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On p-dependent local spectral properties of certain
linear differential operators in L?(RY)

by

E. ALBRECHT (Saarbriicken) and W. J. RICKER (Sydney, N.S.W.)

Abstract. The aim is to investipate certain spectral properties, such as decompos-
ability, the spectral mapping property and the Lyubich-Matsaev property, for linear dif-
ferential operators with constant coefficients (and more general Fourier multiplier opera-
tors) acting in LP(RN ). The criteria developed for such operators are quite general and
p-dependent, i.e. they hold for a range of p in an interval about 2 (which is typically not
(1,00)). The main idea is to construct appropriate functional calculi: this is achieved via a
combination of methods from the theory of Fourier multipliers and local spectral theory.

Introduction. The global nature of linear differential operators with
constant coefficients acting in LP{R"Y) can be rather complicated when
p # 2. For instance, such operators are no longer spectral {the I'*-analogue
of normal operators in the L?-setting); see [2]. So, it is natural to seek weaker
spectral decomposition properties for such operators. There is a large class
of operators which are not required to decompose the underlying LP-space in
such a strong way and whose members still enjoy the spectral mapping prop-
erty; these are the differential operators (or more general unbounded Fourier
p-multiplier operators) which are decomposable in the sense of C. Folag. An
effective tool, when available, for the investigation of local spectral properties
of such operators in LP(RY ) is the existence of a sufficiently rich functional
calculus. This approach was used in [2] and [3] to determine large classes
of decomposable p-multiplier operators (and to exhibit some which are not
decomposable). The basic idea to generate appropriate functional calculi,
for all p > 1, was to use classical results on p-multipliers (e.g. Mikhlin,
Marcinkiewicz, Littman-McCarthy—Riviere).

The aim of this paper is to develop quite general criteria for decom-
posability (again via suitable functional calculi) which, unlike those in [2]
and [3], are p-dependent. For example, if ¢} is a polynomial on RY satisfying
|Q(z)| — oo, for || — oo, and Q(RV) # C, then Q(:£) (with its natural
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domain) is decomposable in LP(RY) if and only if (A— Q)" is a p-multiplier
function for some A € C\Q(RY ). This always happens for all p in some max-
imal interval (typically not all of (1,00)) containing 2 in its interior. Such
results are established via multiplier theorems due to W. Littman (and, in-
dependently, J. Peetre) and M. Schechter, combined with techniques from lo-
cal spectral theory. For instance, combining our criteria with some results of
A. Ruiz, it is shown that the differential operator

(- (- a] ) 0- %)

is decomposable in LP(R?) for all p satisfying 557 < p < =75 and
not decomposable otherwise (whenever n > 5). The criteria developed to
treat operators of this kind (and other Fourier multiplier operators) are also
extended to include systems of linear differential operators with constant
coefficients (cf. Theorem 2.16). The final section presents a detailed investi-
gation of the local spectral behaviour of the class of all second order linear
differential operators in LP(RY ) with real (constant) coeflicients.

1. Preliminaries. For 1 < p < oc we denote by AMP(RY) the semisimple
unital Banach algebra of p-multiplier functions on RY, N e N = {1,2,...}.
As in [2] and [3], let UP(RV) be the set of all local p-multiplier functions,
Le. the set of all those f € L§ (RY) with the property that ¢ f € MP(RY)
for all ¢ € C(RN). Then L?(RY) contains all C*°-functions on RV and
hence, in particular, all polynomials. Let ﬁ(lRN ) be the set of all those g in
the Schwartz space S(RV) such that the Fourier transform § has compact
support. If f e UP(RY) and g € ﬁ(RN }, then we define

(1) F(D)g = F7{£g),

where the right-hand side is an element of L? (RY ) and F denotes the Fourier
transform. The operator f(D) with domain D(RY) is closable in LP(RY).
Its closure will be dencted by S?. Although this definition appears different
from the one given in [3; p. 153] it is easy to see (using the fact that ﬁ(IRlN ) is
dense in L?(RY)) that the operator S‘Jf from [3] coincides with S}’ as defined
here. Moreover, if Q(z) = E| al<m FaT™, for z € RV, is a polynomial, then
Q(D) coincides with @(352-,...,352-) and it easily seen that, in this
cage, 57 is just the minimal (or strong) extension of Q(D) in the sense of
[27; Ch. 4, §1]. A straightforward computation also shows that D{Sf) is
translation invariant and that 5'5 commutes with all translations. Hence,
if (55) " exists as a bounded linear operator on LP(RY ), then it must be
translation mvarla.nt and, hence, is a multiplier operator. Morecver, in this
case (S )" /Q Thus, for f € UP(RY), by a similar argument, the
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operator S% is invertible if and only if 1/f & MP(RY) (cf. also [3; p. 153],

27; p. 66]). This shows that we always have essrange(f) C o(S%), where
the closure is taken in C = CU {co}.

Since, in general, operators of the form S? are no longer spectral for
p # 2, it is natural to look for weaker spectral decomposition properties of
such operators.

Recall that a closed linear operator T with domain D(T) which is a
subspace of a Banach space X is said to be decomposable (in the sense of
C. Foiag, [10], [28]) if, for every finite open covering Ufy,..., U, of C, there

are closed subspaces Xy,..., X, of X satislying X = Xy +... + Xy, such
that T(D(T) N X;) C X; and ¢(T|X;) C U; for § =1,...,m. (Here T|X;
15 the closed lmeax operator in X; with domain D(T\X ) DTMNX;.)If

F C T is closed we write Xr(F) for the set of all those z € X for Whlch
there exists some analytic function f : T\ F — X with values in D(T) and
satisfying (2 - T)f(2) =z on C\ F.

A closed linear operator I' has the Lyubich—Matsaev property [21] if
Xr(F) is closed in X, for every closed set F C C, and if for every lo-
cally finite open covering (U;)%2, of C consisting of bounded open sets, the
Banach space X is the closed linear span of the subspaces X¢(U;), j € N.

Often, decomposability for multiplier operators Sf.’ is obtained by show-
ing that they have a sufficiently rich functional calculus. In particular, one
tries to prove that the class of functions o : C — C for which gof € MP(RY)
is “rich” enough.

Recall that an algebra A of functions on a closed set 2 C C is said to
be guasiadmissible [28; Definition IV.9.2] if it has the following properties:

(i) A is normal, i.e. for every open covering Uy, ..., Un of C there exist
functions 1,...,0m € A satisfying supp(e;) C U; (j = 1,...,m) and
w14...+ppm=1on 2.

(ii) For all ¢ € A such that supp(y) is compact in C, the function ¢-idg
is in A, where ide denotes the identity function on C.

(iil) For every ¢ € A and every A € C\ supp(i) the function ¢ belongs
to A, where

0 for z € C \ supp(yp),

walz) = § wlz)

A—2z .

Let A be a quasiadmissible algebra on 2 = 2 ¢ C. We say that S?
(where f € UP(RV)) has a translation invariant A-functional calculus if
F(BRY¥) € 2 and po f € MP(RY) holds for all ¢ € A. In this case a unital
homomorphism & : A — L{LP(RY)) is given by $(p) = 5, for p € A. We
then see by (i) and (ii) that #(¢)5} C S58(p) = $(y-idc), for all p € Ahav-

for z € supp(p) NC.
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ing compact support contained in C. Then S% is known to be decompasable
(cf. [28; Corollary TV.9.8 and the remark following its proof]). Moreover, the
subspaces

EL(F) = n{ker S¢0f) p € A, supp(¢) NF =0}
are closed in LP(RV) for all closed sets F ¢ C. If F is a compact subset
of C then, using the properties of A, it follows that £4(F) < D(8%) and
STEA{F) C E(F) with o(SFEA(F)) C F. In particular, for all compact
subsets F' in C wethave £4(F) = LP(RN)SJg (F).

ExaMpLES AND DEFINITIONS 1.1. Let k € Ny = {0,1,2,.
lowing algebras are quasiadmissible.

(a) Let C*(C) denote the algebra of all functions p € C*(C) for which the
function p., given by e (2) 1= ¢{1/2), for z 3 0, has a continuous extension
to C (again denoted by o) With e € C*(C). Then C*(T) is a Banach
algebra when endowed with the norm ||¢l|cez = max{[[@l, ||@eolx} for

v € C*(T), where
el = Z

mt+pask

(b) As in [3], we denote by .A* the Banach algebra of all functions ¢ &
C*(C) satisfying

el ax = Z

p1tpe<k

..}. The fol-
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< Q.

Note that A* is not quasiadmissible since, for v € A*, the value at oo is in
general not well defined. However, the subalgebra B* of all those ¢ € A¥
having a continuous extension to C is quasiadmissible.

{c) Let K* denote the Banach algebra of all functions ¢ € C(C)n
O%(C \ {0}) satisfying

lellcr = 3 sup

2k talto! smuivsto
is

II5E 1P
e 0 ¥
Auka Pyra

(z)l < 00.

