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An ideal characterization of when a subspace of certain
Banach spaces has the metric compact approximation property

by

J. ¢. CABELLO gnd E. NIETO (Granada)

Abstract. C.-M. Cho and W. B, Johnson showed that if a subspace I7 of £y, 1 <p <00,
has the compact approximation property, then KC(E) is an M-ideal in £{E). We prove that
for every 1, 5 € |0, 1] with 2 4% < 1, the James space can be provided with an equivalent
norm such that an arbitrary subspace E has the metric compact approximation property
iff there is a norm one projection P on £(B)* with Ker P = K(EY" satisfying

£l 2 7| PAl +slle = PA V€ L{B)

A similar result is proved for subspaces of upper p-spaces (e.g. Lorentz sequence spaces
d{w,p) and certain renormings of L¥}.

1. Introduction. We follow [3] and [7] in assuming that a subspace X
of a Banach space Y is said to be an ideal in Y if there exists a norm one
projection P on ¥ with Ker P = X, If, moreover,

Iyl 2 7Pyl + slly” = Py*ll Wy e YT

holds for given r,s € ]0,1], then we say that X is an idesl satisfying the
M (r, 8)-inequality in Y (for simplicity, we say that X satisfies the M (7, s)-
inequality if Y is the bidual of X, and its associated projection is the canon-
ical projection). If r = s = 1, we return to the classical concept of M-ideal
introduced by Alfsen and Effros [1].

For any Banach spaces X and Y, we denote by L{X,Y’) the Banach space
of all bounded linear operators from X to ¥ and by K(X,Y) its subspace
of compact operators. If X = Y, then we simply write £(X ) and K(X),
respectively. Harmand and Lima [9] proved that X with K{X} being an
M-ideal in £(X) must necessarily have the metric compact approximation
property (MCAP), and Cho and Johnson [4] showed that for subspaces &
of £, (in fact, this holds for subspaces E of X with K(X) being an M-ideal
in £(X) [10, Theorem V1.4.19]) the MCAP already ensures that K(E) is an
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M-ideal in £(E). It is also known [10, Scction V1.5] that for subspaces E
of g, the MCAP moreover entails that (W, E) is an M-ideal in L(W, )
for all Banach spaces W. For subspaces E of £, the MCAP only implies
that K(W, E) is an H B-subspace (a weakening of the notion of M-ideal) of
L{W, E) [17].

We investigate a family of variants of the MCAP that arc satisfied by
e.g., cg, £p, the Lorentz sequence spaces d(w,p), 1 < p < oo, and certain
renormings of the James space, which are inberited by subspaces having the
MCAP.

A net (K,) of compact operators on a Banach space X will bo called
a compact approzimation of the identity (c.a.i.) provided lim,, K x = =z for
every z € X. If, moreover, limg Kjz* = z* for every 2* € X, wo will say
that (K,) is a shrinking compoct approzimation of the identity (s.c.a.4.).

Given r,s € ]0,1], we say that a Banach space X satisfies the compact
uniform M (r, s)-inequality (for short, M, (r, 8)-inequality) if X admits a
c.al (Kq) in Brx) satistying

() Iim sup [[rKqz + s{y — Kay)| £ 1.

el ly <

Of course, the My-spaces, 1 < p < oo, defined in [10, Section VL5,
satisfy the condition (x) for r = s = 1 if p = o0, and for rP 4 g# < 1
if 1 < p < oo. For more examples the reader can sce [3, Section 4] and
Sections 3 and 4 below.

For abbreviation, given two Banach spaces X and Y, we will say that
K(X,Y') satisfies the M (7, s)-inequality instead of K(X,Y) is an ideal sat-
isfying the M (r, s}-inequality in £L(X,Y").

We prove the following

THEOREM. Let r,s € |0,1] be such that v + s > L. Assume that X is o
Banach space satisfying the Mo, (r, s)-inequality and E is o closed subspace
of X. Consider the following assertiona:

(i) E has the MCAP.
(i) K(B) is an ideal in L(F).
(ili) B satisfies the Moy (r, s)-inequality.
(iv) For all Banach spaces W, (W, E) satisfies the M (r, 8)~ineguality.
(v) K{E @ E) satisfies the M (r, 8)-inequality.
Then (1) (i) e (iil) e (iv)=(v).
All the above assertions are equivalent if r + 8/2 > 1.

