ¢/p it follows that

by

I < (ZC‘IK“( 5 fpw)qu)lfq

k -7
< OK((?ZS: fpw)q/‘p)l/q _ C'K(Dgfpw)”p_

Similarly,
biar)

fzz(‘g;m(w)( ) u(w) dz)

Gpd-1

1/q

mk,.{.l b(m)

:(EJ; S (S fw)qv(m)da:)llq

my Gkl
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R 1/a

(Z i ( | fw)qvb(y)dy)

k oappl Opga

[ ]

q/p\ 1/
< (;CQKQ(%SH fpw) )
B /oy 1fq - 1/p
< OK((;MSH fpw) ) = C’K( g f:ﬂw)

where we have made the change of variable y = b(z) and applied (2.6).

From these two estimates, (2.3) and hence (2.2) follows with constant
2CK.

Conversely, if (2.2) (or equivalently (2.3)) holds for some C, let z and ¢
satisfy t < z and a(z) < b(t). Let wp be an L' weight such that wy < w and
define f = X(a(z)peywo/w. I t < s <z then a(s) < a(z) < b(t) < b(s) and
therefore

b(t)

T 1/q i q 1/q
( wo) (Sv(s)ds) = (S ( S fw) z(s) ds)
a(z) t i alx)
o bls) ¢ 1/q
<(§( ) o) o(s)ds)
0 a(s)
< c(osofpw)l/p =of b(gt) wfut-r) ™
0 a(x)

But since wg € L1, the last integral is finite and on dividing we get

( b({) wo)l/p’ (cfv(Q) ds)lfq <C.

afx)

Let wo T w; then the Monotone Convergence Theorem implies that
b(t) 1/pf
(§0)7(
a(z)

Finally, taking the supremum over all z,¢ with ¢ < = and a(z) < b(t) we
obtain (2.4) with w = v'~? and K < C.

x

Sv(s) ds) i <C.

t
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REMARK 2.3. The case 1 = p < ¢ of Theorem 2.2 also holds and follows
from [9, p. 316]. If 1 = p < g < co, then (2.2) holds if and only if

o= 1) .
- /
(2.7) ess sup u(t) 1( S v(:c)da:) "< .
£>0 A

We now give the weight characterization when ) < ¢ < p, p > 1. First
we require the following:

PROPOSITION 2.4. Suppose w and v are weights, a and b as before and
vy and vy, defined by

(2.8) valy) = 2@ (W)@ ¥),  wly) = v @) (y).

Let 0 < g <p, 1 <p<oo, l/r=1/q¢~1/p, and for m > 0, let C(m) and
C*(m) be the best constants in

b(m) v

(5 ('} f(t)w(t)dt)qvb(y)dy)l/qﬁO( RGOS

a{m) al{m) a(m)

1/p

and
b(m)  b{m) b{m)
g /g 1
(1 (§ soewd)vuma) <o ( | sorea)
a(m) Y a(m)
respectively, Then D(m) =~ C(m) and D*(m) =~ C*(m), where, for m €
(0, 00),

/p

w) v/ ( b(gn) vb) T/va W dy) 1/7'}
y

w) " ( § %) ") ay) v

a(m)

(2.9 (m)

p*m)=( | (

rr,('m.)

2

3

N = 2
— I

Proof. Write the first incquality and D(m) in the forms

oY a l/q
(S (waX(a,('m),b(m))) 06 (U)X (alm),b(m)) () dy)
00
x 1/p
< O(m)( S fpr(a(m),b(MJ)) ’
0
respectively,

Y o0

o] - r/ 1/r
(S (SwX(a(m),b(m))) /p( | va(a,(m),b(m))) 0 ()X ot ) ) dy)
¢ 0 ¥
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Then by [13, Theorem 2.4],
(v')1/'g"7(1~ g/p)D(m) < C(m) < (r/)"/"p"/*5'** D(mm).

The estimate for C*(m) follows in the same way, only now we use the dual
of [13, Theorem 2.4].