(d) Let C% (C) denote the set of all those functions ¢ & C*(C) which
are analytic in some neighbourhood U, of co (which may depend on ¢),
i.e. the function w = @(1/w) is analytic in {w € C: 1/w € CNU,} and
has a removable singularity at 0. The algebra C% (C) is in a natural way an
inductive limit of Fréchet spaces. m

We collect some permanence properties for unbounded multiplier opera-
tors admitting a translation invariant .A-functional calculus for some quasi-
admissible algebra A.
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LEMMA 1.2. Let f be a pointwise defined function in UP(RY) and suppose
that Sp has a translation invariant A-functionel calculus for ¢ quasiadmis-
sible algebm A of functions on some closed set 2 C C containing the closure
(in C) of f(RN).

(a) For every n = N the function f, defined by fu(z1,...,@s) =
flzy,. . 2n), for @ = (@1,...,2,) € R, is in UP(R™) and 8% has a
translation invariant A-functional calculus. In particular, S}’n is decompos-
able.

(b) If f is continuous and satisfies |f(z)| — oo for [z| — oo, then S%
has the Lyubich-Matsoev property.

(c) If A:RYN - RY is an affine mapping of BY onto RN, then A*f €
UP(RY) where A*f = fo A. Moreover, S%. ¢ also has a translation invariant

A-functionel caleulus. The operators S and 5%, ¢ ore similar and hence
have the same spectral behaviour.

(d) If f is continuous, A C C(C) and m < N, then for each y € RV-™
the function f, : x + f(z,y) from R™ to C is in UP(R™) and S"p has a
translation invariant A-functional calculus.

Proof. (a} To prove that fn € UP(R") fix an arbitrary 3 € C(R"). A
f € UP(RY), we know that 1f € MP(RY) where we choose 1 &€ C°(RY )
such that
Py (supp(1)) C {z € BN : j(x) = 1}

and Py : R* — RY is the canonical projection onto the first N coordinates.
By [9; Corollary B.2.2] the function (¢ f),, where

("Zf)'n.(mlz .

Len)f{z, .. 2N,
for z = (@1,...,

En) - (5171,
Tn) € R",

is a p-multiplier function on R™. Since MP{R"™) is an algebra we see that
Pfn = T,D(i!;f)n, & MP(R™). Hence, f, € UP(R™). By [9; Corollary B.2.2] we
also see that o f, = (po f), € MP(R") for all ¢ € A and so (a) is proved.

{b) Fix an arbitrary locally finite open covering (U )72, of C consisting of
bounded open sets. Let g € LP(RY) and & > 0 be arbitrary. Since D(RN) is
dense in LP(IRY) there exists some h € D(RY) with lg—h||peearvy < €. Since
f is continuous and satisfies |f(z)| — oo for |z] — oo, the set f(supp(h))
is a compact subset of C, Hence, f (supp(’ﬁ)) c thu...ul, for some
finite m € N. Since A is normal there are functions ¢1,...,¢m € A with
supp(p;) C Uy, for 1 < j < m, such that 370, ; =1 on V1 2 for some
open neighbourhood V of supp(h). It follows that EJ,J wi(f (x))h(m) h(m)
on RY and, hence, that h = S 8% ophy where ST h € Ea(supp(e;)) C
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EAUy) C LP(RN)S;(ﬁj) for 7 = 1,...,m. This proves that the linear hull
of the spaces LP(RY )5-}: (T;), for j €N, is dense in LP(RV).

(c) If A: RY — R¥ is a surjective affine mapping, then A is bijective
and A~ is affine. By [12; Theorem 1.13], A* defines an isometric isomor-
phism from MP(RY) onto MP(RY). Hence, for all 3 € C®{R"), we have
(A F3) = A*(f - (A7) € MPRY), since (A" = 1o A= ¢
C(RY). This shows that A* : 4P(RY) — UP(RN} is a bijective mapping
(where (A*)™1 = (471)* with A~! affine again). A straightforward compu-
tation shows that by Cag := F~1A*G, for g € LP(RY), where A* is extended
to act on tempered distributions in the canonical way, we define a contin-
uous isomorphism Cy : LP(RV) — LP(R¥N) satisfying CaD(RY) = D(RY)
and

OAS?Q == Sfl*fGAg, S?OA—-IQ = C’A-1Sp*fg

From this we conclude that Ca S} = §%. ;C4 and C4aD(5%) = D(8%. ).
By [12; Theorem 1.13] we also see that ¢ o (A*f) = A*(po f) € MP(RY)
for all ¢ € A. Hence Sﬁ* § has a translation invariant .4-functional calculus.

(d) This follows in a straightforward way from the fact that for all y €
RY=™ the mapping h — h(,y) is continuous and lnear from C(RY)n
MP(RN) into C(R™) N MP(R™) and has norm at most 1 with respect to
the MP-norms ([15], [19]). =

for all g € D(RY).

2. Decomposability criteria and functional calculi. In the first
part of this section we formulate two multiplier theorems (Theorems 2.2
and 2.4), one due to W. Littman {and, independently, J. Peetre) and the
other due to M. Schechter. The point is that these two multiplier theo-
rems are “p-dependent”, unlike the classical multiplier theorems of Mikhlin,
Marcinkiewicz, and Littman-McCarthy-Riviére which yield p-multipliers for
all p € (1,00). These two multiplier theorems are then used to establish
the existence of suitable functional calculi and/or decomposability (and the
spectral mapping property) for certain operators .S'*}’, with appropriate f and
for a certain range of p (typically not (1, 00)); see Theorems 2.6, 2.8 and 2,12,
'These results are applied to some non-trivial examples from the class of
constant coeflicient linear differential operators (i.e. f is a polynomial). In
particular, we exhibit exarnples of such differential operators which are de-
composable for some p, but not for all p in (1, 00); see Examples 2.11(c), (d).
We also show, for any hypoelliptic (and more general) constant coefficient
linear differential operator S, that there exists an interval Jg about 2 such
that the operator § exhibits “good” local spectral behaviour in LP(RV) for
all p € Jg (Corollary 2.9). Of course, for elliptic operators § it is known
that Jg = (1, 00) can be chosen independent of §; see [2], [3].
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In the last part of the section we formulate a result concerning the spec-
tral mapping property and decomposability (with some restrictions on )
for certain systems of linear partial differential operators with constant co-
efficients acting in LP(RY )™,

‘We begin with the following fact which facilitates certain continuity in-
vestigations.

LeMMA 2.1. Let f: RN\ {0} — C be a continuous function and suppose
that A is a Fréchet space of continuous functions (or an inductive limit of
such spaces) on a set 2 C C satisfying the following three conditions.

(i) SRV \{0}) c 2.
(ii) The restriction map p — | FRV\{0])) 18 @ continuous linear map from

A to the Banach space of all bounded C-valued functions on f(RY \ {0}),
endowed with the sup-norm.

(iii) w o f € MP(RY) jor all ¢ € A.

Then the linear mapping & : @ v~ S_. from A to L(LP(RN)) is contin-
UOUS.

Proof. Because of (i) and (ii) the linear mapping ¢ — o f is continuous
from A to L*(R"). Since the mapping S? ~ g from the Banach space of
all translation invariant operators on LP(RY) to L=(RV) is known to be
continuous, the statement follows in a standard way by means of the closed
graph theorem. m

As a consequence of this lemma, all functional calculi described in this
paper will automatically be continnous algebra homomorphisms.

As in [3] we denote by N*(RY) the Banach algebra of those functions
f € CH(RN \ {0}) for which there exists C' > 0 such that, for each R > 0,

v f C
'(%—p(w)\ < 2

max
Rg|z|<2R

for all 1 € NY with [u] < k. Here, N*(R¥) is endowed with the norm |- ||
given by

m
o)

it

1
[ Fllae = > = sup|a|
sk 1 270

The following result is a direct consequence of a multiplier theorem due to
W. Littman [20; Theorem A] and J. Peetre [22; Théoréme 6.1].

. THBEOREM 2.2. Let k € N. Then N*RN) c MP(RY) for all p € (1,00)
satisfying

1 1 k
9 i<
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A similar argument as in the proof of Lemma 2.1 (or looking more closely
at the proofs of [20], [22]) shows that the inclusion mapping N*(RV)
MP(RN) in the statement of the theorem is necessarily continuous. In par-
ticular, we have N*(RV) c MP(RV), for every p € (1,00), provided that
k € N satisfies k > N/2. Thus, for even dimensions NN, this consequence is
a slight generalization of the Mikhlin multiplier theorem.

It is known [3; Lemma 1.3] that for all g € N*(R"), the multiplication

operators M, : f + gf from N*(RV) to N*(RY) are generalized scalar of
class C”c and have a functional caloulus & : C* (C) — LIN*(RYN)) given by
F(p) = Mpoq, for ¢ € C¥{C). This fact together with Theorem 2.2 implies
the following result.

