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On Denjoy—Dunford and Denjoy—Pettis integrals
by

JOSE L. GAMEZ and JOSE MENDOZA (Madrid)

Abstract. The two main results of this paper are the following: (a) If X is a Banach
space and f : [2,b] = X is a function such that =* f is Denjoy integrable for all * € X*,
then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function
f :[a,b] — cg which is not Pettis integrable on any subinterval in [a, 5], while S 7 f belongs
to ¢p for every subinterval .JJ in [a, §]. These results provide answers to two open problemns
left by R. A. Gordon in [4]. Some other questions in connection with Denjoy—Dunford and
Denjoy—-Pettis integrals are studied.

1. Introduction, Gordon introduced in [4] two extensions of the classi-
cal (real) Denjoy integral for Banach-valued functions: the Denjoy-Dunford
and Denjoy-Pettis integrals. We solve here two problems left open by him
and study quite thoroughfully these integrals. We show that the relation-
ships between the Lebesgue and Denjoy integral on the one hand, and the
Lebesgue and Dunford and Pettis integrals on the other, have a clear and
natural translation when we consider Gordon’s integrals. We think that this
provides quite a complete picture of them and fills a gap between some parts
of real analysis and Banach space theory. Techniques of both fields are used,
and we have tried to make our paper easy to understand by specialists of
any of them. Since this paper is a sort of continuation of [4], in case of any
doubt the reader may consult that paper.

Let us begin with a glance at the Denjoy integral [4]. We will use this
name but it should be observed that it is also called ¥Khintchine integral”
(see [5]), “D-integral”, “Denjoy integral in the wide sense” or “Denjoy-—
Khintchine integral” (see [7]).

We do not wish to go into technical aspects (for this see [4], [5] or [7]), but
let us recall a few fundamental facts. Perhaps one of the main features of this
integral is that it generalizes the Lebesgue integral and provides a “good”
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fundamental thecrem of calculus (“better” than the one for the Lebesgue
integral). This is actually contained in the definition we give below. We have
to comment first on two concepts appearing in this definition: ACG func-
tion and approximate derivative (for the precise definitions, see [5] or [7]).
Concerning the first one, it will be enough to know that ACG functions are
continuous functions which generalize absolutely continucus functions (in
fact, “ACG” means “absolutely continuous in the generalized sense”), and
that ACG functions in [a, b] are ACG in every subinterval of [a, b]. Concern~
ing the second concept let us just say that it is an extension of the usual
one of derivative.

DEFINITION 1 (VIIL1 of [7], Definition 11 of [4], 15.1 of [5]). A function
f:la,b] — R is Denjoy integrable on [a,b] if there exists an ACG function
F :{a,b] — R such that Fj, = f almost everywhere on [a,b], where Fy,
denotes the approximate derivative of F. In this case, we write

b

{7 =F(b) - Fla).
We say that f is Denjoy integrable on a subset A of [a,b] if fxa is Denjoy
integrable on [a, b}, and in this case we write {, f = SZ Fxa.

It can be shown that this integral has the “usual” properties of an integral
and we do not even mention them. However, there are two theorems about
it which deserve some attention. They reflect quite precisely the relationship
between this integral and Lebesgue’s, and are very characteristic of the
former. They will also be particularly interesting for us. Roughly speaking,
the first one says that the Denjoy integral is not too far from Lebesgue's (in
fact, it asserts that any Denjoy integrable function is Lebesgue integrable
in some, and therefore in “many”, portions). The second one provides a
method to construct Denjoy integrable functions which are not Lebesgue
integrable (see Remark 1(c) below).

Recall that a portion of a subset A of R is any nonempty subset of 4 of
the form AN (e, B), with o, A € R, & < 8. If C is a closed subset of R, and
(ct, 8) is an open interval in R which meets C, then (@, 8)\C = |J, I, where
(In) is a sequence of disjoint open intervals. They are said to be contiguous
to the portion €' N (a, 8). As usual, we denote by w the oscillation of a
function, that is, if g is a function defined on [o,b] then

w(g, [a,B]) = sup{ig(tz) — g(t1)| : 1,2 € [a, b]};
in particular, for the oscillation of the indefinite integral, we have

w(if, [a,b])..:z sup{|t§f| tty,t € [a,b}}.

[+
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THEOREM 1 (Theorem 15.10 of [5], Theorem VIII(1.4) of [7]). Let f :
[a,b] — R be Denjoy integradle on [a,b]. Let P be a closed set in [a,b]. Then
there exists @ portion Py of P such that f is Lebesgue integrable on Py and
if ((ax, br))r is an enumeration of the intervals contiguous to Py, then the

series y_, SZ’; [ is absolutely convergent and limy, w(Sik filar,bi)) = 0.

