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The Grothendieck—Pietsch domination principle for
nonlinear summing integral operators

by

KARL LERMER (Brisbane, Qld.)

Abstract. We transform the concept of p-summing operators, 1 < p < oo, fo the
more general setting of nonlinear Banach space operators. For 1-summing operators on
B(Z, X)-spaces having weak integral representations we generalize the Grothendieck—
Pietsch domination principle. This is applied for the characterization of l-summing Ham-
merstein operators on C(S5, X)-spaces. For p-summing Hammerstein operators we derive
the existence of control measures and p-sumnming extensions to B{X, X)-spaces.

J. Batt [1] gave a generalization of the Riesz representation theorem for
a certain class of not necessarily linear Banach space valued cperators on
C(8, X )-spaces, where S is a compact Hausdorff space and X a Banach
space. This class is defined by operators T : C(S,X) — Y which are uni-
formly continuous on bounded sets, fix the origin and have the Hammerstein
property

V£, f1, fa € C(S, X), supp(f1) Nsupp(fo) =0

T(f+ fr+ o) =T(f + f1) + T(f + f2) = T(f)-

Furthermore, Batt proved that every Hammerstein operator has weak in-
tegral representations with kernels satisfying the Carathéodory conditions.
In our earlier work [10] we proved that many of the classical characteriza~
tions of linear weakly compact operators on C(S)-spaces can be extended to
Hammerstein operators on C(S5)-spaces. This paper deals with p-summing
operators (1 < p < oo). We extend the notion of p-summing operators to
the setting of not necessarily linear Banach space operators.

According to the Grothendieck—Pietsch domination principle [11] every
p-summing, linear and continuous operator T' : X — Y can be dominated
with the help of a probability measure u € C(Bx»)*:

7ol < m@( | Lo e Paute)
B

1991 Mathematics Subject Classification: 47B10, 4TH30.

[97]



98 K. Lermer

Even more, this property characterizes p-summing operators. We general-
ize this theorem to Banach space valued integral operators on B{(X, X),
the space of totally measurable functions on S with values in X: if a 1-
summing operator has weak integral representations with kernels satisfying
the Carathéodory conditions, then it can be dominated with the help of &
probability measure in a generalized sense.

If these integral operators start on B{X), the space of scalar valued to-
tally measurable functions, then they are even characterized as those which
can be dominated by probability measures in the above sense.

Applying our result to operators with the Hammerstein property leads
to a generalized version of the domination principle for 1-summing Ham-
merstein operators on C(S, X)-spaces. In complete analogy to the linear
theory, we can show that p-summing Hammerstein operators on C(S, X)
admit control measures and p-summing extensions to the space B(X, X ).

1. Preliminaries. We use standard Banach space terminology and we
denote Banach spaces by X,Y,Z,... € Ban. If X € Ban, then X™* will be
its dual and X, o > 0, its closed a-ball. S will denote a compact Hausdorff
space and X its Borel o-algebra. Let C(S, X) and B(X, X} be the Banach
spaces of all continuous and all totally measurable X-valued functions on
S, respectively (see [7]). We write C(S) and B(Z) if X is the scalar field R
or C.

Asusual a4, A € ¥, denotes a characteristic function. A X-simple func-
tion g € B(X, X)) has the form g = 3_0_; x4,%i, where A;,..., 4, € X are
pairwise disjoint and z1,..., 2z, € X. For a family of pairwise disjoint sets
Aq,..., A, € X with ], A; = A we briefly write {A;,...,A4,} Z-P of 4.
rea{£),. denotes the space of all bounded, regular, countably additive and
positive measures on Y.

'We use the term operator for any map 7' : X — Y. M(X,Y") denotes
the linear space of all operators T': X — Y which are uniformly continuous
on bounded subsets of X and which fix the origin. Given T': X — Y, the
modulus of boundedness is denoted by

Mo (T) = sap{||Tz|| : € Xa} (a>0).

If T is linear and belongs to a subclass A(X,Y) of M(X,Y) we write
T € A4X.Y).