COROLLARY 2.3. For all f € N®¥(RY) and p satisfying (2), the multiplier
operator S5 € L(LP(RN)) is generalized scalar and, hence, is also decompos-
able. A C*(C)-functional calculus & (necessarily continuous by Lemma 2.1)
for S? is given by ®(p) = Sﬁof, for ¢ € C*(C).

Using a more refined version of Theorem 2.2 (based on Theorem C
in [20]), M. Schechter [26], [27] derived the following multiplier theorem
which is very useful in the theory of linear differential operators in LP(RV).

"THEOREM 2.4 {[26], [27]). Let f € C*(RY), where k, N € N, and suppose
that there exist real constants b > 0 and a < 1 such that, for some constant
C > 0, we have

®) 2 (@)

for all p € NY with |u| < k. Then f € MP(RY) for all p € (1, 00) satisfying
both (2) and

< Cla|7Hlet g > 1,

) a-a5-3 <

By means of this fact we obtain the following result.

PROPOSITION 2.5. Let f be as in Theorem 2.4. Then, for all p € ( , 00)
satisfying (2) and (4), the multiplier operator §% € L(LP(RY)) is C*(C)-
scalar in the sense of [7].

Proof. It suffices to show that the mapping ¢ — 57, defines a unital
homomorphism from the algebra C*(C) to L{LP(RY)), for all p satisfy-
ing (2) and (4). This is obvious if we can show that ¢ o f € MP(RV) for
all ¢ € C*(C). Because of (¢ o f)(z) = @(0) + (@(f(z)) — ©(0)), for all
z € RY, and because of Theorem 2.4, it suffices to show that the function
x = p(f{x)) — ¢(0) satisfles condition (3) with the same constants a and
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basfor fand all p € NY with |u| < & (the constant C will be differ-
ent, of course}. For 44 = 0 this follows from (3) for f (with 4 = 0) via the
mean value theorem. For 1 < |u| < k one uses (3) for f and some basic facts
on higher derivatives of composite functions (cf. [3; Lemma 2.2] and
[L8; Satz 12.1]). =

Since we have a particular interest in linear differential operators we now
give some criteria for this class of unbounded multiplier operators. Let k, N
be positive integers and f € C¥(RN \ {0}). We shall say that f has the
LP-property (for W. Littman & J. Peetre) with respect to an integer m > 0
if the following conditions are satisfied:

() 1/1£(z)| = O((z|~™) for |z] — oo.
(it} For all p € N with || < k we have

L
laTz(x) = O(jz|™ ) for |z| — oo.
(iii) For all p € N with |u| < k we have
orf -
am“( z)| = 0z~ for |z| — 0.

The following result extends Theorem 2.1 of {3]. The proof is omitted as it is
almost the same; at the place where the Mikhlin multiplier theorem is used
we now apply Theorem 2.2.

THEOREM 2.6. Let k, N be positive integers and f € CF(RY \ {0}) be
a function having the LP-property with respect to an integer m > 0. Then,
for all p € (1,00) satisfying (2), we have f € UP(RY); cf. Theorem 2.2.
Moreover, for such p and every p € A* the function ¢ o f € MFP(RY). In
perticular, S? has a translation invariant BE -functional calculus. The unital
homomorphism & : A¥ — L(LP(RV)) given by &(y) = Shog for € AF is
continuous and has the following properties:

(a) For all v € A* having compact support, #(p)S; C S58(y) =

$(ip -ide).

(b} There exists a sequence (gn)3%, in A*, with each o, having compact
support, such that $(gn.)g — ¢ in LP(RY) for all g € LP(RY). The domain
D(S%) of S? i8 given by

D(§%) ={g € I?(RY) : lim $(on -idc)g emists in LP(R")}
TL—+ 00
and we hove S5g = limn oo (0n - ide)g, for all g € D(S).

(c) The operator S‘” is decomposable and has the Lyubich-Matsaev prop-

erty. Moreover, (5% ) is the closure (in C) of FRY N\ {0}) and coincides
with the support of sP
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(d) For every ¢ € A* the operator ®(p) = Sgof € L(LP(RN)) is gener-
alized scalar of class C*(C). In particular, for every A € p(S7) the resolvent
operator (AI — 8%)71 is generalized scalar.

EXAMPLE 2.7. The function f(z) = |z|? + sin{|z|?) 4 2, for & € RV,
satisfies conditions (i)—(iii) of the LP- property with m =2 and k =1 (but
not with & = 2). Thus the statements (a)-(d) of Theorem 2.6 hold for 5%
for all p with |1/p—1/2| < 1/N.

On the other hand, the bounded function 1/f satisfies the conditions
of Theorem 2.4 and Proposition 2.5 with 6 = & = 2 and ¢ = 0. Hence
1/f € MP(RY) and 57 /¢ is decomposable (even C?(C)-generalized scalar)
for all p with |1/p ~ 1/2| < 2/N. Since Sl/f Sp) !, we conclude (by
[3; Lema 2.4]) that S% is decomposable for p with [1/p ~ 1/2| < 2/N.
1t follows that O‘(S?) = F(RY), where the closure is taken in C. Using the
C*-functional calculus for S‘f /¢ one can then derive a functional calculus
for Si}’ ..

Even in cases where f(RY) = C (and hence o(5%) = C) or where the
range of f is not known, one can sometimes obtain a sufficiently rich func-
tional calculus and decomposability for the corresponding multiplier opera-
tor.

THEOREM 2.8. Let N,k € N and let f € C*(RY) be a function satisfying
both
1

(i) @ = O(Tn—:l-l—b-) as |z] > o0, and

. Ok f [ Ozt 1

o o

for some real constants a € (—o0,1] and b € (0,00). If p € (1, 00) satisfies
(2) and (4) then:

(a) S% has o translation invariant C*(C)-functional calculus & : C*(T)

— L(IP(RY)) given by ®(p) = S ¥ ofs for € CP(C), with all the propertics

listed prior to Definition 1.1, In partzcular S” i8 decomposable and has the
Lyubich-Matsaev property.

(b) #(5%) = f(RY) = supp(&).
(c) For all A € C\ f(RV) = o(S5)NC the resolvent operator (A —5%)*
= 8% n_p) 8 generalized scalar of class C*(C).

Proof. (a) Notice that f € UP(RY); see Theorem 2.4. We prove that

P(p) = Sh,; € LILP(RY)), ie. that p o f € MP(RY) for all ¢ & C*(C).
Because oflﬁnp o f = o f—w(0)+ @o(0) it suffices to show that p o f

) as [z — oo, for 1 <|u| <k,
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— peo(0) € MP(RY). By (i) there exists r > 1 such that |z| > r implies
f(z)| = 1. By the mean value theorem and (i) we have, for |z| > r,

. 1 1
B f-m' _(POO(O =(Poo(—)'_ C o0 3
(5) »(f(=)) ) ) Poof0) = Cile IIkm |_ 2lf
where the constant C' depends only on ¢, f and 7. Let |u| <k. By Lemma 1.2
in [3] (see also [14], [27; p. 67]) ——é;,{—f){ ) is a finite sum of terms of the
form

Jf (J (IL‘
e 1

with Y 2%_; a; = p, where A4 is a constant, n{j) € {1,2} and f; =
fa= Im(f) Hence, by (i) and (i), we have, for |z| > r,

o*(1/f) 1

Bar (”)‘ < Cugras

Using again Lemma 1.2 in [3] for the composite function ¢ o (1/f), we see
that for each 1 < |{u| < k, the function (8Hp,0(1/f)/8z")(x) can be written
in the form

O+

Re{f) and

(6)

3“14—“29090( 1 ) ‘9%‘“) la| 3W(j.ﬂym)¢ﬂ(jam)( )
. L] I),

=2 e bu u3 \ f(z) g liaim)

[t Sfasd
where ¢ € {0,1} and v(j,c,m) € Ny \ {0} with 11 v(j, 0,m) = p.
Also, n(4,a,m) € {1,2} and ¢ = Re(1/f), ¢2 = Im{1/f). So, by (6), for
1< |pl £k and |z| 2 r we have

m=1 j=1

(o, 1) el
Ooco (I/f), <
Ot Z Cale) - Z HC‘I(J:QW ‘xlah(_j,am Y+6
v lal<Iul m=1 el
- a{oyu) 1 1
< | % !O"‘("") Zl FEZGED S‘{’ng;|ahu|+b'
e M=

From this and (5) we see that ¢ o f — oo (0) satisfies (3) in Theorem 2.4.
80, @0 f — oo (0) and thus also o f belongs to MP(RV) for all p € (1,00)
satisfying (2} and (4). It follows that ¢ is a continuous homomorphism from
C*(C) to L{LP(RM)); cf. Lemma 2.1.

The decomposability is now clear; the Lyubich-Matsaev property follows
from Lemma 1.2(b).
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(b) By the decomposability we must have o(5%) = f(R¥) (closure in T).
Clearly, supp(®) = F(RY) follows.
(c) can be obtained in the same way as (d) in [3; Theorem 2.2]. w

Recall that a constant coefficient linear partial differential operator (D)
in RV is called hypoelliptic if and only if there exists a positive constant ¢
such that

8::“‘ (z)

7

@ Q@)
for all @ € N} ; see {13; Theorem 11.1.3]. If d is the degree of the polyno-
mial Q, then there exists an o with |a| = d such that 8%Q/9z* is a non-zero
constant. Hence, we see that

O+ ||, Ja| — oo,

=01 +|e))™, |z — 0.

