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According to Proposition 2.1 of [F6Kr96], there exists a large number p € C
such that min.ind(T + pF — A} = 0 for all A € £2. We have (uF)* =0,
because R(uF) = L C W = N(uF). Finally, dim R(uF) = dim L = Max.
Hence the operator uF has the desired properties. m
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On regularization in superreflexive Banach spaces
by infimal convolution formulas

by
MANUEL CEPEDELLO-BOISO (Sevilla and Paris)

Abstract. We present here a new method for approximating functions defined on
superreflexive Banach spaces by differentiable functions with o-Hélder derivatives {for
some 0 < a £ 1). The smooth approximation is given by means of an explicit formula
enjoying good properties from the minimization point of view. For instance, for any func-
tion f which is bounded below anc] uniformly continuous on bounded sets this formula
gives a sequence of A-convex C1* functions converging to f uniformly on bounded sets
and pregerving the infimum and the set of minimizers of f. The techniques we develop
are based on the use of extended inf-convolubion formulas and convexity properties such
a8 the preservation of smoothness for the convex envelope of certain differentiable func-
tions.

0. Introduction and preliminaries. This paper introduces an ex-
plicit, regularization procedure for functions defined on superreflexive Ba-
nach spaces. For any function f bounded below and Ls.c. (resp. uniformly
continuous on bounded sets) on a superreflexive Banach space X we give by
means of a “standard” formula a sequence of C1**-smooth functions converg-
Ing pointwise (resp. uniformly on bounded sets) to f (where 0 < & < 1 only
depends on X). Under some additional conditions, the convergence of the se-
quence of approximate functions is uniform on the whole space X. Moreover,
the approximate functions preserve the infimum and the set of minimizers
of f. These features cannot be casily obtained from regularization methods
like the smooth partition of unity techniques (for a detailed study of this
topic we refer to Chapter VIIL3 of [DGZ], the references therein and [Fy])
or other results that only ensure the existence of smooth approximants (for
instance, see [DFH]),

In Hllbert spaces, our work is closely linked with the LasrymLzons ap-
prozimation method (introduced in [LL] and subsequently studied by several
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authors, such as [AA]) and its more general version given by T. Stromberg
in [Sto]. Actually, we improve the results of [Stz] in the superreflexive case
by providing the best uniformly smooth approximation possible for this
setting. Nonetheless, we want to remark that the approximate functions ex-
plained herein cannot be reduced to those of Strémberg (or Lasry-Lions
approximants in Hilbert spaces); we refer to the remark after Proposition 8
for a more precise explanation. Our approach to smooth regularization in
non-Hilbert spaces comes from two main facts: the demsity of the linear span
of the convex functions (studied in [C]) and the smoothness of the convex
envelope of a “somehow” smooth function. In this direction, we also present
more general versions of certain results in [GR] for infinite-dimensional Ba~
nach spaces.

This paper is organized in the following way. Our main result, Theorem 1,
and several corollaries are explained in Section 1. The proof of Theorem 1
is given in Section 4 with the tools provided by Sections 2 and 3. Section 2
deals with the existence of approximants for a given function f using some
results on extended inf-convolution formulas. Section 3 develops a procedure
for regularizing certain A-convex approximate functions, This procedure
is based on the smoothness of the convex envelope of certain “somehow”
smooth functions.

NoTaTION. In what follows, X denotes a Banach space and || - || an
equivalent norm on X. We denote by Bx the unit closed ball of X under
the norm || - || and by Bx(r) the closed ball of radius r > 0. A function
f: X — RU{+co} is called proper if f # +00; Sine(f) is the (possibly
empty) set {z € X : f(z) = inf f}. We will deal with the following types
of convergence in the set of lower semicontinuous (for short, l.s.c.) functions
on X: pointwise, compact, uniform on bounded sets and uniform on X,
abbreviated respectively by 7, Tk, Tb and 7.

A function defined on X is called A-conver if it can be expressed as the
difference of two continuous convex functions. The conver envelope co f of
a function f : X — RU {00} is defined as the greatest proper convex Ls.c.
function below f (if there exists a convex minorant of f), The explicit value
ofcofat z € X is

T T k3
(1) 71.1511{1{; Aif@i) @ = ;)\iwis 12:1)\1' =1, (2, M)y C X X R-k}-

Unless otherwise stated, differentiability will be understood in the Fré-
chet sense, The following notation is used throughout. C*“(X) (respectively
Czlg’“(X )) stands for the set of differentiable functions defined on X with uni-
formly contindous derivative (resp. with derivative uniformly continuous on
bounded sets). Similarly, C*(X) (resp. Cy*(X)) stands for the class of
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functions on X having a-Holder continnous derivative (resp. having deriva-
tive a-Holder continuous on bounded sets) (0 < o < 1).

1. The main result. We begin by stating the main result of this work.

TueoReM 1. Let p > 1, X be a Banach space and || - || be an equivalent
norm on X which is locally uniformly conver and uniformly smooth. For any
proper lower semicontinuous function f: X — RU {+oc} bounded below,
consider the sequence of A-convex functions given by

AP fimcogh - 227 ln)| |IP (n e N),
where
gn(z) = yig;f{{f(y) + 20 |z l? + 22 nlly|[P — nllz + y|P} + 22|z,
Then

(i) For all n, inf f < AP f < f and Gins(ALS) = Gine(f)-

(i) (AL finen C C’,]S‘“(X) and (AL flpeny C Cé,’a(X) provided that the
modulus of smoothness of the norm || - || is of power type 1 + o actually,
(AL f)en C CH(X).

