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Two-parameter maximal functions
associated with homogeneous surfaces in B*

by

GIANFRANCO MARLETTA and FULVIO RICCI (Torino)

Abstract. Given a hypersurface zn = I'(zy,..., 20 1) in R™, where I" is homoge-
neous of degree d > 0, we define the two-parameter maximal operator

Mf{z) = sup |

up |f(z — (as, bI"(s)))| ds.
o> JERD—1 (a]<1

We prove that if d # 1 and the hypersurface has non-vanishing Gaussian curvature away
from the origin, then M is bounded on L? if and only if p > n/(n—1). fd = 1, i.e. if the
surface is a cone, the same conclusion holds in dimension n > 3 if the surface has n — 1
non-vanishing principal curvatures away from the origin and it intersects the hyperplane
on = 0 only at the origin.

Maximal operators defined by averages on curves or surfaces have been
extensively considered. Restricting our attention to translation invariant op-
erators in R™, the usual way to construct such operators is to take the sur-
face measure on some bounded part of the manifold and then act on it by
a one-parameter family of dilations. If u is the basic measure and p; is the
same meagure dilated by § > 0 and appropriately normalised, the operator
is

M £(@) = sup |f| * us(z).
>0

Two different situations can arise. If the manifold is homogeneous under
the given dilations, one obtains basically the same operator by restricting
the supremum to § = 27. Under appropriate assumptions on the manifold,
one then proves that M is bounded on L? for p > 1 (see [SW]).

If the manifold is not homogeneous under the given dilations, then the
various ys are supported on different manifolds and the problem becomes
much more subtle. Most of the results available concern the case where
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the dilations are isotropic and the manifold has dimension n — 1. If the
Gaussian curvature does nof vanish, then M turns out to be bounded on
L? for p > n/(n — 1) [S, B, MSS]. The range of p may be further restricted
if the curvature vanishes at some point [I} unless one introduces a damping
factor [CDMM, M].

The maximal operators we study invelve two-parameter dilations. Op-
erators of this kind have been considered in [C]. Our operators combine
both features of the one-parameter operators described above. The simplest
example is the following: given d > 0, d s 1, define the maximal operator
on R?

2

Mf(z,y) = sup Sf(m — as,y — bs?) ds.
a,b>0 1

If we modify the definition of M by imposing the relation b = a% on
the two parameters, we obtain a one-parameter maximal operator M of
the first type described above and which is bounded on LP for p > 1. If we
impose instead the relation b = a, we obtain an operator M, of the second
type, which is bounded only for p > 2.

Since M dominates both My and My, it can only be bounded for p > 2.
In Section 1 we prove that this is in fact the case by combining Bourgain’s
theorem with a Littlewood-Paley decomposition.

The réle of curvature is rather clear. If we take d = 1, the operator M
becomes basically the Kakeya maximal operator, which is bounded only for
D= 00,

The homogeneity of the curve allows one of the two parameters a, b to be
taken dyadic, i.e. equal to 27, but not both. If we restrict the supremum to
dyadic values of both parameters, then the corresponding maximal operator
is bounded for all p > 1 (see [RS]).

In Section 2 we consider variants of these operators in higher dimensions.
We take a hypersurface z, = I'(zy,...,2Zn~1) where I" is homogeneous of
degree d > 0 and define the two-parameter maximal operator

Mf(z)= sup | |f(z~ (as,bI'(s)))|ds.

b0 <1

We prove that if the hypersurface has non-vanishing Gaussian curvature
away from the origin (which forces the condition d # 1), then M is bounded
on L? if and only if p > n/(n — 1). It is interesting to observe that this is
also true if d = 1, i.e. when the surface is a cone, if one assumes that it
intersects the hyperplane z, = 0 only at the origin and that it has n — 1
non-vanishing principal curvatures away from the origin. In other words,
within these assumptions, the lack of curvature in the radial directions does
not affect the range of L”-boundedness. This phenomenon depends on the
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fact that the crucial estimate on the Fourier transform of the measure does
not involve the pointwise decay, but the decay of certain quadratic averages,
The same condition appears in recent work by Iosevich and Sawyer [IS] on
a slightly different problem.