2. Proof of the Theorem, We begin with an expected stability prop-
erty (cf. [10, Proposition V1.4.2]), whose proof cannot use intersection prop-
erties of balls (cf. {3, Lemma 2.3]), as in the classical case (r = g = 1).
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LeMMA 2.1. Let X and Y be two Banach spaces and let r,s € 10,1].
If K(X,Y) satisfies the M(r,s)-inequality and E C X and F C Y are
1-complemented subspaces, then K(E, F) satisfies the M (r, s)-inequality.

Proof. By hypothesis, there exists a norm one projection P on L{X, Yy
with Ker P = K(X,Y)" satisfying

£z el PAl+ sllf ~ PRI VF e £(X,Y)*.

Let Pi, P, be two norm one projections on X and V respectively, with
Py(X) = E and P,(Y) = F, and denote by 11, i the inclusion operators from
Einto X and from F into Y, respectively. Consider ¢ : £(X,Y) — £(E, F)
defined by

QO(S) = P51, VYSe E(X, Y),
and x : L(E, F) — L(X,Y) defined by
X(TY=i,TP, VT e L(E,F).

Since ¢ o x = I, it is straightforward to show that Q : L(E,F)* — L(E, F)*
defined by
QUT)=P(fep)x(T)) VfeL(B F), TeL(EF),
is a norm one projection with Ker @ = K{F, F)! satisfying
Ifli = rliQfI+sIf —QF VfeLl(E,F)* u
The following lemima, essentially proved in [13], is crucial.

LEMMA 2.2, Let v, s €10,1]. If X satisfies the Mey(r, s)-inequality, then
K(X) and X satisfy the M(r, s)-inequality.

The next result improves [18, Theorem 2], which was proved using inter-
section properties of balls and Banach algebra techniques. Gur proof is based
on J. Johnson's procedure of making projections {12] (cf. [14, Theorem 3.1],
and the unicity of the associated projection (3, Proposition 3.2).

ProrosrrioN 2.3. Let X be o Banach space and let r, s € ]0,1]. Consider
the following stetements:

(i} X satisfies the Mg, (r, s)-inequality.
(i1) For all Banach spaces W, K(W, X) satisfies the M(r, s)-inequality. -
(iii) (X @©oo X) satisfies the M(r, s)-inequality.
Then (i)=>(il)=-(iil). Al the above statements are equivalent if r + /2 > 1.

Proof. (i)=(ii). By definition, there is a c.a.i. (Ka) in Byx, satisfy-
ing (). Let W be a Banach space and T’ € B w,x). Consider L, = K, T By
Johnson’s procedure (see [14, Theorem 3.1]), X(W, X) is an ideal in £L(W, X),
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and we can assume that (L) converges to ' tu the o(L{W, X)), KW, X)).
topology. Hence, by (),

B S+ o(T — Lo} < B [rKaS + 8(7 = KoT) | + o | 16,8 - 8 < 1

helds for every S € Byew,x)- Thercfore, by [2, Lanma 2.7, we conelude
that (ii) is satisfied.

(ii)=>(iii), This implication follows from the fact that 2 Pow £ 18 an
ideal satisfying the M(r,s)-inequality in ¥ B ¥ whenever Z is an ideal
satisfying the M(r, s)-inequality in ¥". In fact, we take 2 = KX Do X, X)
and ¥ = L(X @, X, X).

(if)==(1). By [3, Theorem 3.1), X @o X acmits a s.c.al (Sa) in

K(X@ooX) Satisfying

(1) B [rASa + sB(I = Sa) 1 YA B € Beixpx).