(i) &% f -2, f poiniwise and ALF =5 fasn — 0o if f: X >R is
COnBnuOUS.

If moreover the norm || - || is uniformly convex then:

(iv) AR f s f as n — oo whenever f is uniformly continuous on
bounded sets.

(V) AP f % f as n — oo provided that f is uniformly continuous on X
{not necessarily bounded below) and the modulus of convexity of the norm
||-]| s of power type p (p 2 2).

REMARK. Tt is well lonown. that the existence of a uniformly smooth norm
on a Banach space X implies the superreflexivity of X (and conversely, the
articles [E] of P. Enflo and [Pi] of G. Pisier tell us that any superreflexive
Banach space admits an equivalent uniformly smooth norm). Similarly, we
want to point out that the conclusions of Theorem 1 cannot be expected to
hold outside the superreflexive setting.

First, the n,-density of the sot of A-convex functions defined on X in
the set of functions on X that are uniformly continuous on bounded sets is
equivalent to the superreflexivity of X (see in [C]). On the other hand, the
existence of C%* bump functions (for some 0 < a < 1) on X implies the
existence of an equivalent norm on X with modulus of smoothness of power

type 1+ « (see Theorem V.3.1 of [DGZ]).

REMARK. The optimal application of Theorem 1 is for a Hilbertian
norm | - |i. In this cage, taking p = 2 in Theorem 1 we obtain approximation
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results similar to those given by the Lasry-Lions approximation method
(see [LL]). Nevertheless, the sequences of approximants are not the same
even in this setting (see remark after Proposition 8).

We proceed to state some corollaries to Theorem 1. They are related to
certain results following from the existence of smooth partitions of unity on
superreflexive Banach spaces (see Theorem VIIL3.2 of [DGZ]). Their proof
is easily obtained by appealing to Theorem 1 and Pisier’s renorming theorem
(the original proof can be found in [Pi]; we refer to [L] for a simpler and
more geometrical proof).

The first corollary improves Corollary 1 of [Sta] for superreflexive Banach
spaces.

COROLLARY 2. Let X be o superreflexive Banach space. Then there exists
some 0 < « < 1 such that any non-emply closed set F of X is the set of
zeros of a A-conwer CY*-differentiable function on X. Moreover, F is the
limit in the Hausdorff distance of a sequence of sets

Gp={zcX: folz)<op,eR} (neN),
where the functions (fn)n are A-conwez and in C5*(X).

Proof. Pisier’s renorming theorem ensures the existence of an equivalent
norm | - || on X with modulus of smoothness of power type ¢ (1 < ¢ < 2).
Given a closed set F in X, consider the proper function d defined by d(z) :=
dist(z, F') = infyep |z —y| for 2 € X (d is proper because F is not empty).
By Theorem 1(i)—(ii), Afd is A-convex, 7~ .differentiable and satisfies
Gint (AY(d)) = Gins(d) = F.

Moreover, using the Asplund averaging technigue (see Proposition IV.5.2
of [DGZ]), we can assume that the modulus of convexity of || || is in addition
of power type p {for some p > 2). Since d is Lipschitz continuous on X, from
Theorem 1(iv) it follows for every n that

FClzeX: Ad(z) <1/n}:=G,,

where ABd is a A-convex Cy? ™ "-differentiable function and (6pn)n converges
to F in the Hausdorff distance.

The next corollary gives a slightly stronger version of sore other approx-
imation results obtained by using partition of unity techniques (for instance,
see Theorem 1 of [NS]).

COROLLARY 3. For any superreflezive Banach space X there is0 < o0 < 1
so that every function f on X uniformly continuous on bounded sets (resp.
uriformly continuous) is the uniform limit on any fized bounded subset B
of X (resp. on X) of a sequence of A-conver CH*-differentiable (resp.
Cé’“-diﬁerentiable) functions having the same infimum and set of minimiz-
ers on B as f.
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Proof. Appealing again to Pisier’s renorming theorem, we can suppose
that there is an equivalent norm || - || on X with modulus of smoothness of
power type ¢ (1 < g < 2). Fix some bounded set B of X and define f =
max{f,inf Bﬁf }. Since f is uniformly continuous on B ywe have inf g f > —co.
Therefore, f is uniformly continuous on bounded sets and bounded below.
Note that trivially f(z) = l(.r) for all 2 € B and so the infimurm and set of
minimizers on 13 of f a.xjcl J are the same. Hence, Theorem 1(ii), (vi) tells us
that the sequence (Af f),, satisfies the conditions of the claim for o = g~1.

If f is uniformly continuous on X, the proof follows the same lines, using
the existence of an equivalent norm with non-trivial moduli of convexity and
smoothness and Theorem 1(v). m

The last corollary is an extension of Remark (viii) of [LL]. It deals with
extending and regularizing functions defined on subsets of superreflexive
Banach spaces.

COROLLARY 4. Let X be o superreflezive Banach space. The following
holds true for some 0 < o < 1 depending only on X

Let § be a subset of X and f 8§ — R be a function that is untformly
condinuous on bowunded subsets of . Then for everyr > 0 and £ > O there
eaists o A-conver function Fe 1 X - R satisfying

(1) infs f = infx P, and Gue(f) = Gine(Fre),
(i) Frs € CH¥(X), and
(ili) f(2) — & € Fre(z) < f(z) for every x € 5N By (r).