_1

1Q(z)]
It follows that the conditions of Theorem 2.8 are satisfied with b = c¢d and
a = min{1,c}. Hence we obtain the following result.

COROLLARY 2.9. Let the differential operator Q(D) be hypoelliptic and
c>0 be as in (7). Then, for p € (1,00) satisfying (1 —min{l,c})[1/2—1/p]
< ed{N and for oll k € N satisfying

k/N > |1/2—-1/p] #f c21 ~(resp. cd/(1—¢) <k if c< 1),
the statements (a)~(c) of Theorem 2.8 are valid for f = Q.

Let @ : RY — C be a polynomial satisfying |Q(z)| — oo as |z| — oco.
As has been noted in [27] this implies, by a result of Hérmander [11; Theo-
rem 3.2], that there exists some b > 0 such that

1
8 L
© el
As shown in [27; Ch. 4, Corollary 4.3] this ensures that Q satisfies condition

(i) in Theorem 2.8 for a.= (b+1 —m) < 1 where m is the degree of Q.
Hence we obtain the following consequence of Theorem 2.8.

CoroOLLARY 2.10. Let Q : RY — C be a polynomial satisfying
|@{(x)| = oo as |x| — oc. Then there exists some s > 0 such thai for every
p € (1,00) satisfying {1/2 — 1/p| < s all the statements (a)-(c) in Theo-
rem 2.8 are valid for the operator Sg.

—0(lal™) s |a| — oo,

Of course, there exist polynomials @ which are not hypoelliptic but still
satisfy the condition |Q(z}| — o0 as |z| — oo,

ExAMPLE 2.11. (a) Comsider @Qy(t,z) = it + 2° for ¢,z e R. By
(3; Theorem 2.2], for every p > 1 the differential operator Q; ( o ik g-)
£ i 2 with domain D(S%,) (ie. the operator S5, ) is decoraposable and
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has a nice functional calculus. Theorem 2.2 in [3] is, however, not applicable
to the polynomial Qq(t, &) = it + z* + =z, for ¢,z € R, since its real part is
not a product of real affine functionals on R2. Still, a straightforward com-
putation shows that @2 is hypoelliptic and satisfies (7) with ¢ = 1/3. Hence
it follows from Corollary 2.9 that S}, is decomposable for all p € (1,00).
Notice that Q2(R?) =

(b) Let Qs(t, z) = zt + lz|%, for t € R and z € RY. Then a computation
similar to that in [27; p. 70] shows that Q3 is hypoelliptic with ¢ = 1/(20).
By Corollary 2.9 we conclude that the operator S‘ég is decomposable for all
p € (1, 00) satisfying

2l |1 1

® Q-0+ |2 3

So, given any € N, this operator is decomposable (and hence satisfies the
spectral mapping property o(55,) = Qs(RV)) provided that 1/(N +1) >
|1/2—1/p|. For N =1 this is satlsﬁed for all p € (1,00). As noticed in [27],
if [ = 1 (i.e. for the heat operator) condition (9) is satisfied for all p € (1, c0)
provided that N < 3. It would be interesting to know what happens for
N > 4. For this example, @Q3(RV ) = {z € C : Re(z) > 0}.

(c) The following example has been considered in [14] and [27; p. 295].
Let

Qa(m1, 32, x3) = (11 — 2§ — 73 — i) (w1 + &3 -+ 2] +19)
= Q-(z1,z2, 23)Q+ (1, T2, 73).
Kenig and Tomas have proved in [16}, [17] that for each of the two factors Q-
and Q_ we have a proper inclusion Q+(R?) C o(Sp, ) forall p € (1,00)\{2}.

~ Hence, as noted in [2], the operators Sz+ and S7,_ cannot be decomposable
for any p # 2. Iha and Schubert proved in {14] that Q«(R3) # o(Sg,) for

all p satisfying [1/2 — 1/p| > 3/8, so that §7, cannot be decomposable for
such p. On the other hand, as shown in [27’ p- 295], Q4 does satisfy the
conditions of Theorem 2.8 with b = 1 and ¢ = —1/2 (it suffices to consider
k = 1). Hence we conclude that Sf), is decomposable for all p satisfying
11/2 - 1/p! < 2/9. This shows that there exist differential operators which
are decomposable on L?(RY) for certain p but not for all p € (1,00).

(d) In [23]-[25] it is shown, for n > 4, that the polynomial

Qs(z,y) = ((z —¢")* + (L +2%)
has the property that 0 € o(Sp,) whenever

(10) t pe i
3+4/n Pe1T4m

and that 0 € (5%, ) for all p € (1,00) not satisfying (10).
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Assume now that n is an arbitrary positive integer. To investigate the
behaviour of Q5(z,y) as |(z,y)| — oo we first consider points (z,y) € R?
satisfying |z —y"| < |z|+1|y|. Then |y"*| —[z| < |z|+}|y| and, when [y| > 1,
we have |y} < 4/z|. Accordingly, \

1 1 1

= < < 32i(z, )| 2.
Qslw ) < Tvar < wjararfs = gy < 0l
On the other hand, for [y| < 1, we have
1 1 1 .
< < _ '
|Q5(m,y)| B " y2 + 2 I(-'»U,y)‘

Now consider points (z,y) € R? satisfying |z ~ 4| > |z| + 1|y|. Then
1 1 1

< 4 : —z_
G = o=y P rL = el r gy = )l
Accordingly, Qs satisfies '
! -2
2
(1L) e < #Ew)

for all (z,3) € R?\ {(0,0)}. By (11) and Theorem 1 in [14] we have, for
n > B,
o(55,) = {9(]1&2) = [1,00] if p satisfies {10),
C otherwise.
In particular, for n > 5 and p not satisfying (10), the operator Sgs cannot
be decomposable.
Now, for all n € N and (z,y} € R?, we have

B ey)| _| 2o -y 2 |,
Qs(z,y) E—-ym)?+1 14227
since
2t
(12) Zog| <L teR
By (12) ag;a.m we also have, for (z,y) € R?,
y (93, y)

< nly* < nf(a, )|

- ‘ —2ny" "z — y")
Qs{z,y) T—-ym)P+1

Accordingly, the assumptions of Theorem 2.8 are satisfied with k& = 1 and
a=1-nand b= 2. It follows from this theorem that SEB is decomposable

and has a translation invariant C*(C)-functional calculus for all p satisfying

n+2 2n .
—2T'<p<n—_—2“ ifn>2

and for all p € (1,00} if n =1,2.
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By means of the following result (which provides a different criterion for
decomposability than that of Theorems 2.6 and 2.8) we will see that Sg, is
actually decomposable for all p satisfying (10). m ?

THEOREM 2.12. Let p € (1,00) and N € N and suppose that k is the
smallest integer satisfying k/N > |1/2 — 1/p|. Suppose that Fe Cr®N)
satisfies the following conditions:

(1) 1/1f(z)| = O(L/|z|*) for some s > 0 as 2] — oo.
(i) For all ue Ny with 1 < |u| < & we have

(o)

D

Then either o{85) =T (in which case S% is not decomposable if F(RN) # T),

oro(S%) = FRY) % T and 5% is decomposable for all g € (1,00) satisfying
I1/2-1/ql £ [1/2-1/p|.

Proof. It follows from Theorem 2.2 that f € U9(RV) for all ¢ satisfying
[1/2—-1/q| < [1/2 - 1/pl. Now suppose that o(5%) # C. Hence there exists
some A € C such that (A — §9)~! ¢ L’.(LP(RN ). As noticed earlier we
must then have 1/(A — f) MP(RN) and (AT — S5)~' =57, 5+ Since
also A — f satisfies conditions (i) and (ii) we may assume, without loss
of generality, that A = 0 and (§§)~! = S7 )¢ exists in [L(LP(RN )). Since
MP(RYY € ME(RY) for all ¢ such that [1/2— 1/g| < 51/2 —1/p| We also
have 87, € L(LI(RY)) and s0 0 ¢ o(S}) as S,y =(8H™

Let m be an integer satisfying m > 1+ (k(1+¢)+1)/s. We show that the
function 1/f™ then satisfies condition (3) in Theorem 2.4 with ¢ = b = 1
for |u| < k. If |u| = 0, then by (i) and the fact that ms > 1, there exists
some €y > 0 such that for [z| > 1 we have

1 1
T < O <O R
For 1 < fu| < k we write f~™ = po f with ¢{2) = 1/2™ for z € T\ {0}.
Using Lemma 2.1 in [3] and conditions (i) and (ii) we can find a constant
C2 > 0 such that, for |z| > 1,

= O(|z|°)  for some ¢ > 0 as |z| — co.