On the other hand, since X is a 1-complemented subspace of X Do X,
by Lemma 2.1 and [3, Theorem 3.1], X admits a s.c.4.1. {Lg) with || Lgl| < 1

for all 3. It is clear that
¥ _(Lg 0O
Ly = ( 0 Lﬁ)

is another s.c.a.i. in Br(x@ex)-

By Johnson’s procedure, there are two norm one projections Py, Py on
L{X ®eo X)* with Ker P = K(X Boo X J*. Coneretely,

RT) =m(TSa),  Py@)(T) = lim ¢(2E;)

for all P € LX Goo X)" and T € L(X B X). By [3, Theorem 2.5 and
Pro;.)osrcions 2.1 and 3.2], we have P| = P,. We can suppose that both nets
are indexed by the same set (after switching to the product index set with
the product ordering). In particular, the net (So ~ L) is weakly null, and
80, by a convex combination argument, we may assume that |8y ~ Lyl
converges to zero. Then, checking (1) on the operators .

(I 0 w01
A“(o 0)’ B = (0 (J)’
we obtain the condition (x). m

IRE.MARK. Actually, if r 4+ s > 1, then the cad, (Hy) may be chosen
shrinking. In fact, by Lemma 2.2, X satisfies the M (r, 3)~i1‘1eq1ialicty, s0, by
[2, Proposition 2.5], X* contains no proper norming ﬁubspa.cc:as. Hence, by
8, Proposition 2.5 and Theorem 2.2], (K,) is a 8.6, ’

The next lemma is proved by a standard procedure (ef. [13, Theo-
rem 2.5]). For completeness, we indicate 4 proof,
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LEMMA 2.4, Let X be an Asplund space and let E be o closed subspace
of X. If X* and E* have the MCAP with adjoint operators, then X and E
each admit a s.c.a.i. (K,) and (Hy), respectively, such that

lim [[¢Hy — Kui| =0,
3
where i : B — X is the inclusion.

Proof. Let (K.) be as.cai in Bgx) and let (Hg) be a s.cai. in
By(zy- We can suppose that both nets are indexed by the same set. It is
clear that, for #* € X* and e** € B**,

lim " (i* Ko™ — Hi*z*) = 0.
[

Therefore, it suffices to apply [6, Theorem 1] and a convex combination
argument to finigh. »

Proof of the Theorem. In the first place, note that, by Lemma 2.2 and
[2, Proposition 2.1], E satisfies the M(r, s)-inequality.

(i}=-(ii). This implication follows from Johnson’s procedure,

(ii)=(i). This follows from [3, Propositions 2.1 and 3.2).

(1)=>(iii). On account of the above remark, F admits a s.c.a.i. (Hy) in
Bymy. Let (K,) be a s.c.al in Bxx) satisfying (). By Lemma 2.2 and
(2, Proposition 2.5], X is an Asplund space. Therefore, by Lemma 2.4, we
can assume that |[{H, — Kgi| converges to zero, where i : B — X is the

inclusion. This clearly forces
Im sup |rHaz+s(y — Hay)ll <1,
& felhllyl<t
as required.
(iii)=>(iv) and (iv)=(v) are proved in Proposition 2.3.
(v)=>(ii) is obvious. w
Before mentioning applications of our Theorem, we exhibit an interesting
example (cf. [2, Example 4.6]).
ExampLe 2.4. Let X and Y be two My -spoces. Given 0 < v £ 1, define

o)) =max ol o, S, e ey ev

1+

Then Z = (X xY, ||-||) satisfies, simultaneously, the Mc,(1,y)-inequality and
the Mo, (7, 1)-inequality. Moreover, if v # 1, then Z is not an My -space.