Proof. By the same argument as above, let || || be an equivalent norm
on X with modulus of smoothness 1+« (for some 0 < @ < 1). Consider the
following simple extension of f:

Flz) i= {f(a:) for z E.S,
--00  otherwise.
Notice that &p(F) = Gyue(f) € 8. It is not hard to see using Proposi-
tion §(1) and the proof of Proposition 6(v) that the sequence (ALtaF),,
which satisfles (i) and (ii) of Theorem 1, also converges to f uniformly on
bounded subsets of 5., w

The proof of Theorem 1 will follow a general scheme involving two main
gteps. Pirst, we explain an extended inf-convolution formula that gives us
a standard way to approximate functions on X. Then we develop some
convexity techniques in order to get smooth A-convex functions from the
functions given by the extended inf-convolution formula,

2. The extended inf-convolution. In this section we explain the con-
vergence results we need in the proof of Theorem 1. First, we introduce the



270 M. Cepedello-Boiso

definition of extended inf-convolution. This definition generalizes the clagsi-
cal one of inf-convolution (see [Sti] for a general survey of the subject) and
will be an important tool in our work.

DErFINITION. For any map K : X x X — R U {+o00} and any function
[ X — RU {+c0} we define the extended inf-convolution of f and K as
the function

(FOK)@) = nf {7 ) + Kle,)}, s X.
K will be called the kernel of the extended inf-convolution.

ExaMPLE. For g : X — R U {4oc} set Ky(z,y) := g{z — y). Then the
extended inf-convolution f O K, is nothing but the classical inf-convolution
fOg.

Before the statement of the main result of this section, we need to define
some natural properties of kernels.

DerINITION. A kernel K is pointwise separating if for every zg € X and
every § > 0 there exists Cpy 5 > 0 such that K(zo,y) = Cu,s whenever
2o — y[| = 6.

A kernel K is called uniformly separating on bounded sets if for all r > 0
and ¢ > 0 there exists Cr.5 > 0 so that K(z,y) 2 Crs provided [z]| < r
and ||z - y|f = 4.

A kernel K is uniformly separating if for every § > 0 there is some 85 > 0
such that K(z,y) > 5]/ — y[} whenever |z ~y| > 6.

DEFINITION. Given a function f: X — RU {+oco} and a kernel K, we
define the following sequences of functions:

Ixnf:=fOnK and Sgnf:=~(-fOnk) (neN).

REMARK. For any Hilbert norm || - || consider the kernel Ky (z,y) =
llz —y||*. Then, with our notation, the sequence (Skcy m( Ly ,nd ) msn con-
sists of the Lasry~Lions approzimants of f related to the norm || - |-

REMARK. Note that the Lasry-Lions approximation commutes with
translations in the same way as the classical inf-convolution does. This is a
consequence of the following property of the kernel:

Kir(o—a,y) = Kp(z,y +a) (for all o, y and a).

However, the problem of regularizing (not necessarily convex) functions in
a non-Hilbert space leads naturally to more general kernels which do not
yield translation-invariant approximants.

The next facts are easy to check.
Facrg 5. Let f: X — RU {+o0}.
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1. Forxz € X,
I}’{,nf = ;él;({f(y) + HK(.'L', y)}:

Senf(®) = ~Igo(~f)z) = sup {fly) —nK(z,y)}.

2. Let C be a constant. Then I (f + C) = Ix of +C for any n.

3. Suppose that the kernel K is positive (i.e., K(z,y) > 0 for all z,y).
Then:

(i) (Ir,nf)ngn s an increasing sequence of functions bounded below by
inf f.

() If f < g, then Ix,f < g ng for any n.

(ifl) Tx,m(Trnf) < Tiem(Trem f) for any m > n.

We now proceed to a technical proposition which is the main result of
this section.

PROPOSITION 6. Let K : X X X — R be a kernel satisfying:

(a) K s positive and K(z,2) =0 for all z € X,

(b) K is symmetric (i.e., K(z,y) = K(y,z) for all z,y € X),

(c) Kz, y) — 400 as y — oo uniformly on bounded sets,

(d) K is uniformly continuous (resp. Lipschitz continuous) on bounded
sets, and

{e) K is pointwise separating.
Then for every proper l.s.c. function f:+ X — RU {+cc} bounded below the
Jollowing statements hold:

(1) IK,n.f < SI\’,n(IK,nf) < f

(i) inf Ixpn f = inf f and Gint(Ixnf) = Ging(f)-
(ill) L f is uniformly continuous (resp. Lipschits continuous) on boun-

ded sets.
() T n(Tgmd) =2 F and TgnlTxnf) % £ asn— oo if £ is contin-
UOUS.

If in oddition K is uniformly separating on bounded sets then

(V) Ien(Ignf) —= f as n — oo when f is uniformly continuous on
bounded sets.

Finolly, if K is uniformly separating then

(V) Trp(Txnf) — f asn — oo provided f is uniformly continuous
on X (not necessarily bounded below).

REMARK. The sequence of functions Ix . (Iknf) DPlays an important
auxiliary réle in this worls; namely, it provides a lower bound for the sequence
(Aknfinex in Proposition 8(i).
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Proof (of Proposition 6). The proof of (i)-(iit) can be found in several
works on infimal convolution (e.g. [BPP]). Nonetheless, we provide a short
proof for completeness.