Linear summing operators were first introduced by A. Grothendieck [8];
the general theory, however, was developed by A. Pietsch [11]. In the fol-
lowing we use standard terminology which can be found in {11, 9, 5, 6].

Given X € Ban and 1 < p < oo, we define the Banach space (Ip(X), ||||5}
of so-called strong l,-sequences in X by
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i = (X [2F) 7 <o)

and the Banach space (W,(X), w,(-)) of weak l,-sequences in X by

WolX) o= { (@) € X% swpl(@ad) = sup (2l i) < o0

:E*GBx*

Ip(X) = {(mn)n e X%,

Note that
l@ndalls = Jim_l[@nnsnlls and wp((@a)a) = lim wy((Ealnen)

ProrosITION 1.1. For any operator T : X — Y the following conditions
are equivalent:

(1) VB > 0 sup{||{(Tzn)n|lp - 871 : (zn)n € Wo(X )} < oo,

(i) V8 >0 3cg = 0 V(zn)n € W (X)g: |(Tzn)nllp < cawp((znln)-
Write 7p g(T) for the supremum in (1) and spg(T) for the infimum of all
¢ in (i), Then

(a) mp,{T) < 5p,5(T) < 8p,30 (1), 7p,68(T) < 75,3, (T) B0/ B, B < Pos

(b) $p,8(T) < ymp,o(T) Jor v = (14 B7)V/7,

(c) sp,8(T) < 2MPmy o (T) for v = 2V/75.

Proof. For (i)=-(ii) it is sufficient to prove inequality (b). Let £ = (zn}n
€ Wp(X)g, N € N and & > 0 be such that

(1) (II(T?:(SNHP)]J > (H(Tl;?;a)mllp)p .

Let M := [w,(§) 7] + 1 ([ ] denotes the integer part) and define a sequence
(Yn)n € Lp(X) by
(2) yni={H with 1 <1< N and [ =nmod N whenever n < NM,

0 ifn>NM.

‘We obtain the inequalities
Wy ((Yn)n)? £ Muwp(§)F <1+ wp(§) <1447

(Mzelele )", ¢ (WToezole” < sy, socol

wp(£) wp(&)
= II(Tyn)n||£ < ﬂ“;o,(1+,£i:'=)1/17(T)p(l + 8%}

The implication (ii)=+(i) and inequality (a) are trivial. It remains to
prove assertion (c). For £ = (zp)n with 0 < wp(§) < 8 and ¢ > 0 we fix
N € N as in (1). Now, we choose M € N with 87 < Muy,({zn)ngn )P < 257,
For (yn)n € Ip(X) defined as in (2), we conclude

BF < wp((yn)n)? = Muwp((za)nen)? < 26°

and
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1(Tza)nllp\* . MI(TZa)nenlE (]| (Tyn)nlls \°
( wp(£) ) = Muw,((zn)ngn)? - (wzp((yn)ni)
< (ﬁﬂ”(Tyn)n”p)p < 27Tp,21/P5(T)p- n

We call an operator T : X — Y p-(absolutely) summing if it satisfies
one (and then all) of the conditions in Proposition 1.1. The class of these
operators will be denoted by Pp(X,Y).

The conditions (a), (b), (¢} of 1.1 illustrate an essential difference of
linear and nonlinear summing operators. If T' € ij(X ,Y') then

Tp,6(T) = 8p,8(T) = 1p,00(T),  B< f,
and so we may write mp(T") = mp g(T').
ForT' . X —=Y,8>0and N eN let

W;\fﬂ(T) = n)n S XNa wp((m'n)n) S 6}

Each 71';\[ () is a seminorm on the space of the operators T': X — Y which
are bounded on Xz and we have 7]\ 5(-) < W;Vgl( ). Moreover, if we compare
p”@( ) with Mp(-) we get

B sup{|(Ten)newllp « (=

Mp() =mp 5( B < whlg()8 < NYPMp(-).

Note that an operator T : X — ¥ is in Pp(X,Y) iff limy oo 7y 5(T) < 00
for all g > 0. In this case

(3) 7p,6(T) = Jim m)lg(T).