THEOREM 2 (Theorem 15.13 of [5], Theorem VIII(5.1) of [7]). Let E
be a bounded, closed subset of R with bounds a and b and let ((ag,br))k
be an enumeration of the intervals contiguous to E in (a,b). Suppose that
f i [a,b] — R is Denjoy integrable on E and on each interval [ag,by]. If
limny, ‘*’(SZ,G [>lag, be]) = 0 and the series ¥, Sbk

o I is absolutely convergent,
then f is Dengoy integrable on [a,b] and

b b co by
SfmeXE"I‘Z { 7.
a 3 k=lax

REMARK 1. {a) In the criginal statements of the preceding theorems
sometimes one reads “perfect” instead of “closed”. It is not difficult to see
that this is irrelevant.

(b} Although, strictly speaking, none of the preceding theorems is a
converse of the other, it is clear that there is a strong symmetry between
them. We have included the assertion on the oscillations in our statement
of Theorem 1 to stress the symmetry; however, very often in the literature,
that assertion is not explicitly given. In any case, notice that clearly since
we are assuming f is Denjoy integrable on [a, b, the primitive I which ap-
pears in the definition is ACG and therefore (uniformly) continuous on [a, 8],
hence limy, w(S;k f, [, Br]) = limg w{F(t), ok, Bx]) = 0 for any sequence
([t Br])x of intervals whose lengths go to zero. A fortiori, we have the fol-
lowing fact: ¢f f is Denjoy integrable on [a,b], and ([ar, O]} 45 a sequence
of nonoverlapping intervals, then limy w(Sik filow, Brl) =0,

{c) For any sequence ([ax,Bx])x of nonoverlapping intervals, and F =
6, B] \ U (ks Br), 1t is not difficult to construct functions f as in the hy-
pothesis of Theorem 2, and such that ), SZ’; [f| = oo. It is clear that they

provide examples of Denjoy integrable functions which are not Lebesgue
integrable.

The preceding theorem and the fact mentioned in Remark 1(b) above
yield immediately the following well known result:

CoRoLLARY 1. Let f : [a,b] — R be Denjoy integrable on [a,b] and let B
be a closed set in [a, b] such that f is Denjoy integrable on E. Let ({a, b))k
be an enumeration of the intervals contiguous to E in (a,b), and assume
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that the series 3y, Si’; f is absolutely convergent. Then

b [ oo b
{r={me+> |1
a a k=1 ay

Before giving Gordon’s definitions, let us recall the definitions of the
Dunford and Pettis integrals (see for instance [2]). From now on X will be
a Banach space.

A function f: [a,b] — X is sald to be Dunford integrable on [a, ] if for
each z* € X* the function z*f is Lebesgue integrable. In this case, as a
consequence of the closed graph theorem, for every measurable subset A of
[a,b] there exists a vector %" in X** such that (z*,2%") = |, z*f for all
z* € X*. The vector z%" is called the Dunford integral of f on A, and is
denoted by

@ Jr
A
A function f : [e,b] — X is said to be Pettis integrable on [a,b] if it is
Dunford integrable on [a,b] and z%* € X for every measurable subset A of
[a,b].

The following definition extends the Denjoy integral to Banach-valued
functions, exactly in the same way as the Dunford and Pettis integralg are
extensions of the Lebesgue integral.

DerFINITION 2 (Gordon [4]). (a) The function f : [a,b] — X is Denjoy-
Dunford integrable on [a,b] if for each 2* € X* the function =*f is Denjoy
infegrable on [a,b] and for every interval I in {a,b] there exists a vector z7*
in X** such that (z*,2}") = {, «*f for all z* € X™*.

(b) The function f : [a,b] — X is Denjoy—Pettis integrable on [a,b] if
it is Denjoy—Dunford integrable on [a,b] and z}* € X for every interval I
in [a, b].

The vector m’f‘;"b] is called the Denjoy-Dunford (respectively, Denjoy-
Pettis) integral of f on [a,b], and is denoted by

b b
(DD) S f (respectively, (DP) S f).
a a

A (real) Denjoy integrable function on [a, b] is not necessarily integrable
on all measurable subsets of [a, bl; in fact, it is only if the function is abso-
lutely integrable, or equivalently, Lebesgue integrable [5, Theorem 15.9(c)],
[7, Chapter VIII, Theorem (1.1)3 and Theorem (1.3)]. However, a Denjoy
integrable function is of course Denjoy integrable on all subintervals of [g, D]
{we have implicitly used this fact in the preceding definition). The analo-
gous result is also true for Denjoy-Dunford and Denjoy~Pettis vector-valued
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integrable functions on [a, b]: it is enough to notice that for each interval J
in [a,b] all subintervals of J are subintervals of [a, b)].