THEOREM 2.5. Suppose v and w = u'~? are weights and ¢ < g < p,
1< p<oo. Then (2.2) (or equivalently (2.3)) is satisfied if and only if

w0 (T 1 (1) () e oma)” <o
0b=%(a(t)) a(t) z

and

eoa D) B e .
(2.11) (S Sb (bS w) / (Sv) ! v{z) dz o(t) dt)l/ < o0,
0 H t

alx

Here the “normalizing function” o is defined by

70) = Y X000 (567 0 @)
keZ

where (b1 o a)* denotes k times repeated composition and {Myz} is con-
structed as {my} (see (2.1)), but with My = b~1(1).

Proof. Necessity. Suppose first that (2.3) is satisfied. Let vg and wy be
weights in L' such that vy < v and wo < w. I vy 0(y) = vt~ {(y)) (6~1) (v)
then vy 0 < vy, where vy is given in (2.8). Fix m > 0 and let {my}xcz be the
sequence constructed in (2.1). If D and D* are the functions given by (2.9),
let D(m) = (e Dimp)™)/" and D*(m) = (3 eg D™ () ") 7.

We shall show that
(2.12) max(sup P(m), sup D*(m)) < co.

m>0 m>0
Again write ax = a(my), by = b(ms), and let X = X(a, b,)- Since r/(pg’)+1 =
r/{gp'), integration yields

(1 (F o)™ (T ) Praotira)
keZay ap Y
b t '
= (S (] (o)™ wnt0)"(ono) "snotipas)”
E Qp ar ap Y
by oy by,

= ;’,;-(2 | ( | ( § “’O)T/M( J ”bﬁ)r/mw(ﬂ dt) “un0(y) dy)l/q

k or ar ap t
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since t < y. Now for each k, y satisfies ap < y < by, and # satisfies o <t <y
and therefore aj <t < by. Hence the last expression is equal to

= Y t ripg'
s { ()™
X ( bf 'Ub,o) T/pqx(t)wo (t) dt) q’Ub,n(y) dy) '

it

fa

i

:‘Q(Zx('y) i( S wc)r/;uq:

x ( S vb,g)r/mx(t)wo(t) dt)q'vb,o(y) dy) l/q.

Here we used the fact that for each ¢ only one term of the sum can be non-
zero. Now if y < by, that is, b~ {y) < my, then a(b=*(y)} < ax and hence
we may increase the interval of integration from (ax,y) to {a(b71(¥)),¥)-
Moreover, replacing x(y) by 1, the last displayed expression is not larger
than

, Y t ~/pd’
E’E ( 53 ( z’“: ﬂ(b“'sl(y)) ( “'Sk wO)
biy

X ( S vb,o)r/pqx(t)wo(t) dt)qvb,o(y) dy)lfq
¢

oo i t

(1 (s

=
PO ap-igg)y &

by

X ( ‘ 'Ub,D) ‘r'/qx(t)) 1/Pw0 (t) dt)qvb’g (y) dy) Ve
¢

Again we used the fact that only one term of the sum can be non-zero. If
we take '

by

1= (30 (§o)™" (T one) ") st ot

k 1" L

and make the change of variable y = b(z), this is equal to



166 H. P. Heinig and G. Sinnamon

A

b

x ( | vb,o)” qx(t))l/pwo(t) dt) ") d:c)

i

1/q

oo bz}

:_’}_(5 ( i f(t)w(t)dt)qvg(m)dw)l/q

pat gt e

oo b(x)

1T ooy < (T

a(x)
by (2.3). Now since wg < w,

(GS: fpw)l/p _ (

i bk

Z( § " r/q ( S ‘Ub,o)r/qx(t)wﬂ(t)pw(t)l—p dt)l/p
k a

/e ( S ’Ur;,,o)rqu(t)wg(t) clt)llp

wp /e ( S 'U[,,{))r/q’w()(t) d‘f}) M
t

_ (%.') /P(Zbk ( 75" wo)-,-/pf(bsk Ub,o)r/pvb,o(y) dy)l/p’
ke Ok v

where the last equality is obtained on integrating by parts. Since vs0 and
wp are in L', the sum is finite and on dividing we obtain