The domination principle (see [11], 17.3.2) is one of the fundamentals
of the theory of linear summing operators. We are going to examine those
nonlinear operators for which such a principle is valid. For this we introduce
the class AD,(X,Y) of p-dominated (1 < p < c0) operators, defined to be
those T': X — ¥ such that

V8>03ZcBan3iL € PL(X,Z) Vz € Xp :
For T € AD,(X,Y) and 8 > 0, we set
adp,s(T) i= int{mp(L) : L € Pp(X,"), |Tx|| < || Lal|, = € Xp}.

(ADL(X,Y),ad, 5()) is a seminormed space for each § > 0 and if T €
AD,(X,Y) then

(4) adp,5(T) 2 8p,5(T) = 87 Mp(T).

| Tz|| < || L.
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THEOREM 1.2. For T : X — Y the following conditions are equivalent:
(1) T € AD,(X,Y).
(i) 3Z € Ban AL € PLX, Z) VB> 03 2 0 Vo € X5 :
| Tzl < caflLz]].
(iil) 3 probability measure 4 € C(Bx-)" V8> 03dg > 0 Vz € Xp:

1P
ITzl < ds( § lea) duz) "
X
In that case
ad, 5(T) = inf{cgmp(L) : ¢g, L as in (i)}
= inf{dy : dp, p as in (i)}, F>0.
Proof. (1)=(ii). We fix ¢ > 0. We can find a family (Z,)n of Banach
spaces and a sequence (Ly), of operators Ly, € ’Pf,(X , Zn} with
adpn{T) = mp(Ly) —e,  |Tafl < YLnzl], z€Xn, neN
Defining the I1-sum of the Z, by

= (DZn)1 = {(20)n : 20 € Zu, [((zn)ull = [[(zn)nllx < o0}
and fixing N,M € N with M > N and 3, .,,27" < & we define an
operator Ly : X — Z by

—T

Loz = Lyz+ Z ———Lyz, zecX.
o el mp(La)
Hence, 7p(Lo) < mp(Ln) +€ and Lo € PHX,Z). Forn > M and © € Xp,

we have
| Tz < 2™my(Ln)ll Loz,
which proves (ii). The inequality | Tz|| £ [|Loz|| for & € X leads to
inf{enymp(L) : en, L as in (i)} < mp(Lo) < mp(Liv) +€
< ady N (T) + 2¢.
(if)=>(iii), We choose L € PHX, Z) according to (ii). The domination

principle ([11], 17.8.2) provides us with a probability measure 4 € C(Bx~)*

ch that
such ™

@( § Het ol duta)

Bax
For z € Xp, B > 0, we get

ifp
T3] < caliLall < esmp(2)( I o) du)

Bax»
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Moreover,
inf{dg : dg, gt as in (i)} <inf{camp(L) : cg, L as in (i) }.
(ili)=(i) is obvious. m

With the help of a simple weak™ argument it is possible to majorize an
operator T € AD,(X,Y) in an optimal sense:

¥/ > 0 J probability measure Ay € C(Bx-)* ¥r € Xj:

1/p
Tal| < adpp () § 1m0 dra(a) .
X
The Grothendieck—Pietsch domination principle is nothing but the state-
ment .AD:; = 'Pﬁ, and we have

adp 5(T) = mp,a(T) = mp(T), B> 0,
for every operator T' € Pé(X Y.
Various inclusions known from the linear case carry over directly to the
classes AD,, 1 < p < oo. For example, using Lebesgue’s theorem (see [9],

19.5.4, 19.6.2), we get AD, C AD,, AD, C P, 1 < p < ¢ < o0, and every
operator of AD, maps weakly null sequences to norm null sequences.

2. Nonlinear summing integral operators. In this main section we
investigate summing integral operators on B(X, X)-spaces which admit an
integral representation with kernels satisfying the Carathéodory conditions.
For those operators we prove a generalized version of the domination prin-
ciple.

We first state a useful dependence of the strong and weak lp-norms on
totally measurable functions:

LEMMA 2.1. Let (g;); be a sequence in Wp(B(X, X)). Then
wp((95)5) = sup{wy((g;(2));) : t € S}.