The first problem we consider is the following. Remember that given
f :[o,b] = X, Lebesgue integrability of each z*f is enough to guarantee
the existence of the Dunford integral. As Gordon points out (see [4, p. 80]), it
seems natural to ask if the analogous result is true for the Denjoy-Dunford
integral, that is, whether it is true that a function f is Denjoy-Dunford
integrable whenever * f is Denjoy integrable for all z* € X*. We show that
the answer is affirmative (Theorem 3). _

The second problem we consider is to generalize the crucial Theorems 1
and 2 for these vector-valued integrals. This will complete some work already
done in (4]. We get very natural generalizations, showing that these integrals
are related to Dunford and Pettis integrals exactly in the same way as Den-
joy’s is related to Lebesgue’s. In this connection, we solve another problem
posed by Gordon: we give an example showing that the natural extension of
Theorem 1 does not hold for the Banach space cg. It should be cbserved that
it is actually an example on the classical Dunford and Pettis integrals: we
construct a Dunford integrable function fy : [a,b] — ¢g which is not Pettis
integrable on any subinterval, while (D) {, fo belongs to ¢y for all subinter-
vals J of [a,b]. We hope that our construction, which essentially relies on
Lemma 3, could find further applications in real analysis.

2. Denjoy—Dunford integrability. To prove our first main result
(Thecrem 3) we need some preliminaries. We begin with an easy proposition
generalizing a well known result on the Denjoy integral (see for instance [5,
Theorem 15.12]).

ProrosiTION 1. Assume that f : [a,b] — X is Denjoy-Dunford inte-
grable on [a,t] for allt € [a,b), and for each z* € X* the limif lim,_, SZ z*f
exists. Then f is Denjoy-Dunford integrable on [a, b], and

b t
(» ,(DD)§f> =l (= ,(DD)§f>

for each z* € X*.

Proof. By [5, Theorem 15.12], z* f is Denjoy integrable on [a, b] for all
z* € X*. On the other hand, take ¢ € [a,b) and any sequence (¢,) in [a, b)
convergent to b, Define . .
L(z*) =lim | &f =lim <:c (DD) | f>.
[ c
The uniform boundedness principle guarantees that the linear functional
L. is continuous on X*. Then it is imumediate that f is Denjoy-Dunford
integrable on [a, b]. Taking ¢ = a, we get the desired equality. m
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The following lemma is the key to proving Theorem 3.

LemMMA 1. Let f: [a,b] — X be such that z*f is Denjoy integrable on
la,b] for all z* € X*. Let P be o closed subset of [a,b] and assume that f is
Denjoy-Dunford integrable on each open interval J disjoint from P. Then
there exists a portion Py of P such that if (1) is en enumeration of the
intervals contiguous to Py then the series

2 f

T Iy
is absolutely convergent for every z* € X*.

Proof. Let (J,,) be an enumeration of all open intervals in [a,b] with
rational endpoints such that J,, NP 3 0. Let (K,) be an enumeration of all
open intervals contiguous to P in (a,b). For each m € N, the sequence (J,,N
Ky )n is an enumeration of all open intervals contiguous to the portion. J,,NP
(of course, in this enumeration some intervals may be empty). Therefore, to
prove the result it is enough to show that there exists mgp € N such that

S| ef|<w

7 JmeNEn

for all * € X*. Assume this is not trus. For each n € N the function f is
Denjoy-Dunford integrable on K, since K, M P = @. Therefore
X*—R, z* S xz* f,
JnNEy
defines a continuous linear functional for each m € N. So we conciude that
for each m,j € N,

X" =4y, "> S zf,..., S :z:*f,0,0,..‘),

I (K T NI

defines a bounded linear operator. Qur assumption means that for each
m & N there exists z}, € X* such that

[T =30 § ot
7 n TN,

Then the theorem of condensation of singularities [3, p. 81] implies that
there exists zf; € X* such that

® S| | s

n  JanK,

= o0,

= 5 [T &) s = oo

for all m € N. Finally, notice that each portion of P contains a portion of
the form P N Jy, for some m € N, and for each m € N the J,, N K,'s are
the intervals: contiguous to P in J.,. Hence, (1) and Theorem 1 show that
z3f cannot be Denjoy integrable on [a,b], which is a contradiction. m
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THEOREM 3. A function f : [a,b] — X is Dengjoy-Dunford integrable on
[a, 6] if and ondy if *f is Denjoy integrable on [, b for all z* € X*.

Proof. Let us show the nontrivial implication. Let f : [a, 5] — X besuch
that z* f is Denjoy integrable for all z* € X*. Let S be the set of all points

t € [a,b] such that f is Denjoy-Dunford integrable on no neighbourhood
of t.

CrawM. Lel J be an open subinterval of [a,b]. Then f is Denjoy-Dunford
integrable on J if and only if TN S = 4.