(i) Since K(z,z) = 0 we get Jxnf < f (take y = z in the infima]
definition of Ix nf at any point x € X). Therefore,

SknIem)f = —Ixm(~Trnf) 2 Tk nf.
To see the other inequality, notice that from Fact 5-1 we obtain

@ Siallinl) =) = sup i {f(z) + Ky, 2) ~ Kz, p))}

for € X. If we take 2z = 2 in (2) we conclude from the symmetry of K
that SK,n(IK,n.f)(m) < f(:L‘)

(ii) From (i) and Fact 5-1(i) we deduce that infIx,f = inff and
Gint(f) € Gint(Ixnf). Consider any minimum point zp € X of Ik, f.
Then there exists a sequence (Y )reny C X so that

(3) inf f = Ixnflzo) < flyn) + nK(zo,yx) — inf f.

k—ro0

Since K is positive it follows from (3) that
(4) lim f(ye) =inff and lm K(zg,yx) = 0.
k—r00 k—+oa
But K is pointwise separating, so the second part of (4) implies that yx — zo.

Using the lower semicontinuity of f and the first part of (4) we conclude
that

inf f < flzo) < Jim fly) = inf £,
—r00
and this proves assertion (ii).

Before proceeding with the rest of the proof, we set up the following
useful definition:

(5) Mue) =1y € X : f(s) +nK(2,9) < Icnf(@)+1} (e X, neN).
With these notations, we remark that for n € N and z € X,

) Ienfle) = inf (F@)+nK (o)} 2 jnf f

(the last inequality coming from the positivity of X )

It is clear from (6) that the behaviour of I, f is directly Jinked with
the size of the sets {2, (2)}cex. We shall see that the growth condition (c)
ensures that the sets (2, () are not arbitrarily large when @ runs through
bounded subsets of X. More precisely, we have the following,

CLAIM 6.1. For any r > 0, the set 2 =, oy Unwug £2.(x) is bounded.

The proof of this claim is based on the next simple fact. .
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FacT 6.2. For any r > 0,
M. =sup{Ixnf(z)/n:z € Bx(r),ne N} < +o00.

Proof. Since f is proper, choose yg with f (yo) <inf f+1 < +00. Then
by definition of I, f it follows that for any = € X,
IK,nf(m) < f’(yﬂ)
') -oon

and this expression is bounded above on bounded sets because K is uni-
formly coutinuous (or Lipschita continuous) on bounded sets. m

+ K, y0) < tof £+ 1+ sup{K (2, 1) : 2 € By (r)},

Proof of Claim 6.1, For rg > 0, let M,, > 0 be the upper bound defined
in Fact 6.2. For any & € Bx (rp) and n € Nif y € £2,(x) it follows from the
definition (b) of £2,(x) that

(7) K(z,y) < %(Iff,nf(m) + 1= f(y)} € My, + 1 —~inf f.

But (c) implies that the set of y satisfying (7) is uniformly bounded for
z € By (’."'n). n

We can now continue with the proof of Proposition 6.

(iii) Suppose the kernel X is Lipschitz continuous on bounded sets (the
proof for the uniformly continuous case is practically the same). For rg > 0
take 7,2’ € Bx (r¢) and let L », be the Lipschitz constant of K on By (re) x
{2y ({2y, being bounded by Claim 6.1). Using the equality of (6) we can con-
struct a sequence (yx )ken C {25, such that f(yz)+nK (' yx) < Ixaf(z')+
1/k for every k € N. Therefore

Ignf') = I fz) < Flys) + nK(@ u) — Flye) — nK (2, k) + %

1
< nLkpole’ —al 43 — nlinlia’ ~al.

k
This concludes the proof of (iii).
We first prove (iv), (v) and (vi) for (Tx,nf)n instead of (g n{Ix.nf))n-
(iv') Fix mo € X. If litymco Lien (o) = supy, Jg,nf(mo) = -+oo then
by (i) one has f(zg) == +oo and the result holds. Now, suppose that I, :=
limy, Iy f() < +o0. By the infimal definition of I, f at zo, we can
choose a sequence (Y, )nen © X such that
(8) Ignf (o) £ flyn) + K (w0, yn) € Irenf (o) + % - Ly

Tk O

It follows that for n € N,

I 20) — (v 1  I,—inff 1
®)  K(zoym) < K'”f(‘frz fu”-l—;z—gs'-——_“—"wo =ty 2 0
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But K is pointwise separating, so (9) shows that () NOTIN CONVErges ?‘.0 zg.
Using the lower semicontinuity of f, the positivity of & in (8) and (i), we
get
F(zo) < liminf f(yn) < Jop < f(20)-
-

If f is continuous, then since by Fact 5-3(i) and (iii), (Jxnf)n is an
increasing sequence of continuous functions, Dini’s theorem tell us that the
pointwise convergence of (I . f)n to f is actually uniform on compact sets.