Proof. Define p* by 1/p + 1/p* = 1. Then

wp((97);) = sup{[|({€, )51l : € € Bz x)}

:sup{HZngjl (a4} € lP*}
=suP{Z’(m*,aj9j(t)H €S, (a5); €lpr, 2" € BX"}

= sp{[[({e*, g;®)illy : t € 5, 2 € Bx-}. w

Recall that in order to compute the seminorms 1 4(T) and 51,8(T) of
an operator T : X — Y, it is only necessary to know T on the $-ball.
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LEMMA 2.2. Let S be a compact Housdorff space, 8 > 0 and let T :
B(2,X)s = R, Tg = {5 0(t,g(t))dA(t), g € B{X,X)g, with A € rca(Z).
and a nonnegative kernel @ with the properties

(i)(p:SXXﬁ"')Ca
(ii) @(t, g(t)) € Li(A) for every g € B(X, X)g,
(iii) (¢, -) is continuous A-a.e.

If m,5{T) < oo, then there exisis a probability measure p € C(S)* such that

(Tg5)sll < 2m1,6(T) o ((g5(8)5) dp(t),  walle;)s) < B/2-
s

Proof. Note first that by using the constant sequence (0);en, mi,5(T)
< oo implies T0 = 0. Hence (-, 0} == 0 A-a.e.

We define @, := @ An, n € N. Obviously @n{-,2) € Lo(A) for 2 € Xp.
According to [7], 11.4.1, we can assume the existence of a lifting p of Lo (1),
Define

@n('am) = Q(Wn('am))s TE Xﬁ-

The lifting properties lead to &, (-, ) = wn(, ) A-ae., z € Xg, and

sup |Zn(t, z)| = on(2)|, =€ X

tes
We claim that

m
M, = { 3 x8,@n( %) {B1,- ., B} TP of §,
i,j=1
o(B;) = Bj, wa((®ij)icm) <8, § < m}

is a directed set with respect to the pointwise order “<”:

Let f,g € Hy. Then it is possible to find a measurable set A such that
o(A} = A and fV g = xaf +xs\ag- Hence, fV g belongs to H,.

We next claim that ., is a bounded subset of Ly(}):

Let g = 3 i1 XB;Pn(- 2ij) € Hn. Define gi; 1= x5,245, 1 £ 4,7 < m.
Then w1{(gi;)1<1,5<m) < B, and our assertion follows from

Aria(T) 2 Y T =y § xs, (0)e(t5i5) dA(2)

1,4 ij S8
> { xa, ©)enlt, ziy) dAR)
i, S
= | S xm, (Ot 2i5) dA(E) = { gD (D).
S i, g

Finally, we state a triviality:
m1,8(@n(£))8 = sup glt), tes.
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Now, applying 8.4.4 and 11.5.4 of [7] leads to m1 g($r(t)) € L1(A) with
JrLs(@al)) ar(t) = 674 sup [gdA(e) < mip(T).
g 9EHn 5

We claim that s1,5-1(Zn(+)) is A-measurable. This can be seen by apply-
ing [7], 11.5.4, to the directed set

= { i XB; Bnls Tig) w1 (i )igm) ™ : {B1, ..., B} Z-P of S,
441
o(B;) = By, 0 < wn((@i)izm) < /2, j Sml,
of A-measurable functions, where
81,8/2(@n(t)) = Sélnp g(t)-
Hence, by Proposition 1.1, s1,g/2(&n(t)) € L1(A} with
s1,8/2(Pn(t)) < 2m1,5(@n(t))-

For X-simple functions g; = 310 x5, % € B(Z, X) with wi((g;);) < 8/2,

we then derive

®) D Venlt g ANt =D xpyent zi) dA(E)

i 8 RN
= S Z XByj @n(ﬁ mij) d)‘(t)
S 4.4
< §s1,8/2(Ba(0))wa ((95())5) dA(E)
5

= dn {wi((g5(£));) dXn(8),

g

where dy, := {g 81,8/2(Bn(t)) dA(t) and the probability measure A, is defined
by

An(4) = d* § s1,9/2(Bn(2)) dA().
A

By uniform approximation with X-simple functions we can extend in-

equality (5) to all sequences (g;); in B(Z, X) with wi ((g;);) < 8/2. Observe
that

dn < 2§ m1,0(@n () dA(E) < 2mr,p(T).
)