3. The James space. In this section we show a method to provide the
James space with a norm which satisfies the M,(r, s)-inequality, and we
obtain a Cho-Johnson theorem for the James space.
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PROPOSITION 3.1. For & > 0, let J; be the space of all null sequences
(#n) in R satisfying

n

sup {(593k1 - 17102)2 + Z(mki - "I"kwl)z + (Thpyr — (smkl)z} < 00,
j==2

where the supremum is taken over all n € N and ull finite increasing se.

quences ki < ... < kpp1 n N, with norm || ||s defined by this supremum. Let

r,8 € ]0,1] be such that r3+s2 < 1. Then J5 satisfies the Mo, (r, 8)-inequality

for oll § > 1 such that

] &
SR S L.
(2) st em b S

Proof. It follows from [5, Properties I and I, pp. 81 82] that the se-
quence (ep), where e, = (0,771,0,1,0,...), is a monotone shrinking basis.
For all n € N, we define

n
P = Z ez Vo= (.)€ Ji
i=1
Tt is encugh to prove that for every n € N, and 2,y € By,
”TPHSU + S(y - P:u.y)”ts <L

Since || Ppz|s < ||x[s for all n € N, we have

q
(3) (&Bh - mkz)z + Z(m-'w - mki-l~1)2 + (xkq-u)z -+ (65"-'&‘—1)2 < H'L'Hg
=2
for every ¢ € N and for every finite increasing sequence ky < ... < kg1
in N. In particular, for every » = (z,) € Js,
{4) 28zn)* < 2|2 YneN.

Let # = (zn)yy = (Yn) € By, p € N, and let &y < ... < Eya
be a finite sequence in N. Fix n & N, denote by v = (7,) the sequence
(P21, .00y PEn, SYnits SUnaa, - -+ ), B0 set

P
S = (erﬂ:l - ’ykﬂ)z - Z(’yki = ”YM.,H )2 + (’Yﬂdp L (5‘7;“, )2‘
e d
Itk >n+1, then
' P
8= (633”01 - Sykz)z "+ Z(‘gyki - 5%“-!«1)2 -+ (S'Ukﬂ.“ - 63:%1)2

==

< Syl < 6* < 1.
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If kpt1 €, then
r
_ 2
8= (erkl - 'I".'L‘m) + Z(rm"ﬂi - kawl)z + (‘rmkp+1 - 57‘93’“1)2
=2

<r?zl2 <r? < 1.
Assume that ky < n and kppy > n+ 1. Set ¢ = max{i € {1,....p} :
k; £ n}. If ¢ = 1, then by (3) and (4),
P
§= (57"7"1'“1 - ‘Sykz)g + Z(Syk,: - 3yk5+1)2 + (Syk,,+1 - 5?"33151)2

=R

< 2(0rwy)* + 267 s|2a | (1yka ] + [y )

»
—+ Z(‘syki - Sysz)z + (Sykp+1)2 + (Syk2)2
=2

2rs 82
<ri4 D45 a <l
S AR Ry
If ¢ > 1, then again by (3) and (4),

g—1

8§ o= (57".1?;‘,1 - 7".’2’5,1@2)2 + Z(T‘:ﬂki - ﬂnkwl)z + (Tﬁkq - sykﬁl)z
jz=
14
+ Z (syku‘ e Syki+1)2 -+ (sykp+1 e 5ka1)2
i=g-4-1
g—1
< (0rag, — rmka)z + Z(T‘CBM - rmkiﬂ)z + ('rmkq)z + (‘5ka1)2
1=

+ 28| @iy | [Yrgya| 4 2078] @8, | - [t |

Ve
+ Z (‘gyki — kiga )2 “+ (Sykwl )2 + (Sykq+1)2

i=gal
2
Ty Té s
Srid e b — g b < L
e 52 + 3 + 87+ 552 =

Therefore,
. [rPoz +s(y — Pap)lls < 1,
as required. w

COROLLARY 3.2. Let § > 1, and let FE be o closed subspace of J5. Con-
stder the following statements:

(i) E has the MCAP.
(ii) K(E) is an ideal in L(E).
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(iil) E satisfies the Moy (r, 8)-inequality whencver r and s satisfy (2).

(iv) For all Banach spaces W, K(W, E) satisfies the M (r, 8)-inequality
whenever r and s satisfy (2).

(v) K(E @ E) satisfies the M (r, s)-inequality whenever  ond s sab.
isfy (2).

Then (i) (i) (iil) e (iv)= (v). All the above statements are equivalent
if 6> 2.