(v') Let f be a function uniformly continucus on bounded sets and Oy,
be the oscillation of f on Bx (ry)U{2,,, for some fixed o > 0. Then, for any
neN, z € Bx(rp) and y € 2,(z), by the first inequality of (7) and (i) we
have

(10) K(z,y) < IK,nf(m):l_f{y) < =) £(9)+1 < Own"‘l o

Suppose that K is uniformly separating on bounded sets. Then a direct
consequence of (10) is that lim, diam(£2,(z)) = 0 uniformly on Bx (ro).
Therefore, it follows from (i), (6) and the uniform continuity of f on Bx (rg)

that
(11) f(@) 2 Jim Tgnf(@) 2 lim inf f o f(z)

uniformly in z € Bx(ro). .
(vi') Suppose that f is uniformly continuous on X. Then there exists
a > 0 such that

(12) flay = fly) S max{l,cllz —y|} foralzyeX

{a simple proof is left to the reader). Now, in the same way as in (10) before,
using this time (12), we deduce that for n € N, z € X and any y € 2,(z),

(13) K(zy) < %(f(m) - fy+1) < max{-:';, %Hm - y]|} + %

For 1 > § > 0, since K is uniformly separating there is some &5 > 0 so0
that from. (13) we deduce that for ¢ € X and y € 2.(),

1 «
08 oo < mx{ o ol
Hence, if we take n so large that max{2/(nfs), 2a/(nfs)} < § < 1, then
(14) shows that diam(f2,(x)) < 28 for every z € X.

That is, we have shown that diam(f2,(z)) — 0 uniformly in z € X.
Therefore, as f is uniformly continuous on X we can repeat the same rea-
soning of (11) to conclude that (Ixnf)n converges to f uniformly on X.

(iv) and (v) are straightforward corollaries of (iv') and (v') if we remar,
the following. :

1
- + ——  whenever |z —y| > 4.
I+ o e~

icm

Regularization in superreflesive Banach spaces 275

Suppose that for £ > 0 there exists ng € N so that f-e/2<Ig.,fon
some set 5 (5 being a singleton, or a compact set or a bounded subset of X ).
By Fact 5-3(1) and (iii), we can then apply (iv") (or (v) to the function
Ix,no [ bounded below and uniformly continuous, to obtain m > ng such
that i,y f = €/2 < Tic;m (i, f) on the same S. Thus, by Fact 5-3(iii) and
(i} it follows that

f"' £ ‘[-K.’ﬂuf - 5/2 & IK,m('II{',nUf) < I}'C,m (IK,mf) < f on S.

(vi) is also casily deduced from (vi') through the following argument.
Iff—e S Ignf < filorsomee>0andne N, then applying Facts 5-2
and 5-3(ii) we gel

F=2esTgnf —e=Tn(f~€) SIxnllxnf) <Ixnf< f m

REMARK. With the above techniques it is not difficult to check that the
sequence (L (Lrnf))n converges to f for the epigraphical distance (see
[AW] for the definition). We refer to the proof of Lemma 3(v) in [Sty] for
details.

3. Convexity techniques and smoothness results. In this section
we show a procedure to obtain smooth functions from the operators Ix ,(-)
and Sgn(+). We will need to impose some additional conditions of convexity
and smoothness on the kernel K to achieve the smooth regularization. The
interesting feature of these convexity arguments is the preservation of the
approximating properties obtained in the previous section.

The main tool iy explained in the next theorem. It deals with the smooth-
ness properties inherited by the convex envelope of a “somehow” smooth
function,

THEOREM 7. Let ¢ : X ~+ R be a differentiodle function, and d¢ X — R

be a conver function. Set b = ¢ — d and assume that coh makes sense.
Then:

() If e & CYW(X) (resp. ¢ € C1(X) for some 0 < a < 1) then
coh € CL(X) (resp. coh & CH(X)).

(M) If ¢ € CfM(X) (resp. ¢ € CH™(X) for some 0 < & < 1) and
h s uniformly continuous on bounded sets and strongly coercive (i.e.,
1Mo () /|2 = +00) then coh & Cp(X) (resp. coh & CH*(X)).

REMARK. A proof of the finite-dimensional version of Theorem 7(if) with
d= 0 can be found in [GR]. Our more general proof does not require local
compactness and relies upon ideas of [Fa). The fact that the convex envelope
of a smooth function ¢ “perturbed” by a non-smooth concave function —d
is still smooth will be crucial later (namely, when we check the smoothness
of the sequence (A, f)newn in Proposition B).
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Notice that the aniform continuity hypothesis on the derivative of ¢ can-
not be weakened in the infinite-dimensional setting. There are C*°-differen-
tiable functions bounded below on £ whose convex envelope is not even
Gateaux differentiable {see Example IL5.6(a} of [DGZ]).

Proof of Theorem 7. Define v := coh = co(c ~ d).

(i) Suppose that ¢ € CV*(X) (the proof for the other case is similar).
Since v is convex, a necessary and sufficient condition for v € CH*(X) is
that for every x, ¥ € X one has

(15)  v(z+y)+viz—y) - 2(z) < Ly

(see Lemma V.3.5 of [DGZ]). We now check this condition.
For ¢ > 0 and # € X, by (1), we can choose Ty,...
M;.-+5 An > 0 so that

(16) i)@ =1, zn:)\q;mi =z and Z)\ih(mﬁ-) < wiw) -+ .‘Z.

i=1 i=1 gzl

for some L > 0

,n € X and

Note that from the first two parts of (16) we also have

(17) sy = (3 A £ (3 M) =5 £ ).
' fe=l f==]1 i=1

Thus, (1) gives

(18) v(zty) < Z Aih(m: £ y).