Finally, we take a weak™ cluster point p € C{S)* of the sequence (An)n.
"Themn, for any finite sequence (f;); of functions in C'(S, X) with w1 ((f;);) £
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B8/2, we may conclude

(6) ZTJ"; > Vel £(0) dA mhngwnm (£)) dA(E)

i S

< 2m1,6(T) {un ((£5(8)),) duslt)-
s
To see that inequality (6) remains valid if we replace C(S, X) by B(Z, X)
we have to make a few observations.
We take a compact K C § and x € Xz/5. Then, for every open U with
K CUC S, we may find a function ¢x,r € C(5) with 0 € gy < 1 and

0,te S\U,
QSK,U(t) = {1, te K\

We conclude from inequality (6) that
T(xxz) = | ot xx(t)a) dA(t) < { 0(t, dxv (D)) dAG)

g 8
< 2m1,5(1) | g, ()2 duald)-
s
Since p is a regular measure we can approximate xz p-a.e. with functions
¢k, as above to obtain

(1) Tlxxz) < 2ms(T) | xx @)l dut) = 2my o (T)u(K) ||

5
Exploiting the regularity of A and u we can prove inequality (7) for
arbitrary A € X. For this take a sequence of compact sets K; C A with
(A+ u)(AN\ K;) — 0 as ¢ — 0o. Then

T(xaz) = | 0(t, xalt)z) dr(t) = Jim. [ ot xx. (£)z) dA(L)
g S
< 2my,p(T) Jim p(K)|]| == m1,0(T)u(A)] 2]

Hence, we may extend inequality (7) to X-simple functions g € B(E, X )42

®) Ty < 2m 5(T) | o) du(e).
5

By uniform approximation with D-simple functions and by using the kernels
(¢n)n again, we can extend inequality (8) to all functions in B(X, X)g/2.

Now, take a sequence (g;)j<m in B{X, X) with w;((g7)j<m) < 8/2. Let
H := span{g; : j < m} and fix £ > 0. Applying Luzin’s theorem ([7], ILI,
8.3) to the sequence (g;);<m and the measure u provides us with a compact
K C 5 such that

HMENK) S 5
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with ¢ := max{2n1 5(T),1}. Let 6y : H — C(K, X) be the restriction map
g — glx. With an extension theorem of Bombal and Cembranos ([4], p. 138),
we obtain an isometric embedding

8 : 0,(H) — C(5,X)

such that 02(f)|x = f for f € 6:(H). We define § := 65 0 8;. Then [|6]| < 1
and 0(g)lx = g|k for g € H. For f; == 6(g;), j < m, we derive from Lemma

1,

wr((£7)3) < [10lw1i((g5)5) € 8/2,

and obtain
9)  §wn((f5®)) du(®) < [wi((g;());) dult)
g 8

+ | hoa (£ (0)5) — wil(g5(9)5)| dult)

S\K

< S wi((g;(t));) dult) + £

3 2em
Using inequality (8) we deduce that for every j < m,

(10) |Tgi—THI< | wlt,g;®))ar®) + | oft, f(5) dr(r)
S\E S\K

<omp(T)( | lgs®ldu®+ § 1500 du)

S\K S\K
< 2mp(T)Bu(S\ K) < 5~
Finally, by putting (6), (9) and (10) together we get what we wanted to

prove:
> Tg <> |Tg —~TH|+ Y . TF
3 i ki

< 6/2+ 2m1,(T) § w1 ((£())5) duslt)
)

< e+ 2m0(T) §wi((g;(8));) du(t). w
s
The following theorem provides a characterization of 1-summing oper-

ators on B(X, X)-spaces which have weak integral representations in the
sense of Lemma 2.2,