<Gy

| |ma

84(f~m) 1 ! :
e (@) S Orn ol He < Gy < Comr
Oz || || !

Hence, by Proposition 2.5, the operator (S D =57 18 C*(C)-scalar
and therefore decomposable. A result of Apostol [5; III, Theorem 1.5 then
implies that S = (5’;)“1 is decomposable for all g satisfying {1/2~1/q] <
[1/2—1/p|. From Lemma 2.4 in [3] we conclude that also S} is decomposable

i
i
H
i
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for all such g. Finally, by Corollary 3.4 in [2] it follows that the spectral
mapping theorem holds, that is, o(S}) = f(RY). =

Notice that, with f = Q a polynomial and ¢ = degree(Q), assumption
(i) in the preceding theorem is always satisfied. This observation leads to
the following result.

COROLLARY 2.13. Let @ be a polynomial such that C\ Q(RY ) # 0 and
|Q(z)| — oo for |z| — co. Then the set Dec(Q), consisting of all p & (1,00)
for which SP is decomposable, coincides with {p € (1,00) : 0(5p) # C} and
is an interval containing 2 in s interior.

Proof. Since {p & (1,00) : o(85) # C} coincides with the set of all
p € (1,00) such that, for some A € C (dependent on p), the function
(A — @)t € MP(RV) [27; Ch. 4, Theorem 4.1], this set must be an in-
terval, That this set coincides with Dec(Q) follows from Theorem 2.12; the
fact that 2 is an interior point of Dec{Q) is a consequence of Corollary 2.10. m

In particular, if n > 5, then the operator Q5 of Ruiz (cf. Example 2.11(d)
is decomposable for all p satisfying (10).

Actually, as seen in our next statement, in this and similar cases we even
obtain a translation invariant C¥ -functional calculus; see Definition 1.1(d).

THEOREM 2.14. Let Q be a polynomial such that Q(RN) # C and
|Q(x)] — oo for || — oo. Let p € Dec(Q) and k be the smailest in-
teger satisfying k/N > |1/2 — 1/p|. Then 53, has a translotion invari-
ant C% (C)-functional calculus & : @ — S} . In particular, 5§ has the
Lyubich—Maitsaev property.

Proof Tt suffices to show that the operator S}, is continuous in
IP(RN ) for all ¢ € C% (C). Hence, fix an arbitrary ¢ € C&(C). Without

loss of generality we may assume that 0 ¢ Q(RY). Since 5%, is decomposable
~ we must have 0 ¢ a{S%) [2; Corollary 3.4].
By the proof of Theorem 2.12 there exists some m € N such that Sg_m

has a translation invariant C* (C)-functional calculus ¥ given by ¥(y) =
Sio(Q“"‘) for ¢ € C*(C). Hence, a translation invariant C*(C)-functional
caleulus &, for Shm is given by B (7) = 87, g-m) for 7 € C*(C), where
“we define 7*(2) = T(c0)xf0y(2) + T(z7V)xe\j03(2), for z € C. Note that
™ € C*(C). Since p is analytic in a neighbourhood of oo there exists an
r > 1 such that ¢ is analytic on R, :={2 € C: |z| > r}.
Fix x € 0®(C) with the properties supp(x) C Rym and supp(l —x) N
Rarym = 9. Since |Q(z)| — oo for |z| — oo, we see that 1 = x* o Q™™ is &
C*-function with compact support in RY . Hence (poQ)-(1—x*oQ ™) isa
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p-multiplier function and so it suffices to show that also (poQ)-(x*oQ~™}is a
p-multiplier function. To prove this let us first prove that 5%, | g-m =95 ? oQm
has its range in the closed subspace X X

X 1= Em(supp(x)) = [ Hker&..(p) : 0 € C*(C), supp(o) Nsupp(x) = 0}

of L?(R™ ). Obviously, X is invariant for all translation invariant operators in
L(LP(RY)) and for (§5)" = 8§, n € N. Moreover, D(55.|X) = Sh-n(X).
Hence, the inclusion “2” is obvious. To prove “C” we fix an arbitrary f €
D(Sgn|X) = X N D(8fn) = X Nran(8f..). Thus f = Sp,_,.g for some
g € LP(RY). For all p € C*(T) with supp(e) N supp() = @ we then have

0 =&, (0)f = B (2)S_g9 = 55, {0y,

and hence &,,(2)g = 0 since Sg_“ is injective. It follows that g € X and we
indeed have D(SG.|X) = S5, (X) for all n € N. It now follows that Sg.|X
is closed for all n ¢ N and that §2.,|X = (S5|X)" and 0 € C'\ 7(§5.|X).

In the next step we prove that o(Sh.|X) C supp(x). Hence, fix an
arbitrary A € C \ supp(x). Since the algebra C*(T) is normal we can find
¥ € C*(C) such that supp(l — ¢) Nsupp(x) = @ and A & supp(+). Hence,
the function ¥y : 2z = (A = 2)71{(2)xg\ p, 003 (2) I8 in C(C). For f €
D{(S%,..|X) we then have

B (¥2) (M — 550 f = F Y@ 0 Q™) - (A= Q™F)

=FH @ oQ™) ) =Fnl@)f = §
since f = B (V) f + Pl — ¥} f = S (¥)f by the definition of X.

Hence, we have proved that o(SHm|X) N C C supp(x) and thus .

o(S5m]X) C Rem. By the spectral mapping theorem [8; VII, Theorem
9.10] we conclude that o(S|X) C R,. Since @ is analytic in R, we have
a Laurent series expansion ¢(z) = ¥ oo anz™™ for ¢ which converges uni-
formly on all compact subsets of R,. Because of ran(Sion) C X and the
continuity of the analytic functional calculus for SE,LX we obtain the con-
vergence of 300 an(SHIX) "SR om in L(LP(RY)). It is clear that this
operator is translation invariant with symbol (¢ o @) - (x o Q™). Thus
(goQ) - (xo Q™) =(poQ)-(x* o Q@ ™) is a p-multiplier function. m

Finally, we wish to give a decomposability criterion (dependent on p) for
systems of linear partial differential operators with constant coefficients op-
erating in LP(RV)™. First we recall some definitions and notations from [4].
In particular, if () is a matrix-valued function on RY with polynomial entries
recall that £(Q) = v 0(Q(z)); the closure is taken in C.

e €
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For a matrix-valned C%-function a = [a;;]7%.; defined on RY let S2
denote the closure of the linear operator S in LP(RY )™ with domain

D(8) = D) = {f e LP (RNVY™ supp(f) is compact}

and given by Sf := F‘l(xaf), for f € DW), where x is any O°°-function
with compact support, satisfying x = 1 in a neighbourbood of supp(f),
Since xa is an (m xm)-matrix whose entries are p-multiplier functions we see
that §f € L?(RN )™, Moreover, this definition is independent of the choice of
x € C (RN with the property that ¥ = 1 in a neighbourhood of supp(f)‘ If
a = Q is actually a matrix polynomial, then it can be shown (using standard
regularization techniques) that Sf? coincides with the closed linear operator
Qp(D) with domain {f € LP(RNY™ : Qp(D)f € LP(RV)™} and given by
£ Qp(D)f, where Qy(D)f is defined in the sense of distributions. From
this second definition it follows that we always have (5g)* C St fork € N.

Since both operators obviously coincide on D) and since (L‘E;’gg)"c is closed

whenever 57, has non-empty resolvent set [8; VIIL, Theorem 9.7], we obtain
the following result,

LeMMA 2.15. Let @ be an (m x m)-matriz polynomiol. If p € [1,0)
has the property that the operator SE has non-empty resolvent set, then

(83)% = 82, for all k& N.

In the following theorem this fact is needed for the proof of part (c),
which may be viewed as a matrix version of Theorem 3.1 in [14]. Moreover,
|| - i| denotes any matrix norm on the set My, (C) of all (m x m)-matrices
over C. Given A € C and a matrix polynomial ¢} in N real variables, we say
that (A ~ @)~! vanishes at infinity if there exists § > 0 with the property
that (A — Q(z))™* exists for all |z| > & and
(13) Jim - Q@) =0,

THEOREM 2.16. Let Q = [Q;k]Thy be @ non-constant matriz poly;nomial

in N real variables such that (A— Q)™ vanishes at infinity for some X € C.
Then we have the following properties:

(a) There exists some v > 0 such that ||{(A ~ Q(z))"|| = O(|=|™"), for
&) — o0,

(b} If r is as in (a), then det(X — Q(z)) = O(|z|™), for x| — 0.

(c) Let p € [1,00). If o(8§) # T, then D(Q) = 0(83) N T and the
operator S% is decomposable. If o(S8) = T but X(Q) # o(S5) NC, then
8% 18 not decomposable.