In a separate paper [MRZ] we investigate the case of surfaces in higher
dimensions with other kinds of degeneracy in the curvature,

We finally comment on some consequences of our results. By applying
transference to the maximal operator related to the parabola y = z? in the
plane, one concludes that the maximal operator on the real line

1
Mf(z) = supSf(w— as — bs?) ds
a,b 0
is bounded on LP for p > 2. This has been proved directly by A. Carbery,
J. Wright and the second author [CRW]. They also prove that the restriction
p > 2 is sharp and that, more generally, the operator
1
Mypf(z)= sup Sf(:c— 018 — ...~ aps")ds
L5 PPRRN Y )
is bounded on L? if and ouly if p > n. It is then natural to ask for which
values of p the maxirnal operator on R™

1
Mf(z) = sup Sf(m —(a18,-..,a,8")) ds.
Q3. 0ylp 0
is bounded on LP. A necessary condition is obviously p > n, but attacking
this problem would require completely new ideas.

1. Homogeneous curves in R?. In R? consider the family of curves
Y(s) = (s,b59) depending on the parameter b > 0. We assume d € R and
d # 0,1. If on each curve we consider the arcs corresponding to s € [0, a],
a > 0, we can construct the maximal operator

@

1
(1.1) Mf(z) = sup =||f(z — (5,05%)|ds,
a,b>»0 @ 0
defined initially for f continuous with compact support. Clearly

1 [
Mf(z)= sup {|f(z— (as,bs"))|ds = sup |F]+uas(z),
a,b>04 a,b>0
where p is a fixed positive measure supported on the arc (s, s%), s € [0,1].
Therefore we can regard M as naturally associated with the two-parameter
dilation structure on IR?.
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The homogeneity of the curve allows us to restrict one of the parameters
for the dilations to dyadic values. In fact,

a 21:-{-1
Lo (b ds < 2 50 ] 17— (5,259 ds
0 2iga 2f
21'.+1
< 2sup 27t S if(x — (s,bs%))| ds

i€Z 5

2
= 2sup | |f(z - (25, 2"%s%))| ds.
€2 1

We can now take the supremum over o and b to see that it suffices to

control
2

sup | |F(z— (2%, bs%))| ds.
i€Z, b0

We can now insert a smooth cut-off ¢o(s) > 0 into our integrals, with ¢(s) =1
if s € [1,2) and supp ¢ C [1/2, 3], and define

M'f(z)= sup Hf(a: — (2%5,b8%))0(s) ds|.

i€Z,b>0
Clearly the ratio M f(z)/M’'f(z) is bounded pointwise from above and
from below by absolute positive constants.
THEOREM 1.1. The operator M is bounded on LP if and only if p > 2.
Proof. It is clear that M dominates the maximal operator
"2
f = sup{|f(z— a(s,s%)|ds,
a>»0 1

which is bounded on L? only if p > 2. Therefore M is not bounded for p < 2.
To prove the converse, we consider M’ instead of M. If we denote by m
the multiplier

m(&) = SG—ZW'i(a,gd).gtp(s) ds,
we can write our maximal function as

Mf(@)= swp [Tf(a)

where

F(Tinf)(€) = m{21,b62) (),
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and where F denotes the Fourier transform in z, as usual. A standard inte-
gration by parts argument shows that outside the cone

U {616 (1 ds® Y] < cefy
5€[1/2,3]
m(£) decays faster than any power of [£|, where ¢ is some small constant
depending only on d. It is easy to see, however, that the above cone may be
“widened” slightly and still be contained in the conical region

C={{:ca<|&/61| £ Ca},
for certain non-zero constants c¢q and Cy dependent only on d. Hence, for
£ € B2\ C, m(£) has rapid decay. In order that we may take advantage of

the good decay of m(€) outside the cone, we decompose it smoothly into
two parts:

m{&) = mo(€) + ma(€),

where

mo(&) = m(&)e{|&2/6))o (1€]);

here g is a €™ function such that g(A) = 0if A > 2Cy or A < ¢4/2 and
o(A) = 1if A € [eq, Cy] and o is a C* function equal to 0 in a neighborhood
of 0 and equal to 1 in a neighborhhod of infinity. Because of the smoothness
of m and of its rapid decay outside the cone €, we can dominate the Fourier
transform of my by 1(2) = C(1+|x|)~3, so that the corresponding maximal
function '

sup |F7H (ma (21, b62) £ (€)) (<)