THEOREM 2.3. Let T': B(X, X)) — Y, 8 > 0, have weak integral repre-
sentations (Tg,4*) = {guy(t,g(t)) dwy~ (), y* € Y™, with respect to meo-
sures wy € rca( ). and kernels u, which satisfy the conditions (1)— (111) of
Lemma 2.2 and the additional condztzon
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(iv) uy+(-,0) = 0 wy+-a.e.
If m.g(T) < oo, then there exists a probability measure u € C(S)* such that

1(Tg3)5011 < 4m16(T) wn{(gs(0);) dult),  wil(es)s) < 6/2-
g

Proof. Let I = {yf,...,y5} C By.. We define A := Y7, wy-. Let hy:
be the Radon-Nikodym derivative of w,, with respect to A. Then

(Tg,yt) = § uys (£, 9(t)) duwye (£) = | ys (£, 9(£)) dAN(2)
g S
with s (t, ) = hys (t)uyy (2, -). Note that fyes(-) A-a.e. and so
(11) {lugy (£, 9(8))| dwge (£) = § [y (2, 9(£))] dA(2).

G g
For the operator Py : B(¥,X)3 — R defined by
Prg = | [@y; (6, 9(E)| V ... V gy (£, g(£))| dA(2)
e
we claim that 7y g(Pr) < 2my a(T):

For this, we choose functions (g;)j<m wWith wi{(g;)j<m) < B. We fix
j <m and take pairwise disjoint, measurable sets A;1,..., A, such that

Prie) =3 | et a5 ()1 A0 € 3§ e (8 a5 ()] ()

i=1 Aj; i=1 §

= Z S ‘“y;‘ (ta XA;:95 () d“’y;‘ (1) by (11)
i=1 g

=3 e (s ®) dee () by ()
i=1 Aj;
<3 | (Rotys (605 60)] + [mugs (6 5 (0)) oy 8) =
i=1 Aji

Then we may find measurable sets By;, Cji, Dyi, Ej; with Aj; = By UCy; =
Dy; U Eji, 1 < ¢ < n, such that

M:

T= 3§ Rewys (t, 0;(t)) dwyy ()) — | Rewy; (8, g5(t)) dwye ()

=1 By; Cji

+Zn: | Imoug (2, 5(0)) dwy; () ~ | Im”y;(*sgg())dwy :(2)

i=1 Dy, Ej;

.4.
=
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< ZU(T(XB_-MQJ')’D:H + |<T(chigj)7y2‘>1

f==1

+ ‘(T(XDjigj)’ y:)l + |<T(XEjigj)5 'yz*)i)

%
< > (ITg5xss,

i=1

+ ”ngXCjiH + ||Tg.’fXDj1'” + ”ngxEj:'H)‘

From our construction and Lemma 2.1 we see that
wi({g5X3;0 ixes i) S 80 wil{gixpyr gixmu}s) £ 8
and so

ne m k)
> Py <30 (ITgixsyl + | Tgsxe, | + 1 Tgixn,
=1 =1

+[1Tgixz;: )

S 2ﬂﬂ.1n8 (T)7

which proves our last assertion.

By applying Lemma 2.2 we get a probability measure Ay € C{S)* such
that

1(Prgs)ilh < 4mp(T) §wi((g:(8));) dhe(2)
s

is valid for all sequences (g;}; in B(Z, X) with wi((g;);) < B/2. To replace
Pr by T in the above inequality we use again a weak* argument. Note that
£ :={I C By~ : |I| < oo} is directed by inclusion and for Iy, Iz € £ with
Iy C Is we have

(Prig:)ills < [(Prags)sll-
We choose a weak* cluster point u of the net {Ar)ree. Then, for every I € £
and every finite sequence (f;); in C(S,X) with w1((f;);) < B/2, we may
conclude that

(12) I(Prf)slle < 4ma,(T) §on ((F5(0))5) dade).
5

By using the same arguments as in the proof of Lemma 2.2 we see that
inequality (12) remains valid if we replace C(5,X) by B(ZL, X).