(d) There exists some s > 0 such that, for all p € (1,00) sotisfying
|1/2 ~ 1/p| < s, the operator 8 is decomposable in LP(RN )™,
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Proof. (b) Write a;;(A, z) for the (4, j)-entry of the matrix (A —Q(z)) 1
and define gg(A, z) = det(A — Q(z)), for z € RY. Because of the identity

(04)  ge(he) ™ =det(h— Q@)™ = 3 sgn(m) [ aswey 0 5)
TES =1
we see that the growth condition in (a) indeed implies that of (b).

(a) Note that a;;(A, z) = Aj; (A z)/ee(M ) (for 1,7 = 1,...,m), where
Ai;(A, %) is the minor of A — Q(z) corresponding to (i,5). By (13) we have
aij(A,z) — 0 for |z| — oo and hence, by (14}, also go(\, z)~t — 0 as
|z} — oo. In particular, gg (X, -)"1({0}) is a compact subset of RY . We con-
clude from the arguments in the proof of Theorem 3.1 in [11], by replacing ¢
with z, grad P(£) with A4;;(}, z) and P(£) with gg(), z) in those arguments,
that there exists some C7 > 0 and a constant b; > 0 such that

(15) [4ii (A, 2)[* € Gl + lgq(, z) 7)1~
for 4, = 1,...,m. Moreover, by Theorem 3.2 in [11], for some other con-
stants C'3 > 0 and by > 0, we also have
(16) |z]* < C2(1+ laq(A, 2)|%)*.
From {15) and (16) we conclude that
jais(0,2)] = BRI ogg-mrmy gy o,

IQQ (Asm)l
from which (a) follows with r = 2b; /bs.

(c) Assume that o(S5) # C and fix an arbitrary point 4 € C\ 2(Q).
Such a point u exists since £(Q) C o(S5) \ {oo} [4; Lemma 2.2]. Then,
by Lemma 1.2 in {4] and the discussion preceding that lemma, we see that
(1—@)~! is a bounded matrix-valued function on RY with rational functions
in its entries. Hence, for |z — oo,

a7 le-Q=)™
= (A= Q@)™ + (A — ) (A~ Q)M — Q@) M| = OJ2] ™),
where r > 0 is as in (a).

Let & denote the maximum of the degrees of qg(u, z) and each of the
minors of the matrix polynomial i — Q. Let n be the smallest integer ex-
ceeding N/2 and let k € N satisfy kr > (K + 1)n. In the next step we
show that the entries of the matrix function (u —~ Q)™* are actually Fourier
transforms of elements from L'(R"), and hence are p-multiplier functions.
First, if @ € N}, then by (b) and by the arguments in the proof-of Lemma 4
in [14] we see that o

a -1 :

bk 5 b e
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Let Ayj{p, z) be the minor of p ~ () corresponding to the indices 1,4
{1,...,m}. Then

R R NE R
Using the Leibniz rule we see, for « € NYY with |a| > 0, that

3&

6_a(Aij(ﬁ:37)QQ(,LL, z)™| = O(|z|Flal=rmy,

(19)
Now, each entry of (u — Q(z))™*

|z] — oo.

is a sum of m*~1 terms of the form

ﬁ Aj'hjt+1 (-’-1'7 9.'3) 'A'jt WJerl (,U:, )
i aQ(py ) go{p, )

by (17). Applying the product rule for differentiation and the estimates (18)
we see, for all « € NJY, that

_ai ( ﬁ Ajz,jwl (.U': 33'))
Oz~ qQ (“! 55‘)

P

, where =O0(z|™") for |z| — oo,

is a sum of at most kl*l terms, each of the form

(19)
k » N . .
Gt() ( H Ajt(u) Fieu)+1 (nuj .'B)) ( aél‘:w (Ajt(m),.;‘e(w)+1 (}'Jr, :r:) ) ) ’

wmor1 el ) i) 9q (1, )

where ay,...,0, € NY satisfy 30 @, = @ and ¢() : {1,...,k} —
{L,...,k} is a bijection, and Cy. is a constant. Because of (17) and (18),
|:v[ — oo this term has order 0(|m|(2w=1 Klawl)—{k—v)r—mrv) 1t follows,
for & € Nf with |a| > 0, that
0 —k
Fpe (= Q@)

Let by; () be an arbitrary entry of the matrix (1 — Q(z))~*. As in for-
mula (10) of [14] we see that

. 8%byy(z) 2 q1/2
@) e S|P ]

jej<m RV .
where the d,, are the multinormial coefficients. By the definition of n and
(20) we see that the right-hand side of (21) must be finite, and hence
that F~1(b;) € L'(RV). It follows that the matrix-valued function
(b — Q(2))~* has entries from F(L'(RY)) ¢ MP(RY), Thus Sl—)-u 15 2

bounded linear operator in L?(RN y™. A straightforward computatlon shows
that S(u _g)k = (S(u Q)k) . On the other hand, Lerama 2.15 implies that

(20) \ = O(jal¥Io~7), || — oo.

0%b;;
T 8z
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S&_ oF = (85_g)* since, by hypothesis, 5% and hence also ui — S5 = S e
has non-empty resolvent set. By the spectral mapping theorem [8; VII, Theo-
rem 9.10], 0 belongs to the resclvent set of S5, and therefore, 4 € C\U(Sg)
Since £(Q) C o(5p) we obtain 2(Q) = C ﬂ o(Sg)-

The convolution algebra L'(R™Y) is known to be a regular, semisimple
Banach algebra and so the same is true of the algebra B = L'{RY) & C that
we obtain by adjoining a unit. The mapping A : M,,(B) — L{LP(RV)™)
defined by :
gi; € LI(RN), Qi € C,

Algis + @il=a) = [SF, 10 J05=1>

is a unital homomorphism containing ($

fu_gyw) " in its range. Hence, by

[4; Proposition 1.4] the operator S(# o)k = (LS’&_Q),L.)‘ZL is decomposable.
But it was noted above that 5f o QF = (Sh_@)F = (uI — 85)F and so

(ul - SB) " = = (5], o) !. Hence, Theorem 1.5 in [5; Section III] shows
that (4l —S5)~" is decomposable. By [3; Lemma 2.4] the operator uf — 55
is also decomposable, from which the decomposability of S”é is immediate.

Suppose now that ¢(55) = C but B(Q) # o(S5) NC. Then % cannot
be decomposable by Proposition 2.3 of [4].

(d) We proceed along the lines of the proof of Proposition 4.1 in [4]. By
part (b), the set N(A) := {z € RY : gg(\,z) = 0} is compact and hence
contained in a ball Ug(0) = {z € RV : |z| < R} for some R > 0. For a closed
set F C RY the closed linear subspace EP(F) := {f € LP(R¥)™ : supp(f)
F} of LP(RY)™ is invariant for 57, (in the sense that S5 (D(SH)NEP(F))
EP(F)). We note that if F' happens to be compact, then EP(F) C D(Sg) for
all pe[1,00). Fix ¢ & C*(R¥) such that supp(¢) C Ur+1(0} and supp(i—)
MUg(0) = @. Then the range ran(S5) C EP(supp(y)) C EP(Ur+1(0}) and
ran(S7_,) C £P(supp(l — ¢)) C EP(RY \ Ug(0)). From this we see that
LP(RVY™ = £P(Ug.1(0)) + EP(RY \ Ug(D)). As in the proof of part (a)
of Proposition 4.1 in [4] one shows that the restriction SjH|EP(Ur41(0)) is
decomposable (for all p € [1,00)).

We now show, for p € (1, 00) satisfying |1/2—1/p| < s :=r/(N(K +1))
(with K defined as in the proof of (c)), that the operator Sp|EP(RY \ Ug(0))
is also decomposable. Fix a function ¢ € G°°(RY ) such that supp(o) N N(X)
=0 and supp(1 — g) C Ug(0). Then the function g(A — @)~* (defined to be
identically 0 on N(})) is a C°-matrix function. An inspection of the proof
of (18) shows that the growth behaviour of (18) is also true for the entries
Aii (A 2)gg (M, 2)7t of (A —Q(z))~1. Since the derivatives of o have compact
support we conclude from this and part (a) that the entries e;; of o(A~@Q)™1,
fori,j==1,...,m, satisfy the conditions of Theorem 2.4 and Proposition 2.5
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with ¢ = —K and b = r and for every k = /(K + 1). In particular, the
functions e;; are p-multiplier functions for each ¢, = 1,..., m and we deduce
that T = §7 (r—g)-1 18 a bounded linear operator on LP (IERN )™. Obviously,

EP(RN UR(O)) is invariant for T and a straightforward computation (as in
the proof of part (b) of Proposition 4.1 in [4]} shows that

(22) T|E7(RY \ Ur(0)) = (S3_q|€7(RY \ Ur(0))™*
= (A - SBIEP®Y \ Ur(0)))™
By Proposition 2.5 each of the operators S7, € L(LP(RNY), for i,j =

1,...,m, is generalized scalar and has a C*°(C)-functional calculus ¥;; given
by @ii(9) = 8y, for ¥ € C=(C). Obviously, with £EJ(RY \ Ur(0)) :=

{f € LP(RN) : supp(f) C RN \ Ur(0)}, the continuous homomorphism
8i; : C=(C) — L(EF(RN \ Ug(0))) defined by

0is () = 83, IEE(RY N UR(0)), ¢ € C=(O),
is a C*°(C)-functional calculus for S%_1€§ (RN \ Ur(0})). We note that the
ranges of these homomorphisms mutually commute, i.e.