Proof. By Lemma 2.4 and the Theorem, it is enough to observe that if
§ > pu >0, then

{(r, s) satisfying (2)} N {(r,s) :r-+s/p>1} #0. u

THEOREM 3.3. Let r,s € ]0,1] be such that 12 + 52 < 1. Then there is
00 > 1 such that for every & > &, and Jor every subspace E of Js, E has the
MCAP off K(E) satisfies the M (r, s)-inequality.

REMARKS. (i) Observe that, according to Lemma, 2.2, J; satisfies the
M (r, s)-inequality whenever the pair (r, s) satisfies (2) (cf. [2, Example 3.5]),
On the other hand, note that, with this method, » can be chosen as near
to 1 as one likes, but the James space cannot be renormed to satisfy the
M (1, s)-inequality. Actually, the Banach spaces salisfying this inequality
contain an isomorphic copy of ¢ [2, Corollary 3.4], and this is not true for
the James space.

(if) As far as we know, it is not clear whether the CAP implies the MCAP
for quasi-reflexive Banach spaces {even for subspaces of Js). Note that if ¥
is a quasi-reflexive Banach space having the CAP, then ¥* has the CAP, so,
according to [8, Corollary 1.6], the question could be whether Y™ has the
CAP with adjoint operators.

4. The upper p-property. We recall the following notion introduced in
[10, p. 327 (cf. (17]). We say that a Banach space X has the upper p-property
(1 <p<oo)if X admits a s.c.ai. (Ka) such that

(5) Im sw ||Kao+(y~ Kap)| € (fe|” +

F A=lplg1
In fact, ‘t;rney comment [10, p. 327] that an effective way to produce Banach
spaces with the upper p-property (upper p-apaces) is to Jook for reflexive
sequence spaces whose unit vectors form a Schauder basis and the inequality

I+ yll < (lli® + yfry*/»

holds for disjointly supported sequences. It is clear that, under this hy-

pothesis, the sequence of coordinate projections is a s.c.a.i. satisfying (5)

(and, of course, the inequality (x) for every (r,8) & Bp). Besides the
b

P)l/P_

]

icm

Metric compact approzimation property 193

M,-spaces, examples include the Lorentz sequence spaces d(w, p), and more
generally, the p-convexification of a sequence space whose unit vector basis
is 1-unconditional. In [10, Proposition V1.6.8] one can see a renorming of L?
with the upper 2-property. On the other hand, if » = oo, we return to the
M.-spaces [10, p. 306].

Given a closed subspace X of a Banach space Y, according to the Hahn-
Banach theorem, each functional on X admits a norm preserving extension
to a functional on Y. Following R. Phelps [19], we shall say that X has
property Uin Y if for every z* € X*, the norm preserving extension is
unique. If, moreover, X is an ideal in ¥ with associated projection P such
that ||/ — P|| € 1, then X is said to be an HB-subspace of ¥ [L1].

We will say that X has property U* in Y if there is a norm one projection
P on Y* with Ker P = X+ such that for all y* € Y* with Py* #£0,

ly™ = Pyl < [ly*]-

It is clear that if X is an M-ideal in Y, then X has properties U/ and U7*
(in fact, X is an HB-subspace) in Y.

In the next lemma, we show that it is not necessary to suppose s = 1 to
have property U, and r = 1 for property U*.

LeMMA 4.1, If X is an ideal satisfying the M(r, s)-inequality in Y with
associated projection P, then:

(i) For every y* € Y*, Py* is a norm preserving extension of y*|x. In
particulor, X* is isometric to P(Y™).
(ii) For every y* € Y'*,
1—
E

Pya(y") € Bye (y* e dist(y*,xﬂ)- |

In particular, if r = 1, then X has property U in Y.
(iif) If | - P| £ 1, then for every y* € Y™,

L : g dist(y*,X*)).

Px«(y") € Bx+ (Py*,

In particular, if 8 =1, then X hos property U* in'Y .