1EZ,b>0
is controlled by

sup  C277 | F(w — w)in(2 ", b ge) dy,
IEE, b0
which, in turn, is controlled hy the strong maximal function in R?, and is
hence a bounded operator on L¥ whenever p > 1.
We now treat myg using a Littlewood—Paley type argument. We have to

control

Mo f(z) =
where A; ; f is defined by

F(AipF)E) = mo(2'61, b2) F(E).
We first observe that if b € I; = [27, 2], the definition of 4;5f only
involves the values of ,}?01’1 the cone where

W2 < leo/fa < C27,
for appropriate values of the positive constants ¢, CJ.

sup |Aipf(z)],
1CZ, b0

1S



58 G. Marletta and F. Riccl

Thus, we define the usual Littlewood—Paley operators Sy corresponding
to these cones, i.e.

F(Skf)(€) = B2 *l&/aDT8),

where g is a smooth cut-off function, like ¢ above, though perhaps with a
slightly wider support. Clearly we may write
Mof(z) =sup sup |AipSi;f(x)=sup sup
of(z) jegiez,bpe I | +1(@) KEZ €L, bET i

= sup NSk f(2),
keZ

| A,p Sk f ()]

where

Neg(z) = sup  |Aipg(z)|.

iEZ, bEI"_k
Suppose we know that
(1.2) [INkglle < Cligll
for p > 2, with € independent of k. We could then conclude that, for p > 2,

Mo fI1E < ZS [Nk Sef @) dz < €71 |Suf(a)|P de

keZ

<of(Sisut@r)” as < ool

keZ

Therefore it remains to prove (1.2). Take first k = 0. Writing mq(§) =
m(&) ~ m1 (&), we can control Ngg with the sum of two terms, one of them
being

e~ 3 ]
Nog(@)= sup | |f(s—(2%s,bs%))| ds,
ez, bel; 1/2
and the other controlled by the strong maximal function. It is therefore
sufficient to show that Ny is bounded on I? for p > 2. Changing variable
5 = of, we have

3 3/«
Ve —@sbsds=a | if(z— (2at,bot?)) dt.
1/2 1/(2a)

We take o = (2¢/b)/(3-1) g0 that 2ia = bad = f. Since b € I, we
obtain values of o ranging between two positive absolute constants ¢ < ea.
Therefore

3 ’ /ey
| If@— (2s,bs%)ds<ca | 1o

1/2 1/(2(:3)

~ B(t,t%)| dt,
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so that

- 3/C1

Nog(z) < casup S |f(z — B(t,%)] dt.

>01/2ea)

Since the arc (¢, t%) with ¢ € [1/(2¢3),3/e1] has non-zero curvature, the
boundedness of Ny, and hence of Ny for p > 2 follows by Bourgain's theorem.

Finally, we must prove (1.2} for generic k. But N, can be obtained
directly from Ny by conjugating with dilation by 2* in the first variable.
Therefore || Nk ||p,p = || Nollp,p, and this completes the proof. m

We finally remark that if we take d = 1 in (1.1), the corresponding
operator M is essentially the Kakeya maximal operator [dG], and therefore
it is bounded only for p = co. The same is true, but for a simpler reason, if
d=10

2. Homogeneous hypersurfaces in higher dimensions. In higher
dimensions the critical exponent will be smaller than 2. We shall then need
an efficient way of controlling our maximal functions on L2. All our results
will be obtained by interpolating an L? result with a “trivial estimate” for
p near 1.

We denote z € R® by 2 = (2',z,), with ' € R"', and consider the
hypersurface x, = I'(z'), where I' is smooth away from the origin and
homogeneous of degree d, i.e. I'(tz') = t4I'(z'). Here we do not exclude the
case d = 1, i.e. that the surface is a cone.

In what follows we assume for simplicity that I is defined on all of R*—1,
but the arguments extend easily to homogeneous functions defined on proper
Cones.