Baygy (1) Bigsy (W2) = By 5, (020315, (1)

. QP D (N

- S(@bloeiljj_)'(’l,bgoe,;?h)|80 (R \ UR(O))'

Hence, the continuous m?-lincar mapping ()%= = Hf,‘jzl 0;5 (1i;)
2

extends to a continucus unital homomorphism & ceEem) —

L(EP(RY \ Ug(0))), since €°°(C™") coincides with the completed projective

tensor product @y, C*(C). Note that 8(z;) = SZ,,

where z;; denotes the (7, j)-coordinate function z;; : €™ — C. Let

fort,7=1,...,m,

M = max
1<i,j<m g

SUP lesz (x)] -+ 1.

With Byy = {2 € C: |2 € M} and A = {WB;’;“ c g € C°(C™)} one

easily verifies that .4 is a normal spectrally closed subalgebra of C (Bl\”,}z) in
the sense of [1; §3]. Moreover, # induces a (well-defined) unital homomor-
phism &, : A — L{EJ(RY \ Ux(0))) by the formula 451(%5“2) = 9(y), for

W e O™ (sz). By means of $; we can construct a homomorphism
B Min (A) = A® Mn(C) — LIEFRY \ Ur(0))™) = L(EP(RY \ Ur(0)))

by fpm([ﬂl’u] _1) = (@ ()T =17 for [wi;]T, =1 M, (A). Then by
11 Corollary 3 14] every operator in the range of si»"m is decomposable. In
particular, this applies to

P [245]7=1) = [S: e.JISS(RN\UR(O)) =1 = TIEP(RY \ Ur(0)).
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Hence, by (22) and [3; Lemma 2.4] the operator S% oEP(RN \ UR(0)) is de-
composable,

The decomposability of 53 on all of LP(RY )™ now follows as in part (c)
of the proof of [4; Proposmon 41]. m

3. Second order linear partial differential operators with real
coefficients. In this section we investigate the local spectral behaviour of
linear second order partial differential operators on LP(RY) with real coef-
ficients. In this connection let us remark that a complete investigation of
the invertibility problem for second order linear differential operators (with
complex coefficients) which have (N — 1)-dimensional level sets is contained
in the work [6] of Chang and Tomas.

So, let us now consider the operator

N

j,kzm Jkaa:, Z 36

with real constants a;x, b; and ¢, for g,k =1,...,N. The corresponding
minimal differential operator in LP(RV) is S, where @ is the polynomial

N N
Q&Y= — 3 apibe +4> bty +e, ERY.
j=k=1 .7=1

This may also be written as
Q€) = AL +ib*E + ¢

where £ = [1,...,én], A = [~3{ajx + ar5)] 5, and B = [by,...,bx].
Since an affine change of variables does not change the spectral behavmur
of such an operator (cf. Lemma 1.2(c)), we may assume that Q is of the form

(23) Qlz,y,2) = |zf* - |y|* + c +i(o’z + By + '),
where now z € R*, y € R™, 2 € R* are the variables (with n,m,k € Ny

satisfying n-+m-+k = N) and o € R*, 8 € R™, v € R¥, ¢ € R are constants.
Accordingly, we now have various cages to consider in (23).

CASELIfm =0,n%#0and v=0 (resp. n = 0, m # 0 and v = 0),
then Q is elliptic with respect to the variables in x (resp. in ) and does not
depend on 2. In this situation it follows from [2] that for all p € (1,00) the
operator S’é is decomposable, admits a functional calculus as in Theorem 2.6
and has the Lyubich-Matsaev property.

CasE II: Suppose that n # O,m = OQand vy # 0 (or m % 0, n = 0
and - # 0), in which case k % 0. We shall only consider the first of the
two situations, since the other is of the same type. Without loss of general-
ity we may assume that v, # 0. By an additional linear change of variables
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(i.e. 2; — x4, otz 4tz — z; and 2 — z for 2 <! < k) we may suppose that
Q has the form Q(z,z) = |z|> + ¢+ iz1, where 1, # 0. By Example 2.11(b),
S is decomposable (considered on LP(R*1)) and has a translation in-
variant C?(C)-functional calculus for all p € (1,00} satisfying 2/(n + 1) >
|1/2 ~ 1/p|. By Lemma 1.2, the operator S}, considered on LP(R™"*) must
also be decomposable and have a translation invariant C?(C)-functional cal-
culus. Moreover, S2 also has the Lyubich-Matsaev property. If n < 3 and
k € N, then this is the case for all p € (1, 0o). Notice that, independent of n
and k, we have ¢(S5) = C = Q(RV) for all p € (1,00).

Casg I1I: Both n £ 0 and m 3 0. Here we have to distinguish between
various subcases of a qualitatively different nature.

SuBOASE (a): m =n=1 and k € Ny arbitrary. Then (13) becomes
(24) Q(z,y,2) —c = (z —y)(z +y) +ilaz + By +7'2)

with @, € R and v € R". Thus the real part of (24) is a product of
real linear functionals and the imaginary part is real linear. It follows from
[3; Theorem 2.2] that, for all p € (1,00), we have Sj_, = S§ — ¢l and
this operator is decomposable, admits a translation invariant }C2-functional

calculus and has the Lyubich-Matsaev property. The same is then true
of S, u
Q

We will require the following result due to Kenig and Tomas [16], [17].

THEOREM 3.1. For some g € (0,c0) let ¢ € LYR) N L>*(IR) be a non-
constant function.

(a) If n = 1, then the funection mg : (8,3) — (t — |z|2), for (t,z) €
R x R", is a p-multiplier only when p = 2.

(b) If n,m € N and max{n,m} > 2, then the function my : (z,y) —
e(z|2~y?), forz € R® and y € R™, is not in MP{R™ x R™) unless p = 2.

Part (a) has been proved in (17], Theorem A, for n = 1. As noted there,
the general case can be obtained by applying a theorem of de Leeuw [15], [19].
Part (b) is proved in [17], Theorem B (independently of {a)). It may be of
interest to note that (b) can also be obtained as a direct consequence of (a).

To see this, assume that my € MP(R™"™) for some p # 2. With the linear
change of variables z; — £; (for 1 € j < n—1), &n +Ym — U, Tn—Ym — v
and g~ m (for 1 £ 1 < m — 1) we see that the function (£,u,v,n) ~
(|EP+uv—|n|?), for (€,u,v,n) € R xRxRxR™1, is also in MP(RH™)
[12; Theorem 1.13]. Without loss of generality we may assume that m > 2.
Hence, by the theorem of de Leeuw [15], [19], for almost all {£,%) € R** xR
the function me,,, : (v,77) — @([€* +uv —|n|?)} is in MP(R x R™1). Choose
and fix any point (¢,%) € R** xR (with u % 0) having this property. After
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one more affine change of variables, namely |£[? + wv i~ p and 5 7, We
deduce by [12; Theorem 1.13] that the function (g,1) — (g — |n|?), for
g€ Randn € R™!, is in MP(R x R™"1). However, because of (a) this is
impossible.

SuBcasE (b): Suppose that min{n,m} > 1, max{n,m} > 2, k > 0,
a=008=0 v=0

COROLLARY 3.2. In this situation .5'5 i never decomposable for ony

p € (1,00) \ {2}. In particular, 8§ cannot have o tramslation invariant
A-functional calculus for any quasiadmissible algebra A.

Proof. By Corollary 3.4 in [2] it suffices to show that RU{cc} = Q(RY)
does not contain o(Sh). By Theorem 3.1(b) (with p(t) = 1/(i—1), for t € R)
we see that ¢o (), considered as a function on R™ x R™, is not in MP(R*+™)
for p # 2. Hence, by the theorem of de Leeuw [15], [19] we conclude that
{ o @ considered as function on R® x R™ x R* cannot be in MP(RY) for
p # 2. 5o, as mentioned in Section 1, the point ¢ € C must be in o(8}),
considering S} as an operator on LP(RV). w

SUBCASE (c): Suppose that min{n,m} > 1, max{n,m} > 2, £ > 1 and
v #0in (23).

THEOREM 3.3. In the situation of Subcase {c), for p € (1,00) \ {2}, the
operator Sg comnot have a translation invariant A-functional caleulus for

any quasiadmissible algebra A of functions on C whose restrictions to C
belong to LS (C).