Finally, take a sequence {g;);<, in B(Z,X) with wi((gj)j<n) < 8/2.
Then we find I = {37,...,y%} € £ with

1(T95)senlis = ({75, 47 sgnlls < 1(Prgs)j<nllz
< dm,6(T) {wi ((95(1))5<n) dus(t). =
S

The characterization of p-dominated operators on C'(S)-spaces takes a
simpler form if we apply the corresponding theorem for linear p-surnming
operators on the respective spaces {[11}, 17.3.3):
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An operator T : C(S) — Y belongs to AD,(C(S),Y) (1 < p < o0) iff
there exists a probability measure X € C(S)* and for all 8 > 0 there exist
constants cg > 0 such that

(13) s < eo(Jl0Par®) ", fecs)
g

Computing the infimum of all such constants cg with respect to proba-
bility measures A € C'(5)* we get ad, s(1").

Note that {13) remains a sufficient condition for p-dominated operators
if we replace C(S) by B(X) (Theorem 1.2).

From (13) and Theorem 2.3 it follows that every I-summing operator on
a B(X¥)-space which has weak integral representations in the sense of 2.3, is
1-dominated.

3. Summing Hammerstein operators. First, we recall basic defini-
tions and facts. For detailed information about linear operators and Ham-
merstein operators on C(5, X)-spaces we refer to [2, 3, 1, 10]. We call
an operator T € M(C(S,X),Y) a Harmmerstein operator, and write T' &
MHP(C(S7 X),Y), if

(14)  ¥f, fr, fr € C(S, X)), supp(f1} Nsupp(fa) = @
T(f+ fi+ L) =T(f + f1) + T(f + f2) = T(f).
If we are interested in operators with the Hammerstein property (14) in a
special subclass A € M(C(8,X),Y), we write Agp(C(5,X),Y).
Let U: ¥ — M(X,Y) be an additive set function and o > 0. Then the
semivariation sv(Uy, -} : X — [0, 00] is defined by

sﬂUmAy=mm{HiiUMﬁ%“:&hvnﬂ%}ﬂ$of&
= zl,...,mrEXu}.

In [1], Theorem 2, the Riesz representation theorem was extended to Ham-
merstein operators: every Hammerstein operator T' € Mpp(C(5, X),Y) has
an integral representation

Tf = | f(z)dU,
§
for an additive set function U : X — M(X, Y™**) with bounded semivaria-
tion. In many cases {see [10], Theorem 3}, we get the existence of a control
measure \ € rca(X) . for the family of semivariations sv(Us, ), & > 0, which
means

feC(8,X),

sv(Uy, ) = 0 whenever A(:)— 0, a>0.
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A Hammerstein operator T € Mpyp(C(S, X),Y)} which admits a control
measure can be represented by an additive set function U : ¥ — M(X,Y)
and has an extension {[10], Proposition 2.2) T : B(X, X) — Y,
fngg(m)dU, g€ B(X, X).
8

Let us now pass to summing Hammerstein operators and their exten-
sions.

THEOREM 3.1. Euery p-summing Hammerstein operator has o control
measure.

Proof. Let T € Ppup(C(S, X),Y). It suffices to verify criterion (v) of
[10], Theorem 3. Let {f }n be a sequence in C(5, X )4, @ > 0, with pairwise
disjoint supports. By Lemma 2.1,

Wp{(fa)n) = sup{[{((@", fa(t)))nllp : &* € Bx», t € 5} < supl|faf <o
Hence, (T fa)nllp < #p,o(T)x and therefore imy o [[T'fs] = 0. =

THEOREM 3.2, Let T' € Ppue(C(S, X),Y) and let T : B(E,X) — Y be
its extension. Then T € Pp(B(Z,X),Y) and m, o(T) = 7, 5(T), 8> 0.

