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Isometric embedding into spaces of continuous functions
by

RAFABL VILLA (Sevilla)

Abstract. We prove that some Banach spaces X have the property that every Banach
space that can be isometrically embedded in X can be isometrically and linearly embedded
in X. We do not know if this is a general property of Banach spaces. As a consequence we
characterize for which ordinal numbers &, 8 there exists an jsometric embedding between
Co(a+1) and Co(B + 1).

Introduction. Let X and V" be two metric spaces. We say that a trans-
formation F' of the space X into ¥ is an tsometry or an isometric embedding
if dy(Fa:;, Fay) = dx(xl, 232).

In the sequel, we only consider linear spaces over the field R. The letters
F,G,H,... will denote arbitrary isornetries and S,T,U,V,... linear isome-
tries.

Mazur and Ulam [5] have proved that if X and ¥ are Banach spaces then
each isometry F mapping X onto ¥ such that F(0) = 0 is a linear operator.
If the isometry F maps X into Y, the linearity of F' does not necessarily
hold. Figiel [4] has proved in this case that there exists a unique continuous
linear operator I of norm one mapping the closure of the linear hull of the
set F(X) into X and such that the superposition U o F is the identity on X.

On the other hand, each isometry F' mapping a Banach space into a
strictly convex Banach space such that F(0) = 0 maps middle points to
middle points, and hence it is linear.

In §1, we show that each isometry F' mapping a Banach space into a
space of continuous functions such that F(0) = 0 can be “linearized” in
such a way that the isometric character is preserved.

In 1], p. 193, the linear dimension for Banach. spaces is defined. Two

Banach spaces are said to have the same linear dimension if each space

is isomorphic to some subspace of the other. An (incomplete) dimensional
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classification of the spaces of all continuous functions defined on ordinal
numbers is given in [2].

In the same way, changing isomorphisms to linear isometries, we say that
two Banach spaces have the same metric linear dimension if each space is
isometrically isomorphic to some subspace of the other.

In §2 we give a complete isometric classification of the spaces of con-
tinuous functions defined on ordinal numbers with respect to metric linear
dimension. Actually, we show that two such spaces have the same metric
linear dimension if and only if they are isometrically isomorphic.

In §3 we apply Theorem 1 to generalize the classification of 2 to non-
linear isometries.

Let X be a Banach space. Let S, = {z € X : |lz|| = r}. A point ¢ € S,
is a smooth point if there i only one continuous linear functional f, € X*
of norm one such that f,(a) =r.

Mazur proved (see [6], Prop. IX.4.3, p. 401) that the set of all smooth
points in a separable Banach space X is a dense Gg-set in X.

Let X and Y be two Banach spaces. We say that X has not greoter
metric linear dimension than Y, written X — Y, if there is a subspace of
Y isometrically isomorphic to X. f X — ¥ and ¥V — X, we say that X
and Y have the same metric lineor dimension, written X 2Y. By X & Y
and X 2 Y we mean the opposites of X — ¥ and X @ Y, resp.

In §2 and §3 we follow von Neumann’s definition of an ordinal (see [8]).
Greek letters will stand for arbitrary ordinal numbers, and the symbol w will
stand for the first infinite ordinal. An ordinal « is called a prime component if
the condition o« = F 4y implies & = y; equivalently, « is a prime component
iff < aandy < aimply 3+ <o, iff < aimplies 8+« = a, or iff
there exists a unique p such that a = wh.

For any ordinal « let of denote the greatest prime component < a.
Every ordinal o has a unique representation in the form « = o'k + v where
0<k<wand v <o

Sets of ordinal numbers will always be assumed to be endowed with the
order topology. Thus, an ordinal is compact iff it is a successor.

C{x+1) denotes the Banach space of all continuous real functions defined
on a41 with the supremum porm, and Co(a+1) = {z € C{a+1) : z(a) = 0}.

1. Isometric embedding into spaces of continuous functions. Let
K be a compact topological space and let C(K) be the space of all continuous
functions defined on K. For every t € K let §; be the pointwise evaluation
at 1, i:e., do(x) = =(t) for v € C(K).