Proof. Under the assumption that the theorem is false, by means of a
linear change of variable, we may assume that Q is of the form Q(z,y,u) =
|z|* — |y|® 4+ ¢ + 4uy and that, for some p # 2, the operator S5 has a
translation invariant A-functional calculus for some quasiadmissible algebra
A of functions for which {¢|c : ¢ € A} C L (C). By the properties of A
there exists a non-zero function ¢ € A with compact support. In particular,.
the set V' of all uy € R such that 8 — (s + ¢+ iug), for s € R, is a
non-constant function belonging to L°°(R), is not a null set. By the already
quoted theorem of de Leeuw [15], [19] there exists some u € R¥ such that
u; € V and the function (z,y) — ¢(|z|? ~ [y)? + ¢ + fug) is in MP(RPM™).
But by Theorem 3.1(b) the function ¢ o (|z|® - |y|? + ¢ + fuy) cannot be a
p-multiplier function on R™*™ and we have a contradiction. m

SUBCASE (d): Suppoese that min{n,m} > 2, v = 0 and |a|? + |8]% # 0.
Without loss of generality assume that « # 0. By a rotation in the z-
variables and another one in the y-variables and by using Lemma 1.2(c), we
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may suppose that
Q(m,y, 2} = z[* ~ [y|® + ¢ + i(cn®n + Bmym)

and @, % 0. With the additional linear change of variables T; — & (foI
1<ji<n—1), 20+ {Fn/cn)ym — t, y = y and z — 2 this is transformed
to

2
@) QEtwa) =+ (1= ) P o,
THEOREM 3.4. In the situation of Subcase (d) we have the following
properties.

(a) o(Sh) =T = Q(RN) for all p € (1, 00).
(b) If p € (1,00)\{2}, then Sf; does not have a translation invariant A-

functional calculus for any guasiadmissible algebra of functions on C whose

restrictions to C are in L2 (C).

Proof. Assuming that, for some p 5 2, the operator Sg does have a
translation invariant A-functional calculus, where A is a quasiadmissible
algebra of locally essentially bounded functions on C, we choose @ and V
as in the proof of Theorem 3.3. By the theorem of de Leeuw [15], [19] we
can find (and now fix) some ¢ 3 0 such that a,t € V (so the function
¥ 18— @(s + ¢+ iayt) is not a null function on R, is compactly supported
and is in L°(R)) has the property that the function from E"~! x R™ to C

given by
2
€v (e (- Pntm) )

is a p-multiplier on B~ x R™.
(A) Suppose first that 62,/a2 < 1. Then we make the following linear
change of variable: £~ £, 35 — u; (for L <5 <m—1) and

z mt m) "
(1—£)(ym—l—%;—(l—-%) )Hum.

It follows that (€, u) — 9(|¢* — [ul® + d) is in MP(R* x R™) where d =
t*(1— 62 /o )~'. However, by Theorem 3.1 this is not possible (since 9 is a
not identically venishing L*°(R) function with compact support, (n—1) > 1
and m = 2).

(B) It 82,/02 > 1 we make the linear change of variables £; — uy (for
I1<jsn—1),p v (for1<I<m—1)and

(G o2 )
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It follows that the function (u, v} r+ ¢(|ul® - |v|? +d) is in MP(R™ x R™1),
where now d = —t*((8% /o2) — 1)7%. Since n > 2, (m~1) > 1 and v
is a non-constant L°°(R) function with compact support, this is again a
contradiction to Theorem 3.1.

(C) Suppose now that 82 /e = 1. In this case (25) has the following

form:
m—1

Q& t,y, 2) = ¢ +* - 2Wtimfen _ 3" y2 4 ¢ +iat.
Q, o

Again we assume, for some p € {1,00) \ {2}, that 5% admits a translation

invariant .A-functional calculus with A as above and choose ¢ and V as in

the proof of Theorem 3.3. By the theorem of de Leeuw we find some ¢ with

oot €V and z € R®, € € R™1 (so that ¢ : s — ¢(s+ ¢+ iagt) is non-zero)

such that

9 " m—1 ‘
(- Ym) Hw(Fﬁlzm%-}t?— ny+c+mnt)

n F=1

-1
=¢(— ‘ y?—%h+d)

o
=1 "

is in MP(R™=* x R}, where d = 2 + Y77 €2. Tt follows that

Wy Ymery ) = =y = =yl )

is in MP(R™™! x R), where y; — y; for 1 < j < m —1 and —28Bmym/n
— u. This contradicts Theorem 3.1(a). Notice that this part of the proof
also works forn=1and m > 2. =

Hence, we now have to consider the last subcase.

SUBCASE (e): Suppose that n = 1 and m = 2 (resp. n = 2 and m = 1)
with |a|2 + {8]? # 0 and + = 0. Since the problem is symmetric in n and m
we need only consider the situation whenn =1, m =2, |al*+|5|% # 0 and
v = 0. As in the previous case we may assume that ¢ has the form

(26)  Q(m,y1,¥2,2) = 2% — 4 — 3 + ¢+ i{az + By2)
for T, YL,Y2 € R: Z ERk:

where o? + 82 # 0, In this situation we have the following result.

TI-I_E.OREM 3.5. Suppose that @ is given in the form (26).

(a) If a? = % and p € (1,00)\ {2}, then S§, does not have a translation
inwariant A-functional calculus for any quasiadmassible algebra of functions

on C whose restrictions to C are in L3, (C).

[ ————
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(b) If 82 < o? then, for all p satisfying |1/2 - 1/p| < 1/3, the operator
S% admits a translation invariant C*(C)-functional calculus, is decompos-
able and has the Lyubich—Matsaev property if k = 0.

(c) For all choices of o, B with §° 2 o we have 0(Sh) = QR ) = T
for all p& (1,00).

Proof. (a) follows from part (C) of the proof of Theorem 3.4.

(b) Fix some d > 0 with #%/a* < d and choose an & > O with d < (1—¢)2.
By Lemma 1.2(a) we may assume without loss of generality that k& = 0. We
shall show that

1
Q(SC, yl:y2)

(27)

1
=0 for |(x,y1,1 '
(|(~Tay1,y2)|> (e, y1, y2)| — 00

For points (z,y1,y2) satisfying
z’ < a—fgjg(yf +43)
we have (because of 1 — d/(1 —¢)? > 0)
Q@ v, 10) — o = (2% — 4} ~43)% + &* (2 + BaMp)?
2 (e~ ~93)* 2 (1= d(1 - )75 +13)°
2 5(1—d(l — &)Y (47 +3)°
+ 51— d(1— )71 — g)*d2z*
> C1(d, €)|(z, y1, y2)|*
For points (z,y1,y2) satisfying

d
2 2.2
= > (1—_5')'5(?11 +3)
we obtain
1@z, y1,12) — of* 2 o (2 + Ba " 1)? 2 &¥(|e] ~ |Ba |2 )’
o (ja| — VAT 4)) 2 a’e%a’
jola? + o (2(1 - &)%) a3yl + 43)
OZ(dr E)I(m: 1, yﬁ)lz'
Hence (27) is proved. Further direct computation (or the argument in the
proof of [27; Ch. 4, Corollary 4.3]) now shows that ( satisfies the conditions
of Theorem 2.8 with b = 1, @ = 0 and k = 1. It follows from this theorem

that S (considered on LP(R?)) has a translation invariant C* (C)-functional
calculus, is decomposable and has the Lyubich~Matsaev property.

(c) By direct computation we see that Q(RY) = C. This implies the
statement. w
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REMARK. Suppose that o® < 82. Although the spectrum of Sf? is known
(cf. Theorem 3.5(c)), we have been unable to decide whether or not 5% ad-
mits a reasonable translation invariant A-functional calculus or even whether
or not 55 is decomposable.
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Two-parameter maximal functions
associated with homogeneous surfaces in B*

by

GIANFRANCO MARLETTA and FULVIO RICCI (Torino)

Abstract. Given a hypersurface zn = I'(zy,..., 20 1) in R™, where I" is homoge-
neous of degree d > 0, we define the two-parameter maximal operator

Mf{z) = sup |

up |f(z — (as, bI"(s)))| ds.
o> JERD—1 (a]<1

We prove that if d # 1 and the hypersurface has non-vanishing Gaussian curvature away
from the origin, then M is bounded on L? if and only if p > n/(n—1). fd = 1, i.e. if the
surface is a cone, the same conclusion holds in dimension n > 3 if the surface has n — 1
non-vanishing principal curvatures away from the origin and it intersects the hyperplane
on = 0 only at the origin.

Maximal operators defined by averages on curves or surfaces have been
extensively considered. Restricting our attention to translation invariant op-
erators in R™, the usual way to construct such operators is to take the sur-
face measure on some bounded part of the manifold and then act on it by
a one-parameter family of dilations. If u is the basic measure and p; is the
same meagure dilated by § > 0 and appropriately normalised, the operator
is

M £(@) = sup |f| * us(z).
>0

Two different situations can arise. If the manifold is homogeneous under
the given dilations, one obtains basically the same operator by restricting
the supremum to § = 27. Under appropriate assumptions on the manifold,
one then proves that M is bounded on L? for p > 1 (see [SW]).

If the manifold is not homogeneous under the given dilations, then the
various ys are supported on different manifolds and the problem becomes
much more subtle. Most of the results available concern the case where
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