Proof. Necessity is obvious. Let us show sufficiency. Let J = (¢, d) be
an open interval in [a, b] which does not meet S. By compactness, it is clear
that f is Denjoy-Dunford integrable on any closed subinterval [e;,d;] of
(¢,d), and hence on (¢, d) by Proposition 1. This completes the proof of the
Claim.

If § is empty then we are done. Assume that S is nonempty; we will
reach a contradiction. Gordon’s Theorem 33 of [4] guarantees that under
our hypothesis, each closed set in [a, b] has a portion on which f is Dunford
integrable. In particular, we get a portion Sy = 9 N (cg,do) on which f is
Dunford integrable. Now it is immediate that the closed set Sp satisfies the
assumptions of the preceding lemma on [cp, dg]. So there exists a portion
Sy = 8o N (er,d1) = SN (e1,d1) of Sy (of course, Sy is also a portion of S)
on which f is Dunford integrable, and such that, if (I,} is an enumeration
of the intervals contiguous to S; in (e1,dy), then the series

LY,
n In
is absolutely convergent for every z* € X*.

To complete the proof it is enough to show that f must be Denjoy-
Dunford integrable on (ci,d1): since (c1,d;) meets §, this will contradict
the definition of S (or the Claim). For completeness we now give a direct
proof of this fact; notice however, that it can be deduced from Theorem 31
of [4].

Let J be an interval in [c;,di] and let z* € X*. Since f is Dunford
integrable on S1, z* f is Lebesgue (and therefore Denjoy) integrable on Sj.
On the other hand, the sequence (I,MJ }p, in which we ignore the empty sets,
is an enumeration of the intervals contiguous to SN J in J, and notice that
with the exception of at most two intervals, for all nonempty I,MN./’s we have
I,NJ = I,,. So omitting at most two terms of the sequence (Slm_] ¥, we
can say that 5 § 1.y T f is a subseries of Yon 1, " f,and soit is absolutely

convergent. Hence, we can apply Corollary 1 to z*f and-§; NJ = SNJ on
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J to deduce that
2) fzf={ofxsrs+d, | o1

J J n I,NJd
for each z* € X*.
For each m & N define 2}, by

ai(@*) = e fxsns+ > | o°f.
J n=1I,NJ
Since f is Dunford integrable on SN J ¢ 8N (e1,d1) and Denjoy-Dunford
integrable on each I, N J C I, the linear functionals ;7 are continuous on
X*. Clearly, (2) means that

xp 12 Py
§rm f=lim {z*}
for each z* € X*. Therefore, the uniform boundedness principle guarantees
that the linear functional z%* defined by
oy (z") = {a*f
J

is continuous on X*. Since this happens for all intervals J in [ey,d1], we
conclude that f is Denjoy-Dunford integrable on [¢1,d1]. »

3. Extensions of Theorems 1 and 2. Let us now deal with the gen-
eralizations of Theorems 1 and 2 for Denjoy-Dunford and Denjoy—Pettis
integrals. Gordon already gave the following generalizations of Theorem 1:

THEOREM 4 {Corollary 32 of [4]). Assume that f: [a,b] = X is Denjoy-
Dunford integrable on [a,b], and let P be a closed set in [a,b]. Then there
erists a portion Py of P such that f is Dunford integrable on Fg.

THEOREM b (Theorem 38 of [4]). Assume that X has no subspace iso-
morphic to co, and let f : [a,b] — X be Denjoy—Pettis integrable on {a,b].
Let P be a closed set in [a,b]. Then there exists a portion Py of P such that
J is Pettis integrable on Pp.

Now we wish to complete these theorems by describing also the behaviour
of the series of integrals over the intervals contiguous to the closed set and the
oscillations of the indefinite integrals in them. We also give the corresponding
generalization of Theorem 2. We believe that in our generalizations the
symmetry of the scalar results is preserved, which makes them the “right”
generalizations.

Let us begin by recalling the most common notions of summability in
Banach spaces (see [1], [6]). We say that the series >z, is unconditionally
convergent if all its rearrangements converge. We say that the series Y 2,
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is weakly unconditionolly Cauchy if for every z* € X* the series Sy, x*)
is absolutely convergent. In this last case, as an immediate consequence of
the uniform boundedness principle, there exists z** € X** such that
[o2e]
<‘T*’$**) = Z(m’mm*)
n=1
for all z* € X*. Although it is not a standard notation, we denote this
functional 2** by w*-377° | z,. In other words, w*- Y™ &, is the only
functional in X™** such that
oo o0
(3) (203 2a) = 3 (wn,27)
=] n=1
for all z* € X™*,

Of course, every unconditionally convergent series is weakly uncondition-
ally Cauchy (and ¥, &, = w*- Y00 | %,). The converse is not true. The
typical example of a non-unconditionally convergent weakly unconditionally
Cauchy series is the canonical basis of ¢;. However, one should recall that
if the Banach space X has no subspace isomorphic to ¢ then every weakly
unconditionally Cauchy series is unconditionally convergent; this is Bessaga
and Pelczynski’s classical theorem [1, Chapter V, Theorem 8].