THEOREM 1. Let K be a compact topological space and let F : X —
C(K) be an isometric embedding defined on o Banach space X, such that
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F(0) =0. Then there is a nonempty and closed subset L C K such that the
superposition Qo F : X — C(L) is o linear isometry, where Q denotes the
mapping restriction to L.

NoTE. The isometry F' is not supposed to be linear or bijective. In the
proof it 1s shown that we can take as I the set

L={te K :6;0F is linear}.

Proof (of Theorem 1). Suppose first that X is separable,

Let @ € X be a smooth point in the sphere {z € X : ||z| = |la| }. Let f.
be the functional of norm one such that f,{(a) = ||a||. For every n € N, let
tn € K be such that |(F(na) - F(—na))(t.)| = [|[F(na)— F(—na)| = 2n||a||.
Thus, for every r with |r| < n,

2nlial| = || F(na) — F(—na)| = |(F(na) - F(-na))(tn}]

< [(F(na) — F(ra)){tn)| + [(F(ra) — F(—na))(t.)|

< [|F(na) - F(ra)ll + [|F(ra) — F(—na)|

= [n—r[-llall + n+7[- |lal| = 2n]al,
therefore, equality holds, and this implies (n—r)||a|| = |(F (na) —F(ra))(tn)].
Putting r = 0, we obtain |F(na)(t,)| = n|a|. Let e, € {—1,1} be such that
enF'(na}(tn) = nl|all. We claim that e, F(ra)(tn) = r|le|| for |r| < n. Indeed,

en(F(na)(ta) — F(ra)(tn)) = nla|| — enF(ra)(tn)
= njal| — [F(ra)(ta)|

znlal =|r|-[lall > 0,
and therefore e, (F(na) — F(ra))(t,) = |(F(na) — F(ra)}(t,)| = (n-r)|ea|],
which gives our claim.

By passing to a subsequence, we can assume that £, = ¢, € {—1,1}
for all n. The sequence {t,} has a cluster point ¢, € K. It is easy to check
that F'(ra)(t,) = eqr||al| for all » € R. This implies (see [6], Lemma I1X.4.6,
p. 405) that fu(z) = e, F(z)(t,) for # € X. Therefore, fu = €,6;, o F' and
consequently §;, o F is linear. Consider the closed subset of K defined by

L={te K :d;oF is linear}.

‘We have proved that for every smooth point ¢ € X there exists ¢, € L such
that |F(a)(t,)] = [la]|. Since X is separable, the set of all smooth points
is dense in X, and thug the superposition @ o F : X — C(L) is a linear
isometry, where Q is the restriction to L.

Now, suppose that X is not separable. We have just proved that for every
separable subspace Y C X, the map Uy : ¥ — C(L(Y)) is a linear isometry,
where L(Y) = {t € K : (6; o F)|y is linear} and Uy {(z) = F(z)|L(v). Note
that if ¥7,Y5 C X are two separable subspaces, then the closure of their
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subspace sum, Y1 + Y3, is also separable, and L{Y1 +Ys) C L(¥Y:) N L(Y2).
Therefore, the family {L(Y) : Y C X, V¥ separable} has the finite intersec-
tion property, and then (see [3], Theorem 3.1.1, p. 166) the intersection of
the family is nonveid. Set I = {t € K : §; o F' is linear}. It is clear that

(%) L=[{L{Y): Y < X separable},

and so L is a nonvoid closed subset of K. Let Uy : X — C(L) be given by
Uz = (Fz)r. It is a linear operator. It remains to he proved that Up is an
isometry.

Let o € X and consider the family (depending on a)

A={Y CX:a€Y, Y separable}.

The family A is a nonempty directed set. For all ¥ € A, we have {|Uy (a)|| =
lla|l, and therefore there exists ¢(Y) € L(Y') such that |(Ta)(#(¥))| = ||a|.
We have a net {¢t(Y): Y € A} in the compact set K. Then (see [3], Theo-
rem 3,1.23, p. 172), the net has a cluster point ;3 € K, which means that for
any neighbourhood V of £y and for any ¥; € A, there exists ¥ € A such that
Y DY and ¢(Y") € V. From this [(Ta)(te)| = ||e|| follows. It remains to be
proved that ty € L. According to (¥), it is enough to prove that ¢y € L(Y)
for all Y € A. If there existed Yy € A such that t5 & L(Y5), we could find a
neighbourhood V of ¢ satisfying V N L(Yp) = @. Since % is a cluster point
of the net {¢(¥V) : ¥ & A}, there would exist ¥ € A such that ¥ O Y; and
t(Y) € V, contrary to the fact that (Y) € L(Y) C L(Y}). m

If the compact set K is metrizable, then using the simultaneous extension
theorem due to Borsuk and Dugundji (see [7], Proposition 21.1.4, p. 365)
we obtain a linear isometry into the original space C(K).