Let L > 0 be the o-Hélder continuity constant of the derlvative of ¢
Putting together the last part of (16}, (18) and using the convexity of d, we
get

v(z +y) + v{z-y) - 2v(z)
< Z Aih(z; + y) + Z Aib(zy —y) — 2 Z Mih(ai) +¢

i=1 imm] f=l
= Z Ailelms +y) + elay ~ y) ~ 2e(z:))
iz=]
i d(z; +y) + d(z — y)
. +§2)\i(d(mi)— ) : >+E

ki

< Z Aile(m; + y) — ef@s) + ez — y) — (=) +¢

i=1
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[
< S r2t Lyl e = 2Ly e,
i=l

because ¢ € C*(X) (and therefore satisfies (15) for I/ = 22L). As ¢ is
arbitrary, the condition {15) holds for v.

(ii) can be proved just as above, with the uniformity for the derivative of
¢ replaced by the following “localization” property of the convex envelope
of a strongly coercive function.

Cram 7.1, Let h 1 X — R be a function which is uniformly continuous
on bounded sets and strongly coercive. Then for every v > 0 there erists
gr > 0 so that for all |z|| < r the value of co h(z) is given by

n " n
mf{ 3 Nh(m) : (@) C Bx(er), >0, S oA =1, z= ZAm}.
i=1 i=1 i=1
Proof. First, note that under the hypothesis of the claim, h is bounded
below, so that co h makes sense. Fix rq > 0 and let m,, be the infimum of A
on X and M,, be the supremum of h on Bx(ro + 1) (M,, < 4o0, because
of the uniform continuity of f on Bx(rg~+1)). Consider the following family
of hyperplanes:

(19) Hyy i= {Hgw : 7 € Bx(rg), v € Bx, v* € Bx-, v*(v) =1}
where
Hao () = iny + (h(@ + 0) = ey )0 (2 — ).
Notice that for ||z|| < 7o and v € Bx we have
{(20)  Hpo(z)=m, <coh(z) and Hy,(z+v)=h(z+v) <M,
Since h is strongly coercive, we see from {19) that
(21) sup H(z) < mry + (Mg — mrg)(||2]| +10) < A(2)
™
provided |{z|| > gn,, for some g, > 0. Let us show that this g,, satisfies the
conclusion of the claim.
The strategy is to replace any convex combination that appears in (1)

by another smaller convex combination with “uniformly bounded vertices”,
This idea is formally explained in the next fact.

Facr 7.2, Given z with ||z|| < ro, consider any finite conver combina-
tion (T1,...,@n € X, Ary.. o, dn > 0 and Y0y As = 1) so that 31—y A
= z. If ||@s] > or, for some 1 < ig < n, then there exist z; € Bx(or,)
and A,..., X, >0 so that 3o A =1,

n n n
S Nzt Nzl =z ond Y Mh(z) + Mh(zh,) < D Aih().
f==1 i==1 i=1

1
i5ig iip
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Proof. For simplicity, take ip = 1. Since ||z1]| > or,, it follows from (21)
that Hy ., (21} < h{z1), where vy, = (1 — z)/||z1 — z||. But by the first
part of (20) we also have Heo, (2) = mn, < 300, Ash(z:). Hence, the
segment Iy o, = {(&, 31 Aih{xi)), (21, h(21))] C X x R lies in the upper
half-space defined by Hq,uv,, . Therefore, the equality in the second part of
(20) implies that

(22) Ipo N{{z+vs,,t) it &R} = {(z +vyy,8)} where h(z + v,,) < s
If we define

(so that = A 21 + (1 — A1)z’), then using barycentric coordinates on the
segment

Km’,g : ji)\l h(mi)): (1, h(wl))]

we can find ¢ > 0 such that
n n
Al = ! AN YO -
@) (=2 ) = (2 T2 + = ot )
n

=2 1&\1 (@i, h(@:)) + (1 — p) (@ + vay , 8)-

=2

But (22) and {23) give

i

=3 1t (1 ) 4 )

=2 1- Al
and
n ,(.L)\z _
i=n o

n g 23
S DT + (L= e = 3 Aeh(an),
=2 HESN

This concludes the proof of Fact 7.2. m

Thus the proof of Claim 7.1 is complete and, therefore, Theorem 7 is
proved. m

REMARK. Claim 7.1 is false for functions A failing the strong coerciveness
condition lm infy o0 A(2)/||#|| = +-00. For instance, consider h : R —» R
defined by h(z) = +/|z].
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Theorem 7 can be applied as a useful tool to regularize functions on
infinite-dimensional Banach spaces. Qur next proposition, which provides
the smoothness assertions we need for proving Theorem 1, is a good example
of this feature. We keep the notation used in Section 2.

PROPOSITION 8. Let K : X x X ~— R be a kernel satisfying:
(a) K is positive and K(z,2) =0 for all z € X,

(b) K is symmetric,

(c) K(z,y) — 400 as y — 00, uniformly on bounded sets,
(d) K is uniformly continuous on bounded sets and

(e) K(z,y) = cx(x) —dr(z,y) where dy (., y) is a lower semicontinuous
conver function for all y € X.

Let f: X — RU {4oc} be a proper lower semicontinuous function and
consider the sequence of A-convex functions Ax .. f defined as follows:

Agnf = co(lgnf +nex) ~nex  (n€N).
Then:
(1) Ien (T f) € Drnf £ f.
(i) If cx € CY™(X) (resp. cx € CH¥(X) for some 0 < a < 1), then
(A flaex CCH(X) (resp. (Agnfinew C CH(X)).
(iif) If ex € Cx*(X) (resp. cx € C*(X) for some0 < o < 1} and cx is

strongly coercive then (Agn flnen C Cip®(X) (resp. (Axnfnen C Cg™(X))
provided [ is bounded below.