We can now give our generalizations of Theorem 1 and 2 for Denjoy—
Dunford integrals.

THEOREM 6. Let f : [a,b] — X be Denjoy-Dunford integrable, and let P
be a closed set in [a,b]. Then there exists a portion Py of P such that f is
Dunford integrable on Py and if ((ax, b))k s an enumeration of the intervals
contiguous to Py then the series Y, (DD) SZ’; [ is weakly unconditionally
Couchy and

¢
li.'lcn w( S z*f, [ak,bk]) =0

g

for each ©* € X*.

Proof. By Gordon'’s Theorem 4, P has a portion on which f is Dunford
integrable, but Lemma 1 guarantees that this portion has itself a portion Py

such that
£l om § ) -] =
_ n In n In
for all z* € X*, where (I,) is an enumeration of the intervals contiguous to
Py. Recall now that if 3~ @ is a series in a dual X* such that > z}(z) is
absolutely convergent for each z € X, then ¥z} is weakly unconditionally
Cauchy (this is well known, and contained, for instance, in the proof of

< o0
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Corollary 11 in Chapter V of [1]). Therefore, it is clear that the series

> (o) | s

n In
is weakly unconditionally Cauchy. Of course f is also Dunford integrable on
Py. Finally, given * € X ™, since 2* f is Denjoy integrable, its indefinite inte-
gral is (uniformly) continuous in [, b]. Then, using the fact that the lengths
of the intervals (ay, by) must go to zero, we conclude that w(Sih z* f, ok, bk])
tends to 0. m

THEOREM 7. Let E be a bounded, closed subset of R with bounds a and
b and let ((an,bx))x be an enumeration of the intervals contiguous to E
in (a,b). Suppose that f : [a,b] — X is Denjoy-Dunford integrable on E and
on each {ag, by). If limg w(Szh z*f, [ax, b)) = 0 for each 2™ € X* and the

series y . S I is weakly unconditionally Couchy, then f is Denjoy-Dunford
integrable on [a,b] and

b b
(DD){ £ = (DD)&fwa 2<DD {7
a k=1 Qg

Proof. It is immediate that for each z* € X* the function z* f is exactly
as in the hypothesis of Theorem 2, and so we conclude that «* f is Denjoy
integrable and

b oo by
Ja"f = SmeEJrZS
a k=1ax

Since =* f is Denjoy integrable for each z* € X*, Thecrem 3 guarantees that
f is Denjoy-Dunford integrable. On the other hand, by the very definition
of the Denjoy-Dunford integral, the above equality means that

<CL‘*, (DD)§f> = <:L‘*, (DD) §fXE> + i <,1r;*, (DD) bS'“ f>
a a k=1 O

for each a* & X*. Of course, this is just our statement.

Let us now give our generalizations of Theorems 1 and 2 for Denjoy-
Pettis integrals.

THEOREM 8. Assume that X has no subspace isomorphic to cg, let
I i [a,b] — X be Denjoy-Pettis integrable, and let P be a closed set
in [a,B]. Then there ezists a portion Py of P such that f is Pettis integrable
on Py end if ((ax, b))k is an enumeration of the intervals contiguous
to. Py then the series Y, (DP) SZZ f is unconditionally convergent, and

limy, (5 * f, [ak, b]) = O for each z* € X*.

ok
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Proof. By Gordon’s Theorem 5, f is Pettis integrable on a portion of P
(and hence on any measurable subset of this portion). If we apply Theorem 6
to f in this portion, we get a smaller portion Py such that if {{tg, b))% 15 an

enumeration of the intervals contiguous to Fy, then the series 3°, (DP) Sb’“ f
is weakly unconditionally Cauchy, and limy w(S z*f, [ar, b)) = 0 for each

z* € X*. Since 3, (DP) S fisaseries in X and X has no subspace isomor-
phic to ¢y, Bessaga and Pelczynskl g classical theorem [1, Chapter V, The-
orem 8] guarantees that the series is actually unconditionally convergent. m

THEOREM 9. Let E be a bounded, closed subset of R with bounds o and
b and let ((ax,bx))r be an enumeration of the intervals contiguous to E in
(a,b). Suppose that f : [a,b] — X is Denjoy-Pettis integrable on E and
on each [ag,by]. If limg w(Szk z*f, [ag, bx]) = O for each «* € X* and the
series 3, (DP) SZ’; f is unconditionally convergent, then fis Denjoy—Pettis
integrable on {a,b] and

b b
OP)| f= (DP)SfxE +Z oP) { 7.
a k=1 [ 59

Proof. Notice first that we can apply Theorem 7, so that f is Denjoy—
Dunford integrable on {a,b]. To show that f is in fact Denjoy—Pettis inte-
grable we need to show that (DD) {, f belongs to X for each (closed) interval
Jin [a, b].