THEOREM 2. Let K be a metrizable compact topological space and let
F : X — C(K) be an isometry defined on a Banach space X, such that
F(0)=0. Then there exists a linear isometry T : X — C(K).

NoTE. According to the Borsuk-Dugundji Theorem, we can assert that,
for any z € X,

(Tz)(K) C co((Fz)(K)).

2. Metric linear dimension of the spaces of continuous fune-
tions. Since C(a+1) 2 Co{a+2), it is enough to classify the spaces Co(a+1).

If a < 3, then there exists a linear isometry 7°: Co(a 4+ 1) — Cp(B + 1),
defined by Tz = y where y(7) = z(v) for v < o and y{y) = 0 for v > a.

The following result provides a complete classification of the spaces
Co(ar + 1) with respect to metric linear dimension.

. THEOREM ‘3. Ifa—an+7—|—1 and 8= B'm+6+1, with v < o' and
§ < @, then: o
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(a) If a is finite, then Co(er) 2 Co(B) if and only if o = 8.
{(b) If & is infinite, then CO( ) & Co(B) if and only if the following three
(2

conditions are satisfied: (1) o' = 8'; (2) n=m; and (3) v,6 > 0 or vy=24
= 0.

The proof of Theorem 3 is based on the following lemmas.

Lemma 1. (a) nga +6) = C(a) C(ﬁ} Jor arbitrary compact ordinals e
and 3, and so C(3 1, ou) 2 C(3 1, (5)) for arbitrary compact ordinals
0,y iy and every permutatmn 7 of {1 .. b

( ) If a is a prime component, v < @ and k € N then Clak+y+1) =
Clak +1).

Proof. (a) The map T : C(a+8) — C(a) xC(F) defined by T{z) = (z,v)
where z(t) = 2(t) for 0 <t < aand y(t) = 2(a+t)for 0 <t < B is a
one-to-one linear isometry.

(b) follows from (a) and the equality v + ak = ak. u

LEMMA 2. Let o be an ordinal. The following conditions are equivalent:

(1) If v <« then Cla+ 1) 5 C(y + 1).
(i) Cla-+1) & Cola + 1).

Proof. Suppose (i) holds and (ii) is false. Let
T:Cla+1)— X CCola+1)

be a one-to-one linear isometry. Let U7 : X — C(a + 1) be the inverse map
of T. We have [Uz|| = ||z|| for all 2 € X.

Let yo € C(a + 1) be the function identically equal to 1 and zq = Ty.
Since zg € X C Cp(a + 1), there exists v < o such that |zo(t)| < 1/2 for
t >

Let P:C(a+ 1) — C{y+1) be the “restriction” to v -+ 1, more exactly
Pz = z where z(t) = z(t) for £ < v, and consider the superposition Po T :
Cla+1) — C(y + 1). According to (i), this map cannot be any isometry.
Hence, there exists g in C{a+ 1) such that [jy]| =1 and ||P o T(w1)]| < 1.
Put ¢; = Ty; € X C Co(e + 1), and take £ such that |y (£)] = 1.

Let o == sgn(y.(£)) and 2z = 2o + oz; € X. We have

izt = 1T = lvo + el = wo(€) +oyi(€) = 2.

On the other hand, let so be an ordinal such that |z(so)| = |z]. Now if
8p < 7y then |z1(s0)| < |[Pz:l] < 1 and |2o(s)| < 1, and if 89 > ~ then
|zo(s0)| < 1/2 and |z1(sp)| < 1. In both cases we have ||z|| < 2, which is
impossible.