(ST ™ (Fn) i< Z(2)"

rq

Since wp 0 < vy and wp < w the Monotone Convergence Theoremn implies
that this inequality also holds with vy and wg replaced by v, and w re-
spectively. In particular (see (2.9)) we obtain sup,,..q(3", D(m)")" < 0.
The same argument, with minor modifications, shows that

sup (ZD* {mg) )UT < 00

m>0

and we have proved (2.12).
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Let o be the normalizing function defined above; then
o3 h(t) ¥ T'/T’l b(t)
; r/p 1/r
@13 (1 (5 w) (§w) wwe@aa)
0 alt) alt) y
Mpy b(8) g

(5 ()"

ko My oa(t) aft)

X ( ‘ rub)r/.v o(y )dy( (5" oa)k(h) ) ) Y

- (Zw‘(” "S’“ 1§ T

B k b=1{1) ax  ai w) ( 5 (Ub) ) dydm)
a” (1) r

= S ZD(mk)T dm)
b-1(1) k

< (@M 1) b7 A sp (ZD () )1/1 o

Here we made the change of variable £ = (a™' o B)*(m) = my so that
when t = Mj+1 we have (¢~ o b)*(m) = (™! o B)*1(M;), which implies
m =a~1(1), and when t = M; we have (¢~ ob)®(m) = (a~ ob)*(Mp), which
implies m = b~*(1). In the same way, using sup,,,5 (3., D* (ms)") V" < oo
one shows that

sob(t) WE) s W " r
(2.14) ((‘) (S: ( E ) /p (Q(St) 'ua,) /pfua(y)a(t) dydt)lf < oo.

The changes of variable y = b{z) in (2.13} and y = a(z) in (2.14) yield
(2.10) and (2.11), respectively.

Sufficiency. To prove sufficiency, we firat show that for some m > 0, both
D(m) and D*(mn) are finite. Since (2.10) and (2.11) are satisfied it follows
that (2.13) and (2.14) arc finite. As we have just seen this means that

a=t e et (1) 1/
S D(m)" dm) and ( S D*(m)" dm)
b1 (1) o= (1)
are finite, "Thus D(rm) and D* (m) are finite almost everywhere in (672(1)

a~%(1)) and so there is an m € (b*(1), a"l( )} where both D(m} and D*(m)}
are finjte, »
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Next comstruct {mg} from this m. If my < = < my41 then a(z) <
a{myt1) = b(my) < b(z) so (with ap = a(my) and by = b(my))

oo b(x) p M4l by b{w) q
S ( S fw) viz)de = Z S ( S fw -+ S fw) v(z) dx
0 a(z) keZ mre  alw) O3

M1 b

55(2 S (‘ fw)qv(w)da:

Eomy  alz)

mes1 b{e) q
+ Z S ( S fw) v(z) da:)
k. mp Gpt1

= 6(51 + Sz),

where C' = max(1,29 — 1). In §1 make the change of variable y = a(z),
apply Proposition 2.4 and then Hélder’s inequality with indices r/q and p/q
to get

b by by

5= 221 (1 10) v < 0 tmr( [ 2w)™”
k oap Y k Qg
< (Zc*(mk)r)q/r(zbf fpw)qlp
k k ap

< GE(ZD*(mk),«) Q/T('Dgofpw)w? : C’fD*(m)q(T_f”w) q/p.
k 0 5

Here € is the constant from Proposition 2.4.
In S2 make the change of variable y == b(z), apply Proposition 2.4 and
then Holder’s inequality to get

b+1 ¥ by

=3 § (1 ) ww)dy <Y Comens( | )"
k

k Opg1  Gpepy Bl
[ .
< (Z C(mkﬂ)r)ﬂr(z § f”w)wp
k kG
< 01( S tmay ) (T o)™ = crpimye(§ o)™
Therefore : i ’ i
ca biz) ; . o0
( S ( S fw) qv(m) dm) Ha < 51/‘101 (’D(m)q + D* (m)q) l/q( S fpw)l/p.
0 a(=) 0

This completes the proof of Theorem 2.5.
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COROLLARY 2.6. Let u and v be weight functions and A and B be real
numbers such thot 0 < A < B, Then there is a constent C > 0 such that

oo | B s
{2.15) ( S ( g f)q'u(m) dm) M < C( S f;uu)l/p
0 Az 0
for oll f = 0 if and only if
i) 1<p<g<ooand

T

Bt

' 1/’ 1/q

K= sup (Sul“”’) (Sv) < oo, or
t<eSBU/A N 4 "

iy 0<¢<p L <p<oo, and max(K;, K;) < oo where

(T L (Lo (o Pene)”

0 " At/B At
and ey Bi/A Bt I B 1jr
Ky = (S : ‘ ( S ul“p’) (S’u) 'v(m)dfcdt) .
0 t Am t

Here 1/r = 1/q = 1/p.