Take such a J. Define Ey = E n.J. On the one hand, Ey is a closed set,
and f is Denjoy-Pettis integrable on Ey, because this just says that fx g,
is Denjoy—Pettis integrable on J. On the other hand, ((ax,bx) N J)x is an
enumeration of the intervals contiguous to Ep in J (of course we should omit
here the empty intersections). Observe also that {(ax,bx) NJ)k is “almost” a
subsequence of ((ax, bx))x. To be precise, except possibly two intervals (those
which meet the endpoints of .J), it ig clear that {ax, bx)N.J is either empty or
(ox, bx). Moreover, the two possible exceptional intervals are subintervals of
(ax,bi) and so f is Denjoy—Pettis integrable on them. Therefore, it is clear
that 3, (DP) S fa by J 18 an unconditionally convergent series in X, and

so w*-3_, (DP) S[% sy | 18 Just 35, (DP)S, bjns f+ Thus, if we apply
Theorem 7 to Ep in .J, we get

(0D} { £ = OP) | fxm, + i (DP)

J J k=1

{4

[ag,be]NT

and in particular, (DD) {, f belongs to X. Hence, f is Denjoy-Pettis in-
tegrable in [g,b]. Finally, for J = [a,b], the preceding equality is just the
equality in the statement. =
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4. An example and its consequences. A natural question concerning
the theorems in the preceding section is whether the hypothesis “X hag no
subspace isomorphic to ¢p” in Theorem 5 (or in Theorem 8) can be removed.
It was already posed by Gordon (see [4, paragraph before Theorem 38)).
We give an example showing that the answer is negative. As an immediate
consequence we deduce that the assertion of Theorem 5 holds precisely in
the spaces X not containing co.

Of course, here the interest of our example is in connection with the
Denjoy—Pettis integral. However, as we have already pointed out, it is actu-
ally an example on the classical Dunford and Pettis integrals.

"To study the example we first give two lemmas. The first one is a simple
exercise on the Dunford integral. We include a proof for completeness. The
second one will be the crucial ingredient in the construction of our example.

LemMMaA 2. Let (fi) be a sequence of X-valued Dunford integrable func-
. tions defined on [a,b]. Assume thet for almost oll t the series 3, fi(t) con-

verges and define
fe) =2 f(®)
k
Suppose that
Zsup{ggm Fe(t)dt:z* € X*, ||| < 1} < oo,

Then f 1s Dunford integrable, and for each measurable subset A of [a,b] the

> D)

k A

O =3 o s
A k A

Proof. For each z* in B(X*), the unit ball of X*, we have

ts convergent and

§|mf |dt—HZx fk(t)‘dt<z " £ (8)] dt < 0.

Therefore, f is Dunford integrable on [a, b]. Notice also that the convergence

of the series ka |2* f1(t)] d¢ implies that for each measurable subset A of
[2,b] we have

(4) ERDBEROLED B EAOE
4 &

kA

Denjoy-Dunford and Denjoy-Pettis integrals 127

On the other hand, given a measurable subset A of [a, b], we have

;H( ka~Zsup ka) 2 € B(x)}

So, the series >, (D), fi is convergent. Therefore, for each z* € X*, it

follows from (4) that
= SZm*fk(t)dt

(] 1) = [t
R =3 (w00

k A
= ("> (D) ). =
k A

LemMMA 3. Let (J;) be a sequence of closed nontrivial intervals. Then
there exists a double sequence (IF) of nontrivial closed intervals with the
Jollowing properties:

(i) For each k € N the I®’s are subintervals of Jy.
(ii) For each k € N we have max I} < minI¥ , for alln € N.
(ifi) 3ok nen [I5| < 00, where | | denotes length (Lebesgue measure).
(iv) If 1 < 5 < k — 1, then one (and only one) of the following two
conditions holds:
1 Uy X and U, I2 are disjoint.
2. There ezists ng € N such that |, IX C I .

Proof. 'We construct the double sequence by induction on k. For k=1,
take any sequence {I}),, of nontrivial closed subintervals of J; satisfying (ii)

and
Yo <1/
n
Assume we bave found (I})n, (I2)n, - .., (I5-1), satisfying (i), (ii), (iv) and
Sl <1/
for j=1,...,k — 1. Let us find (I}),. We denote by int(I) the interior of

the interval I. If
int(Jx) Nint(Z5) =0
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for 5 = 1,...,k—1and n € N, we can take as (IX), any sequence of
nontrivial closed intervals in J satisfying (i) and

(5) STE <1728,

Otherwise, let jp be the greatest 7 € {1,...,k

U, int(Z2), and let ng € N be such that
int(J;) M int(Z30) # 0.