REMARK. For every pair of functions f, ¢ on X, we define

fAg=co(f+g) g

For a Hilbert norm |-||, consider the kernel Ky, (x—y) := ||z—y||% The Lasry—
Lions approximants of a function f in the norm || - || satisfy the following
relation for m > n (see Proposition 2(i) of [Sty]):

Skpm{Trynf) = Iy 1 m-1/m(f A nc).
Compare this with the expression given by Proposition 8:
Arpnl = Ik of) A ne.
Proof (of Proposition 8). For any function g : X — RU {+oc}, define
Dng(z) = sup{g(y) + ndx(z,y} : y € X}.

Since di (-, y) is a Ls.c. convex function, so is D,g. Note that by Fact 5-1
we also have the decomposition

(24)  Sgng= Slel)r;{g(y) —~n(cx (2) — di (2,9))} = Dng(z) — nex(z).



icm

280 M. Cepedello-Boiso

On the other hand, (a) and (b} ensure that (i) of Proposition 6 holds
true. Hence, for all n € N from (24) we get
(25)  ITxn(Ixnf) < Skn(Txm(lxnf)) = Dallenlenf) — nex < Ixqf.

Now, we make the next simple buat crucial observation.

FacT 8.1. Let ¢, d and e be three functions such that d — ¢ < e and
suppose that d is Ls.c. and conver. Thend—c<cole+c)-c<e,

Proof It suffices to note that the convexity of d implies the equivalent
inequality d < coletc}<e+c m

Applying Fact 8.1 to the inequality (25) we obtain

Ixwlnf < Dallgnlenf) — nex
< co{lunf +nex) —nex = Agpnf Ik f.

At this point, another important remark turns up. By definition of Iy, f

at any point z € X one has

(26) (Ixnf +nex)(z) = 2nek(z) + ;}élﬁfc{f(y) —dk(z,y)}

= 2nex{z) — Dp(~f)(z),
where Dy (—f) is a convex function.

Therefore, if cx € CY*(X) (or cx € CH*(X)) then Theorem 7(i) can be
applied to co{lx nf{z)+ncx{z)) because of (26). This shows the statement
(ii) of Proposition 8.

The proof for the case of cx € Cg"(X) (or e € C*(X)) can be done
in a similar way from Theorem 7(ii). Notice that Iy , f + nex is uniformly
continions on bounded sets since K satisfies (a)-(d) and therefore Propo-
sition 6(iii) holds. On the other hand, the strong coerciveness of cx implies
for f bounded below that

Ixnflz) t nex(e) _ inff  cx(x)
2] = Tl T el e T

4. The proof of the main result. With the tools of Sections 2 and 3,
we are now ready to prove our main result,

Proof of Theorem 1. Let f : X — RU {+oc} be bounded below and Ls.c.
For p > 1, we define K, : X x X — R as

(27) Kp(a,y) = 2 |z][? + 2P Hlg|[P — ||z + y]|".
Let us first check the following two basic properties of K.
(1) Clearly, Kp(z,2) = 0 (for all z € X). Also, K, is positive since
lz-+9l” < (el + )P < 227 (=]lP + [lu]1®)-
(2) Ky is obviously symmetric.
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Set cx,(2) = 27 z|” and dg, (2,y) = ||z + y||® — 27~| y||P. Then
K’p(':y) =Cx, () - de('ay)'

With this notation and the definition of ¢? given in Theorem 1, one has
(28) Ig,nf +nex, = g

Hence, using again the notation of Theorem 1 and Proposition 8(i), it follows
that

(29) IK:D;'”(IKP:“JE) S AKanf = COgﬂ ,.., 2}0"‘1n“ i ||p = Ag‘f S f
Therefore, by (29) the statements (i), (iii), (iv) and (v) of Theorem 1 hold
true if we check that K, satisfies the assumptions of Proposition 6.

We proceed to show the following growth property of K, that trivially
implies the condition (c) of Proposition 6.

for every n € N,

Cramv 1.1. For any p > 1 there exist v, > 0 and 1, > 1 so thal
Kp(z,9) 2 7p|yl|P whenever [ly|| > np]|z].

Proof Taken > 1 and =,y € X such that n||z|| < |yl|. Then

o) 2 (2| s - | 2 )
2 (2 = = Y s e (- (142)),

Now choose 7, > 1 80 that v, == (2271 — (1 +1/9,)P) > 0. m

It is clear that K is Lipschitz continuous on bounded sets. The next
claim takes care of the separating properties of K.

Crammv 1.2. Suppose that the norm [ - || is Lu.c. at o € X (resp.
UC). Then for every € > 0 there exists Ce oy > 0 such that Kp(zo,y) >
Ce,z0 /|20 — y||P whenever [lzg — yl| 2 € (resp. for all r > 0 and € > 0 there
exists Cyp > 0 such that Ky{zy) > Cerllx —y||P provided ||z —y|| > € and
lz] < ).