Moreover, if C is the best constant in (2.15) then K <C <2p'/9p") VP K
for 1 < p € g < oo, and in the case 0 < g < p, 1 < p < oo we have
max(Ky, Ky) = C,

Proof. Let a{z) = Az and b(z) = Bz in Theorem 2.2 and (i) follows.
With the same choice of ¢ and b in Theorem 2.5 it is easy to see that
(b~1oa)k(t) = (A/B)*t so L(b7" o a)k(t) = (A/B)*. Now with My = 1/B
we obtain My, = B*~1/A* for all k € Z. If M <t < Mjy1 the normalizing
function o satisfies

1/B = My(A/B)* < to(t) < Mey1(4/B)F =1/4
for all k. Hence o(t) = 1/t and substituting this into (2.10) and (2.11) we
get (ii). .

The estimate of ¢/ in (2.15) in terms of max(Ky, K3) follows on tracing

the proof of Theorem 2.5,

The next corollary involves the Steklov operator SF(z) = S:ﬁi F,F>0.

COROLLARY 2.7, Let U and V be weight functions on R. Then there is
o constant C > 0 auch that ’
oyt g /e < 1/p
(2.16) ( | ( \ F(s) ds) Viy) dy) < C( | F(s¥U(s) d5)
—eq -1 e

for all F >0 if and only if
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1} forl <p<g<oq,
i) forl<p<

st1 e Y (17 .
sup ( S ot p) (EV) < o0;

s<y<at+2 y—1

(i) for0 <g<p, 1<p< oo we have max(Ky, Ka) < 0o where
-1

K = ( OSO § (EHS Ul”ﬁ")r/pl(i‘[/')r/p'{/(y) dyds)l
y

—00§—2 g

/r

and
oo s+2 s+l v 1/r

= (3T (8 o) (1) v avas)”

—co g y—1
where 1/r = 1/qg—1/p.

Proof Take A = 1l/e, B = e, v(z) = (1/z)V(log(z)), and u(t) =
P10 (log(t)) in Corollary 2.6 and make the substitutions x = e¥ and ¢ = ¢°.
Since F is a non-negative function on R if and only if £(t) = (1/¢)F (log(t))
is a non-negative function on (0, 00}, the result follows.

REMARK 2.8. In the case 1 < p £ g < oo the result of Caorollary 2.6 was
obtained by Sawyer [12] while the result of Corollary 2.7 for 1 < p, ¢ < oo was
given by Batuev and Stepanov ([2, Theorems 2.1 and 2.2]) with somewhat
different (but equivalent) weight conditions.

3. Monotone functions and a weighted Hardy type inequality.
Let a and b be as before. We now consider the operator of (1.1) where f
is monotone on (0, c0). The next result considers the case when f is non-
increasing.

THEOREM 3.1. Suppose u and v are weight functions with S;O % = 00,

Then (2.2) is satisfied for all non-negative, non-increasing f wheneuver
ax)

(3.1) sgp ( S u)*l/p(s (b(s) — a(5)]%u(s) ds)l/q < 0
x>0 0 0
if l<p<g<oo, and
: o o I I
(32)  § (§b(s) ~ als)]w(s) a!s) / "( | u) () () da < oo
0 0 Q

fl<g<p<oo, lfr=1/g-1/p.

Proof. It is well known ([11], 5], [14]) that for non-increasing f, (2.2)
is equivalent to the inequality
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) m ot ’ 4
(3.3) (OSO (ST*Q’)p ( S u) P () da:) l/p < C'( OSO gq’vl—q') Ve ’
(1] 0 1]

where T is the adjoint of T, and g > 0 is arbitrary.