Then we can take any sequence (I¥), of closed nontrivial intervals in
int(Jx) M int (770 ) satisfying (ii) and (5). It is straightforward to show that
the double sequence so constructed has the required properties. m

— 1} such that int(J)x) meets

EXAMPLE. There exists o measurable function fo : [a,b) ~ cp such that

1. fo is Dunford integrable,
2. (D) {; fo belongs to cy for each subinterval J in [a,b], but
3. fo is not Pettis integrable on any subinterval J in [a,b].

To construct such a function let us begin with a much easier task. Let
us recall a standard way of constructing a measurable Dunford integrable
function f : [a, b] — co such that (D) {, f belongs to ¢y for each subinterval J
in [a,b], while f is not Pettis integrable on [a, b]. We take any sequence (I,,)
of nontrivial closed subintervals of [a, 3] such that max I, < min I,y for all
n € N, and define f : [a,b] ~» ¢p by

0 = (G0 = g ) -

n
It is immediate that it is a well defined measurable function, and for each
(an) in the unit ball of ¢§ = £ we have

VI (), (an))] dt

:

1 1
Zan (mxr2n—l (t) - 2|I2 [XIzn( )) ‘ dt

b
1 1
< —— t ——
= ; Ia‘nlg (2II2n~l|X12n_1( ) + 2|I2n1XIQ-n (t)) dt
B Z |an| S 1.

8o f is Dunford integrable. Gliven a rneasurable subset E of [a,b], to deter-
mine (D) { £(¢) dt, which is a sequence in £,, = cf*, it is enough to evaluate
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it on the canonical basis (e,) of 41 = ¢§. So we get

(om0 708) = § (grrr—pirncst) = 51— a

B
- |[EN Tap_1] B | E N Lo
2l Ian—1| 2{Ipn|
Hence, we get
Enlr _1] |EﬂIz [)
6 D t)dt = (‘ il i
( ) ( )‘Sﬂf() 2JI2'n—1| 2!I2n|

To see that f iz not Pettis integrable we take Aq = U, 2n—1. Using (6), we
get
111
(D)j £(t) dt = (5,5, 5) € 00\ co.
Q
On the other hand, it follows from (6) that if A is any measurable subset of
la, b] containing all the I,,’s, then

(7) )| rtyat=o.
A

To see that (D), f belongs to ¢o for each subinterval J in [a,}], as-
sume first that J meets only a finite number of I,’s, say Iy, . .., la,. By (6),
(D)§, 1 is just

(EJﬂI1| _ |JQI2| |Jﬂfzn_1] _ |Jﬂfzn| 0.0.0 )
2\ 2] 77 2 Lp-1] 2, TV

and so it belongs to ¢p. Take now a subinterval J = [c,d] in [a,b] which
meets an infinite number of I,’s. Since maxt, < minI,4; for all » € N, it
is clear that [, c] meets only a finite number of the I,,'s, and [a, d] contains
all of them. Then [, ¢] is a measurable set of the type just studied, and we
can apply (7} to [a, d]. Therefore,

d < d
0=D)s=m){s+D]r
and so
d

(D)gf_—-(D Sfeco.

Hence we have shown that (D) §,feco for each subinterval J of [a, b].

Let us now begin the construction of a function with the required prop-
erties 1-3.

Consider first an enumeration {J;) of all intervals in [a,b] with rational
endpoints. Our idea is to construct a function fp reproducing the preceding
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function to a small scale in each J. To do this we add up many functions
of the type constructed before. Of course, the point is that we have to be
very careful not to let them interfere with each other. This is why we need
the preceding lemma.

Applying the preceding lemma to the sequence (Ji), we get a double
sequence (I?) of nontrivial closed intervals satisfying the corresponding con-
ditions (i)-(iv). For each k € N denote by fy the function defined using the
sequence (I¥),, according to the preceding procedure. That is, fx : [a,b] — cp

is defined by
1 1
t £) ~ ——— t) .
10 = (s~ g )

Let us summarize the main properties of fi:
(a) fx is a measurable Dunford integrable function.

(b) S'!; |2* fr(t)| dt < 1 for each =™ in the unit ball of ¢f = #;.
(c) (D)§, fx = 0 for each measurable subset A of [a,b] containing

supp(fi) = {t € [a,b] : fiu(t) # 0} = | IE.