Proof. According to (3), it suffices to show that m'5(T) = wgﬁ(f),
B >0, NeN. So,let (gnlncn € Wp(B(E,X))g, € >0, with

|(Tgndnenly 2 Tha(T) —e.
For H :=span{g, : n < N} we can find a linear map ([10], Proposition 2.4)
©:H — C(8,X) with
Il <1, |T6g-Tg| <eN~'?, geHs
Setting hy := Ogn, we may conclude wp({(hn)nen) < Wp({gntnen)||O < B
and
”(TQH)TLSNHP st ]|(Tgn = Tho)ngnllp + [(Tha)ngnllp < €+ Wgﬁ(T)ﬁ-
Finally, we get m75(T)8 > “(Tgn)nSN”p —e2 wgﬁ(f)ﬁ — 2. m

Given any Hammerstein operator T' € Myp(C (8, X),C), according to
[1], Theorem 3, there exists an integral representation

Tf=\ult, f(£))dA(t), feC(S8X),
s

with a A € rca(X), and a kernel u : § — M(X,C), lae., such that
u(, &) € Loo(A), z € X and M,(u(-)) is bounded for each @ > 0. We pointed
out before that the extension of every p-summing Hammerstein operator is
p-summing again. Hence, Theorem 2.3 applies and together with a weak*
argument we get the following characterization of 1-summing Hammerstein
operators on C(5, X )-spaces.

icm
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THEOREM 3.3. For every T € P1up{C(9,X),Y) there ezists a probabil-
ity measure p € C(S)* such that

KT F)sll < 4m2a(T) L wa((F5(8)5) dult),
S

wi({f)<B, B>0

The combination of 3.3, 1.1 and inequality (13) leads to an extension of
the Grothendieck-Pietsch domination theorem for summing Hammerstein
operators on C(S)-spaces.

COROLLARY 3.4. Py up(C(S5),Y) = AD1 gp(C(8),Y), and
3ady g(T) < ma(T) < 8126(T) < ady 26(T)
for each T € P1up(C(5),Y) and 3 > 0.
Every 1-dominated operator is p-summing for 1 £ p < 0o and therefore
COROLLARY 3.5. Py up(C(S),Y) C Ppup(C(5),Y), 1 <p < oo

The corresponding result concerning 3.4 for linear operators on C(9)-
spaces can be found in [11], 17.3.3. It is an open problem whether 2.3 and 3.4
can be extended to p-summing integral, respectively Hammerstein operators
for 1 < p < oo. Note that the operator T € M(la, 1),

(1 -4z —ele if ||z~ el < 1/4 for some s,
T(z) = {0 otherwise,

is 1-summing but not 2-summing, where (e;); denotes the canonical basis in
I, respectively 7;. This reveals that 3.4 and 3.5 do not hold for 1-summing
Hammerstein operators on C(8, X )-spaces in general.

Using the natural inclusion between p-dominated and p-summing opera-
tors, we immediately see that every p-dominated Hammerstein operator has
a control measure. Just as for p-summing operators in 3.2, it is also possible
to prove that the corresponding extension of a p-dominated Hammerstein
operator is p-dominated again.
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On @-independence, limit theorems
and g-Gaussian distribution

by

MARCIN MARCINIAK (Gdassk)

Abstract. We formulate the notion of -independence which generalizes the classical
independence of random variables and free independence introduced by Voiculescn. Here
Q stands for a family of polynomials indexed by tiny partitions of finite sets. The analogs
of the central limit theorem and Poisson limit theorem are proved. Moreover, it is shown
that in some special cases this kind of independence leads to the g-probability theory of
Rozejko and Speicher.

1. Introduction. In this paper we are concerned with a certain gener-
alization of the classical notion of independence of random variables. The
classical case describes properties of a commutative probability system, i.e.
the set of complex measurable functions defined on a measurable space with
a normalized positive measure. In [17] D. Voiculescu showed that in order to
define a reasonable and essentially different independence cne should con-
sider more general concepts of random variables and probability systems.

DEFINITION 1.1. A probability system is a pair (A, ¢), where A is a
unital C*-algebra and ¢ is a state on A.

Here A plays the role of a noncommutative analog of a set of complex
random variables and ¢ is a “noncommutative” probability measure. One
can define the distribution of an element of A.

DEFINITION 1.2, Let (A,) be a probability system and a € A. A fun-
ctional Ti, on the *-algebra C[X] of complex formal polynomials is called
the distribution of a if

fio(P) = p(P(a))
for every P € C[X].

From the well-known Gelfand-Naimark theorem we easily get
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