The maximal operator we want to discuss is

(2.1 Mf(s) = suwp —= | |f(e~(s,br(s))ds"
a,b>0 O 8] <a

Ag in Section 1, we can replace M in (2.1) with

M'f(m) = sup |{f(e~(2's,b0(N)els") ds|.

iCZ,b>0

where  is a smooth cut-off function supported where 1/2 < |¢'| < 3. If
(2.2) m(fl’ fn) - Sem2wi(Ef.g'+€nP(3’))tp(sr‘) ds",
and T; 5 is defined by

(2.3) F(TipF)(€) = m(2€,b6,) F(£),
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then

(2.4) M'f(z)= sup |Tipf(z)]-
e, b>0

We assume that VI does not vanish away from the origin. This implies
that m(&) coincides with a Schwartz function away from a conical region

C={(¢ &) sc<itnl/lEl <},

where ¢, ¢’ > 0 depend on I.
Let (£) be a smooth function supported on the set where 1/2 < £ <3
and ¢/2 < [£,]/|¢'| € 2¢’ and such that ¥, 1%(277¢) = 1 for £ € C. Then

=Y m(E)p

320

=) € S.

Let m;(€) = m(£)w(279¢). We define T; , and ij by (2.3), replacing m
with M and m; respectively. Accordingly, we define M f and M;f by (2.4)
replacing T} ; with T; p and T“”,7 respectively. Obviously,

M'f(z) < Mf(z) + Y M; ()

720

(2.5)

Since 7 € 8, M is controlled by the strong maximal operator and there-
fore it is bounded for all p > 1.

LEMMA 2.1. Assume that I', m and M; are as above and that

)dﬁn < 42|g|~n-,

€& ), <

| (i eor+ ]

clé'l/2<gnl<2e7 |/

Then | M f|lae < CA2-I(n=2)/2,

n

The proof of this lemma is very similar to that in [RAF].

Proof. It suffices to consider f € 5. We use the following inequality: if
g € CY{R") is such that g(0) = 0, then
1/4
DER)
b

1/4 ;o0
splol < o( TP ) (Tho

which follows by writing |g(b)|? as the integral of its derivative, and applylng
Halder’s inequality. We want to apply this to the function g(b) = bf ().
Notice that since f is Schwartz, and since m,;{(2~%¢’, bé,) has support where
127" ~ (b€, ~ 2, this multiplier is 1dent1ca11y zero when b = 0, and so
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Tf;of(m) = 0. Hence

M; f(z) 5022};(5 T, fl) 2 ‘”’)m(g lb T, (2 )

db 1/4
b ) '

We now control the supremum in 4 by a sum over i and then apply
Cauchy—Schwarz to get

db Tl d 2 dp\ 12
2<0 IT¢ £ ()2 S i, a0
> (Tmaer ) (Thamse] 2)
b 1)
. db 1/2 o0 4 1/2
< (Zsifzbf( ) (ST pame] )"
ieZ 0 ie?Z 0

Now we integrate in dz and apply Hilder’s inequality to the right hand
side to obtain

1/2y1/
s <o) (S fmarer )|
1€z 0 b 2
oo d db 1/2y1/2
X (Z S db 1bf( ) 2

i€Z Q

We can now apply Plancherel’s theorem:

[Tz mtrer )™, - (T Smser 2a)”

0 ez ich
o0 1/2
DYfROIEY
0 icZ
T , " 1/2
= (1 S imereaerifiora s
0 4

Il
TN TN TN TN

FOR S| ims e ben) 2 e)

I TS
< (1@ S meor i)

The main point to notice is that because m;(27¢',b) has support where
[27%¢!) ~ |b] ~ 27, for fixed ¢ there can be at most a finite number of non-zero
terms in the sum over i, this finite number depending only on the constants
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defining the cone C and not on . Explicitly, we have

Iy T —igr o db 12
(Slf(&)ﬁéymj(z ¢,b)| mdﬁ)

, db\ 27
<cifls sup ([lmste0P )
¢/~ 14

' 2 db 42
<ol s (] imien )
lerl~2d \ ot |l
c|§'|/2<|b| < 2! |€!]
< O f [l 4277 1/2,

A similar computation works for the other term, the only difference being
the presence of an extra factor ? in the integral. This gives

o0 2 1/2
py 7
i€Z 0
Combining the two estimates together, we obtain the conclusion. =

d
b TS (@)

< C'|if||zA2“j(””3)/2.
2

‘We now make the following curvature assumptions:

(1) if d # 1, the Gaussian curvature of the surface z, = I"(z'} is non-zero
away from the origin;

(2) if d = 1, away from the origin the surface (a cone in this case) does
not intersect the hyperplane z,, = 0 and has n — 1 non-vanishing principal
curvatures.