(d) (D) fx belongs to ¢y for each subinterval J in [a, b].
(e) (D) § 4, fr € £\ co, where Ak = |, ¥ ..
Notice that the set of all ¢ € [a, b] such that fi{f) # 0 for infinitely many

k's is
N Usweti= 1 U Uz

m=1k=m m=1 k= n=1
From Lemma 3(iii) we deduce that this is a null set, or, in other words,
for almost all ¢ € [a,b] the sequence (fx(t}) has only finitely many terms
different from 0. Therefore,

folt) =, “21_k.fk(t)
k=1

is a measurable function defined almost everywhere. Thanks to (a) and (b),
we can apply Lemma 2 to conclude that fy is Dunford integrable and for
each measurable subset E of [a,b] the series 3., 5% (D) {; fi is convergent
and

(®) O [fo=3 5 05
B k E

In particular, it follows from (d) that (D) {; fo € ¢o for each subinterval
J in o, b]. :
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To finish our proof we have to show that f, is Pettis integrable in no
subinterval J in [a,b]. Of course, it is enough to see that it is not Pettis
mtegrable in Ji for any k € N. Given kg € N, by Lemma 3(i), Az, =
Un I, is a subset of Jy,. Let us show that (D) SA fo € co. By (8) we
have

(9) D) | fo= Z%(D) V£

Akn Ap,;o

Now, by (e),

)

in (9},

ku—l oQ

1 1

k=kg+1 Akg
belong to ¢p. Let us begin with the first one. By (1v) of the preceding lemma,
if k < ko then either |, I* and supp(fi) = |, I¥, are disjoint or U, Ike
is contained in a certain I% i .- Since Ay, is contained in Un I%, in the first
case (D) { Axg fx = 0. In the second case, notice that fi is constant on A,
just because it is constant on I, o+ Lo be precise, mgy will have the form
g = 2ng — 1 or mg = 2ng, and then at the points of Ay, the function fy
takes the value

iy 11
(0,...,0,( 1)m0+12|1#”,0,0,...).
Therefore, we have
ng—1
) | fum il (0 ()™ 8,0,...) o

Ang

So, it is clear that in any case, the first summand belongs to ¢q.
Finally, let us consider the other summand. We will see that in fact
(D) {4, fx vanishes for all k > kg. We use again (iv) of the preceding lerama.
Q
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Tf k > ko then either supp(fz) = |J,, I¥, does not meet any of the Ig,‘?,,ul’s or
it is contained in one of them. In any of these cases we have (D) { hg fr=0.

In the first case, because Ay, and supp(fy) are disjoint, and in the second
one, since Ay, contains supp(f), we can apply (¢). This completes the proof,

REMARK 2. Recall that if an X-valued Dunford integrable function f is
not Pettis integrable, then it is not Pettis integrable even if we “enlarge”
the space X. That is, if ¥ is a Banach space having X as a subspace and
we consider f as a function with values in ¥, then f is not Pettis integrable
either. This is an immediate consequence of the following elementary fact: if
J:la b — Y is Peilis integrable and f([a, b)) lies in the subspace X of Y,
then (P) 5 f lies in X for every measurable subset E of [a,b]. To prove this
it is enough to notice that for every measurable subset E of [o, 8], if z* € YV*
and z* vanishes on X then {(P){, f,z*) = { «*f(t)dt = 0.

From the preceding remark and the example we immediately get the
following

ProrosiTion 2. If X is a Banach spoce having a subspace isomorphic
to cq then there exists a measuradble function fy: [¢,b] — X such that

(a) fo is Dunford integrable,
(b) (D)}, fo belongs to X for each subinterval J in [a,b], but
(¢) fo is not Peitis integrable on any subinterval J in [a,b].

Finally, we have the following
THEOREM 10. The following are equivalent:

(a) X does not contain cq.

(b} Each X-valued Denjoy-Pettis integrable function defined on [a,b] is
Pettis integrable on o portion of every closed set.

(¢) Bach X-valued Dunford integrable function f defined on [a,b] such
that (D) § , f belongs to X for every subinterval J in [a,b] is Pettis integrable
on some subinterval of [a,b).

Proof. That (a} implies (b) is just Gordon’s Theorem 5 (which has been
subsumed in our Theorem 8). That (b) implies (c) is immediate because
each Dunford integrable function such that (D){; 7 belongs to X for every
subinterval J in [a,b] is clearly Denjoy—Pettis integrable. That (¢) implies
(a) is just the preceding proposition. m

REMARK 3. It is well known that X does not contain ¢g if and only
if each X-valued Dunford integrable function defined on [4,b] such that
(D) {, f belongs to X for every subinterval .J in [a, b] is Pettis integrable on
{a, b] {see for instance [4, Theorem 23]). The preceding theorem may be seen
as an-improvement of this result.
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