~3¢q
But since (™ ¢)(¢) = S:l((:)) g we have

z 2 e o~ ()

S (T*g)(t) dt = S ( S g(9) ds) dt = S S g(s8)dsa(y)dy
: 0 b-i(r) 0 b-1(a(y))
o™ (@) ﬂ*l(f’(ﬂ)) a" )
< ge) | d@)dyds= | [b(s) - al(s)]g(s)ds.
0 5 0

Therefore, after the change of variable z = a(t), we see that the validity of

00 alt)

@4 (§ (S[b(s) ~a(s)a(e)ds)” (| ) ufa()a® i)

[0 0

1/p

o0

<off gq’ﬂl-q’)”q’
0

for all non-negative g is sufficient to imply (3.3) for all non-negative g and
hence (2.2) for all non-increasing f. But (3.4) is a weighted Hardy inequality
which holds ([3], [10]) if and only if for 1 <p < ¢ < 00,.

oo a(t}

sup( S ( § u.) _plu(a(t))a’(t) dt)l/p (§[b(s) — a(s)]%(s) ds)l/q |

x>0 @

is finite, and for 1 < ¢ < p < oo ([10], [13, Theorem 2.5]),
a(t)

(T (g [b(s) — a(#)]%0(s) ds)”q(ogo ({4 7 wlal®))e () dt)” v
0 0 @ 0
) ( a((S:l!) u) —-p’u(a(m))al(m) dx) r
is finite. Since integration yields
oo ot f a(=) )
(3.8) S ( (S” u.) r ula(t))a’ (t) dt = (p' —- 1)"]‘( S u)l ’ ,

it o] 0

and r(1 —p') /¢’ ~ p' = —r/q, these conditions are (3.1) and (3.2).

A result corresponding to Theorem 3.1 for non-negative, non-decreasing
functions follows at once by imitating the proof of Theorem 3.1.
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PROPOSITION 3.2. Suppose u and v are weight functions with S % == 00.
Then inequality (2.2} holds for all non-negative, non-decreasing f whenever

sup( DSO u)w”p(ogo[b(s) — a()]%(s) ds)l/q < 0

x>0

b(x) z
if l<p<g<oo, and
oo oo , oo —r/
| (V1e(s) = als)lev(s) ds) /q( | w) " Cu(p@)p (@) do < oo
0 = b{z}

ifl<g<p<oo 1/r=1/¢g~1/p.
In order to give a weighted generalization of (1.7) we require the following
result.

THEOREM 3.3. Let v and v be weight functions and 1 <p < g < oco. If
o/t

(3.6) (i sup [ f w(t,m)(iul"p’)wp’dm]dt) M =K <o
b a

7 0<a<b<alt
then
1oo ® o0 1
(3.7) (S S w(t, .7;)( S g)qdmdt)l/q < C’( S u(z)g(z)? dm) »
00 P 0

18 satisfied for all g > 0.
Conversely, if (3.7) holds for all g > 0 then

a/bajt 1/q b _ 1/p'
(3.8) 0{:2&00( (S) § w(t, z) de dt) (§ul P) < oo,

Proof. For each ¢ € (0,1) we apply Corollary 2.6 with B =1, 4 = ¢,

and v(z) = w(t, z) to get
(1(Twten(§0) ) 2"
0o ¢ xt
1/ 1 T\
< 2p*4(p") p((\) gpu)
‘ "y ’
(o [Ty iy

"y 1/p
= 2Kp*/9(p)1/? ( | g"u) :
' 0
so {3.7) follows.
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Conversely, if {3.7) 15 satisfled for all g > 0, fix 0 < a < b and define
(@) = X(a,p {€)u(zx)’ ~?' Then

5 gt ’1/1)2 < 1/;1 Leo ¢ g 1/q
C'(Su, P) C’(gfugiﬂ) (§)§)th(§9) d:cdt)

41 ot

a/ba/t p
2( (S) § w(t’m)( Sﬁ”(s)l"er(a,b)(S)ds)qdm dt)l/q
a/balt |

- ( i w(t,m)dmdt)l’/q(S‘ul”p'):

0 b
since b < 2 < a/t and hence (a,b) C (zt, ). The result follows on dividing
by (SZ w2 )1/7 and taking the supremum over a < b,

The next two examples show that the necessary condition of Theorem 3.3
is not sufficient and the sufficient condition is not necessary. The problem
of characterizing the weights for which (3.7) holds remains open.