Proof. (i) Let y* & Y™*. Since y* — Py* € Ker P, we have dist(y*, X*) <
|[Py*||. On the other hand, for every o € X,

[ Py*|| = | Ply* — 2| < ly* — 2.
So, || Py*|| < dist(y*, X ).
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(i) Let y* € Y* and 2 € Py (y*). Then
| = (" = Py")l = (@ —y*) = Pla* ~ )]
1 «
< (st = o7l = Pl - )
1,1 " L—r o
= 20k =yl = Pyl = 2 a4,
(iii) 1t is clear that |ly" ~ Py*|| = dist(y*, X*) for cvery 4* € Y'*, so the
proof is similar to the one given in (ii).
In fact, we have proved the following

LEMMA 4.2. Let X be an ideal in Y. For all & > 0, define

1~ -
A= {("‘":3) : M—S—T <E} ond Af = {(’r‘,s) : 1o < 5}_
r
Consider the set
B ={(r,s) : X satisfies the M(r, s)-inequality in Y}

(i) If BNA:#D for all £ > 0, then X has property Uin Y.
(i) Let P be the associated projection onto the ideal X. If|I-rl<i
and BV A® £ B for all € > 0, then X has property U™ in Y.

The condition B A, # ¢ for all £ > 0 cannot he dropped in the above
lemma, as shown by the next example,

EXaMPLE 4.3 ([3, Example 4.51). Let 0 < v < 1. Let &) = K® ¢y denote
the equivalent renorming of cy with the norm

(e, 2)) = mas{led + vl 2]}, o€k, ze e
@hem z]| is the usual norm in co. Then &y and K(Zo) satisfy the M(1—v,1)-
wnequality without having property U (in G and L(%), respectively).

Again as a consequence of the Theorem, we obtain the Cho-Johnson
theorem for upper p-spaces.

THEOREM 4.4. ‘Let X be a Banach space having the upper p-property,
l<p<oo. If Fisa closed subspace of X, then the Jollowing assertions
are equivalent:

(i) E has the MCAP.

(i) B has the upper p-property.

(ili) B satisfies the M, (r, 8)-inequality for all (r,s) € Bes .

(iv) For all Banach spaces W, K{W, E) satisfies the M(r, s)-inequality
for every (r,s) ¢ By,

(v) For all Banach spaces W, KW, E) is an HB-subspace of L{W,B).
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Proof By assumption, X satisfies the M., {r, s)-inequality for all (r,8) €
Byz. In particular, by Lemma 2.2, X satisfies the M (r, s)-inequality. So, by
(2, Proposition 2.5], X is an Asplund space. Now, the implication (1)=(ii)
follows from Lemma 2.4.

The implication (ii)=-(iii) is obvious, and (iii)=>(iv) has been proved in
Proposition 2.3.

{iv)=>(v) is proved in Lemma 4.2,

(v)=>(i) is proved in [14, Theorem 3.1]. a

ReMARK. Another proof of (i)=>(v) can be seen in [17, Proposition 3.1].
The case p = oo is esentially known [10, Section VI.5).

COROLLARY 4.5. Let X be a Banach space having the upper p-property,
L<p<oo If Eisa closed subspace of X having the MCAP, then for all
Banach spaces W, K(W, E) has property U* in L(W, E).

Proof. Corollary 4.5 follows from the above theorem and Lemma 4.2. a

"T'he scope of the above results can be illustrated by supposing that E is
reflexive. A careful reading of the proof of [9, Lemma 5.2] allows us to assert
that (E)* = L{E), hence, we can apply the results contained in [2].

Finally, let us notice that in [16] one can see how to construct examples
satisfying a weakening of the notion of upper p-property, for which, of course,
Theorem 4.4 can be easily adapted.

Acknowledgements. The authors are greatly indebted to M. Contreras
for suggesting the problem.
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Added in proof (January 1998). After reburning the proafs, the authors observed
that:

1) All the assertions of the (main) Theorem are equivalent {the conditlon 74 ¢/2 > |
is not necessary). The proof of the Theorem is the same,

2) All the agsertions of Corollary 3.2 are aquivalent (tha condition § > 2 is not neces-
sary}. The proof is the same.
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