Now suppose (ii} holds. If there existed an ordinal number v < o such
that C{a+ 1) — C(y + 1), then we would easily define the following linear
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isometric embedding:
Cla+1) = Cly+1) & Coly+2) s Color + 1),
contrary to (ii). m

Now we are interested in proving that there is no linear isometry of
Co(a(k+1)+1) into C(ak+1) for any prime component o For this purpose,
we need the following notations.

Let o be a prime component, ¢ # w, 5 > « and let T : Co(a + 1) —
C(8 + 1) be a linear isometry.

For every open and closed set A C o we have x4 € Cple + 1) and
llxcall == 1. Let

(AT) ={v<8: IT(xa)(m)| = 1}.
Then (A,T) is a nonempty closed set. The following properties are easily
checked: .

(@ Aan..Nd,=0eA4,T)Nn...N{4,T) =0
(b) AC B={A,T)C (B,T).
Let A be a subset of a topological space X. The derived set of A is the

set A of all accumulation points of 4 (it depends on both A and X). If £
1s an ordinal, we define the £th derived set by transfinite induction:

AD = 4 4G+ (AEHYM) AN ﬂ Ale
E<A
if A is a noncompact ordinal (see [7], p. 147).
Let 7 > 1 be such that & = w". For any £ with 1 < £ < 7, let A¢ = [1,w).

" LEMMA 3. Let & == w" and B = a. For every § with 1 < ¢& < n and linear
isometry T : Cola+ 1) — C(B+ 1), we have (A, T)E) .

NOTE. This lemma implies that for any A < £, (A, T ¢ [0,w?].

Proof {of Lemma 3). The proof is by transfinite induction.

The case £ == 1 follows from the fact that the set {A1,T) is infinite,
because it contains the sets ({n}, T for every n € N, which are disjoint and
nonempty.

Assume the lemma holds for the ordinal number &; we prove it for E+ 1

We have

=]
AE+1 D U Ik,
k=0
where Iy = [w'k + 1,wé(k + 1)]. The sets (Ix, T) are pairwise disjoint
and closed, and so are the £th derived sets. All of them are contained in
{(Agt1, T>(E) -
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Consider the continuous one-to-one map @y, : @ +1 — o + 1 defined by

t if ¢ ¢ Iy U A,
wk(t):{w5k+t iftEAg,
~wfk+t iftely,,

and the isometry T : Co(a+1) — C{8+1) defined by Tj,&e = T(z o). One
can easily establish that (I, T) = (A¢, T;) and by the inductive hypothesis
we have (I, T)®) 5 §. It follows that (Agy 1, TV is infinite, and so it has
an accumulation point.

Now assume the lemma holds for any £ < A, where X is a noncom-
pact ordinal; we prove it for A. Since (A, TV = Ne<alAn, THE), what
is left is to show that the family {(4,,T7)& : ¢ < A} has the finite in-
tersection property. But if &,...,&, < A and £ = max{£1,...,£,} then
(An,TY®0 N N (A, TYE) = (A, T)® and this set contains (Ag, T)E),
which is nonempty. w

LeEMMA 4. If o is o prime component and k € N, then there is no linear
isometry of Cola(k + 1)+ 1) into Clak -+ 1).

Proof. It is easy to check that Co{a(k+ 1) +1) & Cla+ 1)F x Cp(a+1)
and C{ak +1) 2 C(a+1)*. Suppose the assertion of the lemma is false, and
let T: C(a+ 1)F x Co(er + 1) — C(a + 1)* be a linear isometry. For every
pwith 1 <p<k,let Tp: Cla+ 1) — Cla + 1)F be the restriction to the
pth coordinate, and let Tyt : Co{a+ 1) — C(e + 1)* be the restriction to
the (k + 1)th coordinate. All of them are linear isometries. Suppose & > w
and let # be such that o = w”. For every £ with 1 < £ < n, every p with
1<p<k+1andevery i with 1 <4 <k, let z2° € C{a + 1) be the vector
such that Tp(xa,) = (zPf, .. .,xi’f).

Fix p with 1 < p € k+ 1. By Lemma 3, for every £ with 1 < £ < n,
there exist v > w® and i € {1,...,k} such that |2 (7)| = 1. Since i takes
only a finite number of different values, there exists an i = i(p) € {1,...,k},
depending on p, such that for every & < 5 there exists a v > w¢ such that

76 =
|27 ()] = 1.