EXAMPLE 3.4a. Let p=g=2, u{z) =2z, and w(t, z) = (1/(zt))[log(1/t)] >
for 0 < t < 1 and z > 0. The necessary condition {3.8) of Theorem 3.3 holds
because

afbaft b

su L wit,s)dedt) ( \u?
oo, (3 wie o) deat) (§)
a/b 1

= gup (S Hog( l/t]‘?’log(a/(bt))dt) log({b/a)
0<agh \ o t
a/bl

< sup ( S =[log(1/t)] 2dt> log(b/a) = 1.

D<agh ¢

However, the inequality (3.7) fails. To see this set g(s) = s*/?x(0,1) and
notice that the right hand side of (3.7) is finite. The left hand side (squared)
becomes

5

| $hog(1/6)"?

G

m

( ‘ g(s) ds)gdw dt

ot

SR
8~

L

2 %[bg(l/t)} L] ds) daat

0 xt
1
( i ~ 1%/ 2)%’!:5) .
0

log(1/¢)]~

H-[H
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This integral diverges because the integrand behaves like 1/{1—%) near t = 1.
For this choice of g the right hand side is finite and the left hand side is
infinite so inequality (3.7) fails.

EXAMPLE 3.4b. Let p= ¢ =2, u{z) =1, and w(t,z) = X(1/ (1), 1/2) ().
The inequality (3.7) follows from the classical Hardy inequality:

(S} w(t (;g)zdmdt)l/z (Ogix(l/ (o1),1/2) (1) d (S )za’m)l/2
[(-s)(0'=)”
!

© e

<(1(z-
S(‘E(éig)zdw)w (1)

On the other hand, the sufficient condition (3.6) fails in this case. If ¢ < 1/2,
then with e =1 and b =1/t — 1 > 1 we have

a/t b
-1
a<sl:1<2/t é it m)(fszu )dx
1/t 1/t-1
> | X(l/(m+1J,1/m>(t)( | dS)dw=1/t*2-
1/t-1 1

With this estimate we see that (3.6) is not less than

1/2 1/2
(Tar-2 dt) " =oo.
0
Since (3.7) holds but (3.6) fails, the sufficient condition (8.6) is not necessary.

COROLLARY 3.5. Let u and v be weights ond 1 < p < g < oo. Then for
fe CHRT),

o0 &0 T 1/ =] 1/p
(3.9) ( §] S Mdﬁ ch) ! < C’( s | F (@) |Pu(z) do:) Y
a 0

vz —yl)

whenever

1 a/t m b /v 1/q
3.10 e -
(3.10) ((ﬁ)oﬂﬁzm ( §, GO dm) Qu ) dt) < 0.
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Proof. An interchange of the order of integration and two changes of
variable show that

(TT”—ﬂﬁﬁlqd g )w

00
N o |f(-13')"‘f( )‘ o0 0O |f(-l3' (J)|q 1/q
“(5 ) e S )

T

COL ) pey g P 1/q
- (2 GRS, dm)
00 ’
PR ' 1/

< 21/q(§T;}f§(11_-ET( S | (3)|ds) dwdt)l/q.
00

The result now follows from Theorem 3.3 with w(t, z) = z/v(z(1 — 1)),

Observe that this result extends to all weight functions v(z, y) satisfying
v(@,y) = vy, z).
We now derive from Corollary 3.5 the inequality (1.7) given in the intro-
duction. That is, we show that (3.9) holds with ¢ = p, v(z) = z!**?, and
u(z) = 20~ for A € (0,1).
It follows from Corollary 3.5 that (1.7) is satisfied if

1 a/t

3.1 51— )1 g
am g (fava-n7va)

b , p—1
X (Sm(l”’\)”(l”‘“)dm) dt < 0o,
o
Now
a/t

( S T dm) (izmwp’(lm)\) dm);v-» 1

b @

= { %"M:“":'1}'33,Ir;'“v'ﬂ-;:.'l'|(':“~’f/(bt))"”"‘”rl = 1]+ [1 = (a/) PN i A 1p,
log(a/ (%)) log (b/a)l~* if A=1/p.