Proof We only prove the claim under the uniform convexity assump-
tion. The proof for the Lu.c. case is completely similar,

Suppose that the claim is false. Then by definition of K, (see (27)),
there are sequences (Zn)nen and (Yn)nen in X so that (zn)n is bounded,
|Zn — yn|| = 20 > 0 for all n € N and

p— 1
(30)  Kp(tn, yn) = 2" aull? + 227 lynll” = e+ yalP < Zllwn — -

Moreover, without, loss of generality we can suppose that |[ya|| 2 |lzn| > 0
for all n. We then consider 0 < 8, = [[@a]|/||yn] < 1. From (30) it follows
that

0 <271 (@2 +1) — (8 + 17 < - (B + 1P —2 0.
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Hence,
P41
n—1 ﬁn +
& G e
It follows that lim,—.oo Bn = liMn oo |Znli/|yn]l = 1. Thus, since (z,), is

bounded, 50 is (¥ )» and therefore limy, oo (||lzn|l — |lynll) = 0. But using
(30) again, we see that the bounded sequences (), and (yn)n satisfy

. (lel - | 2422 ) = im (el =l =0

Nonetheless, by hypothesis ||z, = ¥x| = €0 > 0 for all n, contrary to the
uniform convexity of the norm {|- . m

Another Important fact is that K, is uniformly separating when the
modulus of convexity of || - || is of power type p. This is a consequence of the
results of [H]. Indeed, for all z,y € X we have the stronger inequality

Kp(z,y) = 274 alP + 2 Il ~ [z + yll” = Cpylle - yII”

for some 0 < O £ 1 (for instance, see [C], Lemma 3.1).
Hence, using Proposition 6 together with (29) we deduce (1), (iii), (iv) and
(v) of Theorem 1. It remains to prove (i), for which we use Proposition 8.
More precisely, we observe that in the decomposition (28), dr (-, y) is a
convex function for every y € X. Moreover, for p > 1 it is easy to verify
that cg, is strongly coercive; that is,

GKP (.’E)
el

Therefore, by Proposition 8(iii) the regularity of AZf = A K,nf can be
deduced from the regularity of g, = 2P72|| . ||P.

Recall now that for any norm || - || on X, being US (resp. with modulus
of smoothness of power type 1 + @) is equivalent to || - || € C¥(X 2 (resp.
|| || € Ch=(X)). Therefore, cx, = 2P~ - [P € Cx™(X) (ot cx, € C5*(X))
whenever | - [| is US (or with modulus of smoothness of power type 1 + a).

In the last case of (i), for a norm | - || with modulus of smoothness
of power type 1 + o (or equivalently || - | € ¢%®(X)), we can achieve a
smoother hehaviour of the sequence (AP £) by choosing the proper value of
p: (A5 f)n © CY2(X). This is a corollary of Proposition 8(ii) and the next
lemma,

LeMma 1.3. If || || € CY*(X) then || - |**2 cLe(X).

Proof. This fact relies strongly on the convexity and homogeneity of a
norm. Since it is clear that || - [*+ € Cx*(X), let C > 0 be the a-Holder
continnity constant of the derivative of the norm ||| in Bx. We shall show
that the condition (15) holds true for |- (**®. Take any #,y € X and denote

= 27" z[Pt — +oc.
B—r OO
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by w the maximum of ||z|| and liy||. The lemma is proved by the following
computation:

[+ y[[' e + ||z — gt T — 2| 2|t

1 1
:w1+a :’C_ y_ +aw E +e ﬂ_}-{l+a“ E1+oz
W 43} ) 7 73] w
y Lo
S w1+a2o¢0| g - 2°‘C’I|y||1+". -
[/

By the above, this concludes the proof of Theorem 1. m
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The symmetric tensor product
of a direct sum of locally convex spaces

by

JOSE M. ANSEMIL (Madrid)
and KLAUS FLORET {Oldenburg and Campinas)

Abstract. An explicit representation of the n-fold symmetric tensor product
{equipped with a natural topology T such as the projective, injective or inductive one) of
the finite direct sum of locally convex spaces is presented. The formula for ®’T"’ S F1@F)
gives a direct proof of a recent result of Dfaz and Dineen (and generalizes it to other
topologies T) that the n-fold projective symmetric and the n-fold projective “full” tensor
product of a locally convex space E are isomorphic if ¥ is isomorphic o its square B2

1. Symmetric tensor products

1L1.If By, ..., By, B and F are vector spaces over K = R or C we denote
by L(E1, ..., En; F) the space of n-linear maps £y % ... x B, — F. We write
briefly L("E; F) := L(E,..., E;F) and L(™E; F) for the space of n-linear
symmetric maps E X ... x E — F; the space of n-homogeneous polynomials
E — F is denoted by P™(E; F) (they are the restrictions to the diagonal
of B x ... x E of elements in L("#; F)). The polarization formula gives a
natural isomorphism P™(E;F) = L,("E; F). If the underlying spaces are
locally convex we denote by L(Ey,...,En; F) or L("E;F)if B = E, =
.= By, Lo("E; F) and P*(E; F) the spaces of continuous n-linear, con-
tinuous n-linear symmetric mappings and continuous n-homogeneous poly-
nomials respectively. Moreover, we use L("E) := L("¥;K) and, similarly,
Ly("E), P"(E), L("E) , L;("E) and P™(E) in the case of F' =K. We shall
write F 2 F if the two locally convex spaces E and F are topologically
isormorphic.
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Key words and phrases: symmetric tensor products, continuous n-homogeneous poly-
nomials, tensor topologles.
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