Let y=1€Cla+1)and Be = (a+ 1)\ Az Set 2P = (20,...,20) =
Tp(y) = Tp(xa,) + Tp(xs,), where 2} € C(a -+ 1). For every £ < n there
exists y > wé such that [27%(y)] = 1, and hence (To{xa.)};i{v) = 0 for every
J€{l,...,k}. From this, |2f{v)| = 1. As 2 € C(a+1) we have |2 (a)] = 1.

‘We consider two cases.

Case I: The numbers ¢(p) are different for each 1 < p £ k. Then there

exists a p with 1 < p < k such that i(p) = i(k + 1). If we take £ € {--1,1}
and vy < « in such a way that e2(v) > 1/2 for v > 70, £ < 5 such that
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wé > 79, and v > wf such that mf“’f('y) =4 € {-1,1}, then we obtain

(»)
L= {700, ,0,85,0,...,0,6xa)]| = llez® + 6Th 1 (s, )|

> ezl (7) + 625 () > 3/2,
a contradiction.

Cagk II: There exist p and g with 1 < p < ¢ < k such that i(p) = i(q).
We have 2 (@) =¢ € {—1,1} and 2{(a) = 6 € {~1,1}, and hence
(@
1= IT(0,...,0,8,0,...,0,64,0,...,0)] = [lez” + 629
> ezl (o) + 828 () = 2,
which is impossible.

The same proof, using the sets {n} for n € N and A,,, works for the case
O =W.

LemMA 5. If o is a prime component, k € N and 8 < ok, then
Colak +1) 4 C(B+1).

Proof. We may assume that 8 > w, since otherwise the result is trivial.

Put @ == B'n + +, and suppose k = 1. Hence 8 < « implies 3 < o
Therefore 'w < o since @ and 3’ are prime components. If the lemma were
false, then we could easily define an isometric embedding Co(5 (n-+ 1)+1) —
Cola+1) = C{B+1) — C(f'n + 1), which contradicts Lemma 4.

Now suppose k > 1. Hence # < ¢ implies §' < o, or F =aand n < k.
In the first case, if the assertion of the lemma were false, then we could find
an isometric embedding Co{ak + 1) — C(8+1) = C(a(k—1) +1), contrary
to Lemma 4. In the second case, if the lemma were false, we could define
an isometric embedding Co(ak + 1) «» C(8+ 1) > Cla(k — 1) + v + 1) =
C(a(k — 1) + 1), which contradicts Lemma 4. =

Proof of Theorem 8. (a} is trivial.
(b) By Lemma 1(a), we have an isometric embedding

Colo'n+y+1) = Clan+vy+1) 2 Cla'n+1) = Co(e'n + 2).

On the other hand, if 8 < o/n-+1 then, by Lemma 5, Cola'n+1) 4+ C(8),
and hence Cp(a/n + 1) % Co(B), and if 8 > a'n+ 1 then, by Lemma, 5, for
every n < a'n, we have Co(a/n + 1) +» C(r -+ 1), and Lemma 2 shows that
Cla'n +1) /> Co(a'n + 1) and hence Co(3) + Co(a'n + 1). =

3. Extension to the nonlinear case. Theorem 1 allows one to char-
acterize for which ordinal numbers «, 8 there exists an isometric embedding
of Co(ee + 1) into Co(B + 1).
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THEOREM 4. Let o and 3 be arbitrary ordinals. There exists an isometric
embedding of Co{ce + 1) info Co(8 + 1) if and only if there ezists a linear
isometric embedding of Co{e + 1) into Co(8 + 1).

Proof Let F: Cola + 1) — Cp(f + 1) be an isometric embedding, We
can assume that F'(0) = 0. By Theorem 1, there exists a closed subset I
of 8+ 1 such that U : Co{ex + 1) — C(L) is a linear isometric embedding,
where Uz = Fix)p. It is easily seen that there exists a linear isometry & :
C(L) — C(B+ 1) such that (o U(z))(8) = 0 and therefore $o I/ is a linear
isometric embedding of Co(cr + 1) into Co(8+ 1).
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