Let s = a/b; then ¢t < ¢ < 1 and we must find the maximum of
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(1 — (s/t)1=2)(1 — sC=1/(p=1lyp=1if X > 1/p,
((s/B)'2 — 1) (sPp=1/=D) —1)p=1 i X < 1/p,
log(s/t)[log(1/8)}P~* if A=1/p.
If A > 1/p then

g(s) =

AP =1 (p—p)/(p—1)
(=p)" =
1= s0e /=ty

d (1 = Ap)prlgi
S logote)) = T

and this is zero when s = ¢1/%', Similarly, we see that the maximum of g(s)
occurs at s = /P when A < 1/p. But

1—r/pp if X 1/p
g7y = 1 P 7
P log(1/9)]F if A= 1/p.
If A > 1/p, then (3.11) takes the form
1
j( -2 - AV gy,
0

and since limy 1 (1 —27}/(1 —~ ¢} = v, the integral converges if —Ap +p > 0,
lLe. A<l

If X< 1/p, then (3.11) takes the form

(1 =) 7ImApgAe= (g — gl/P=Myp gy

O ey = —

and this integral converges if A > 0 and A < 1.
Finally, if A = 1/p then (3.11) takes the form (with ¢ = e™V)
1

-0 Dog/gr di = | 552 o

This integral converges at oo and since lim, g y/(1~e™¥) = 1, the integrand
behaves like %P2 near 0 so the integral is finite.
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References

1] M. Arifio and B. Muckenhoupt, Mazimal functions on classical Lorentz spaces
ond Hardy's inequality with weights for non-increasing functions, Trans, Amer.
Math. Soc. 320 {(1990), 727-735.

[2[  E.N. Batuevand V. D. Stepanov, Weighted inequalities of Hardy type, Siberian
Math. J. 30 (1989), 8-16.

icm

Integral averaging operators 177

[3] J. 8 Bradley, Hardy inequalitics with mized norms, Canad. Math. Bull, 21 (1978),
405-408.

[4] V.Burenkovand W.D. Evans, Hardy inequalities for differences and the exten-
gion problem for spaces with generalized smoothness, to appear.

5 M. J. Carre and J. Soria, Boundedness of some integral operaters, Canad. J.
Math. 45 (1993), 1155-1166.

6] P. Grisvard, Bspaces inlermédiaires entre espaces de Sobolev avec poids, Ann.
Seoula Norw. Sup. Pisa 23 (1989}, 573-386.

[7] H. P Heinig, A. Kuofuer and L-E, Persson, On some fraciional order Hardy
inequalities, J. Inaqualities Appl. 1 (1997), 26--46,

8] G N Jakovlev, Boundary propertics of functions from the space Wrg!) on domaing
with anguler points, Dokl Akad. Naule 885R 140 (1961}, 73-78 (in Russian).

0] L. V.Kantorovitch and G. P. Akilov, Functional Analyeis, 2nd ed., Pergamon
Press, Oxford, 14882,

[10] B. Opic and A. Kufner, Hardy-Type Megualities, Longman Sci. Tech., Harlow,
1990.

[11] E. T, Sawyer, Boundedness of clessical operators on classical Loventz spaces, Stu-
dia Math, 96 (1990), 145-158,

[12] -—, personal communication, ~1985.

[13] G.Sinnamon and V. Stepanov, The weighted Haordy inequality: New proofs and
the case p = 1, J. London Math, Soc. (2) 54 (1996), 89-101.

[14] V. D. Stepanov, Integral operators on the cone of monotone functions, ibid. 48
(1993), 465-487,

Department of Mathematics and Statistics
McMaster University

Hamilton, Ontario, L83 4K1

Canada

BE-mail: heinig@memaster.ca

Department of Mathematics
University of Western Ontario
London, Ontario, N6A 5B7
Canada

E-mail: sinnamon@uwo.ca

Received April 15, 1997 (3870)
Rewvsed version October 18, 1997