Observe that both conditions (1) and (2) imply that VI'(z') # 0 for
@' # 0. This is not hard to verify using Euler’s equation. Condition (2) is
equivalent to saying that the level set I'(z’) = 1 (according to the signum
of I') is compact and has non-zero Gaussian curvature as a hypersurface in
R,

THEOREM 2.2. Assume that I'(2') is smooth cway from the origin, ho-
mogeneous of degree d > 0, and sotisfies the appropriate condition (1) or
(2), according to the value of d. Then the mamimal operator M defined by
(2.1) is bounded on LP if and only if p > n/(n —1).

Proof. If f(z) = 1/(|z|" " log |z|) in a neighborhood of the origin, then
M f(z) = oo on a set of positive measure. This shows the necessity of the
condition p > n/(n — 1). We now prove that it is also sufficient.

Consider the operators M; that appear in (2.5) together with the corre-
sponding multipliers m; = map;, where we have set 14;(£) = (277¢). If 1 is
the positive measure supported on the hypersurface whose Fourier transform
is the multiplier m in (2.2), then m; is the Fourier transform of w (F~ ;).
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We can think of F~1¢; as essentially being a smooth bump function
of height 2, supported in a 277 neighbourhood of the origin; hence L o*
(F~144;) is approximately equal to C2™ times the measure of a ball of
radius 277 on the hypersurface, whenever z is within a 2—7 neighbourhood
of the surface, and zero when z is more distant than 2.2-7 from the surface.
Clearly we can dominate such a function by the characteristic function of a
ball of radius equal to the maximum distance of the surface from the origin,
times C'27. This means to dominate M; by the strong maximal function
times the constant C'27.

Hence, for every p > 1 we have
”Mj”p,p < Cp2j-

It is then sufficient to prove that mm satisfies the assumptions of Lemma
2.1. The conclusion will then follow by applying the Marcinkiewicz inter-
polation theorem to the M;. We distinguish the case d # 1 from the case
d=1.

If d 5 1, the curvature assumption (1) implies, by stationary phase, the
pointwise estimates

imi(§)| < Clejtmv2, ‘—2—?(5) < clg-n-h22,

which are stronger than the quadratic estimate required.

Assume now that d = 1 and that condition (2) holds. We can assume
with loss of generality that I'(z') > 0 away from the origin.

Let E be the level set where I" = 1. Then each point z' # 0 can be
written in a unique way as ' = rs’ with ¢ € F and » = I'(2') > 0.
Also, by the implicit function theorem, there is a measure v supported on
E with a smooth density such that the Lebesgue measure dz’ decomposes
as da’ =" 2 drdu(s) if 2’ = rg'.

We choose the function ¢ in (2.2) as a function of  only. Then the
multiplier m takes the form

(g, 6n) = | [ 2Tt () d du(s')
= (Bl € + &) du(s"),
where we have incorporated the factor ™2 in the function ¢. Similarly,

S (€ 60) = 20 [l + ) ()

In order to verify the hypotheses of Lemma 2.1 we can then apply
Plancherel’s formula. We discuss only the part concerning m, the part con-
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cerning dm/0¢, being completely analogous. We have [SW] .M. Stein and 5. Wainger, Problems in harmonic analysis related to cur-
i o x vature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
2
(2.6) | (& &) 25 < o b ImlE 6P dén I ,
clE!| /22 {En | <2’ |€7] |§"l 1 | —00 Dipartimento di Matematica
" oo Politecnico di Torino
C ’ 2 Corso Duca degli Abruzzi 24
= ? S ‘FEM E t)| d. 10129 Torino, Italy
E-mail: fricci@polito.it
Now,

(Flm)(€8) = () e du(s"). Reccived December 9, 1996 (3798)

Since F has non-vanishing Gaussian curvature, we call upon the standard
stationary phase estimate to get
Co(t)

(Flm) (€, 1)) < R

Inserting this estimate into (2.6) and observing that the support of p is
compact and does not contain 0, we obtain the conclusion. m
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