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Quasiconformal mappings and Sobolev spaces

by

PEKKA KOSKELA (Jyviskyli) and
PAUL MACMANUS (Madrid and Edinburgh)

Abstract. We examine how Poincaré inequalities change under quasiconformal maps
between appropriate metric spaces having the same Hausdorff dimension, We also show
that for many metric spaces the Sobolev functions can be identified with functions satis-
fying Poincaré inequalities, and this allows us to extend to the metric space setting the
fact that quasiconformal maps from R? onto R? preserve the Sobolev space L@ (R%).

Introduction. Quasiconformal mappings can be defined on any metric
space by requiring that they distort infinitesimal balls by a bounded amount.
In order for this definition to be useful one needs to be able to deduce
global properties of the mapping from this infinitesimal condition. In a recent
paper ([HeK?2], see also [HeK1j), Heinonen and Koskela showed that many
of the classical results on quasiconformal self-maps of Euclidean space can
be extended to quasiconformal maps between more general metric spaces
of the same Hausdorff dimension. For example, such quasiconformal maps
are quasisymimetric, absolutely continuous, and have Jacobians in Ao, (see
Theorem 1.2).

The key assumption needed is that the space where the map is defined
should be highly connected, meaning that there are “many” paths joining
any part of the space to any other part of the space. No such assumption is
made on the target space. The connectivity can be precisely defined using
moduli of path families (see the Loewner condition in [HeK2]). However, it
turns out that it can be expressed more usefully in terms of an analytic con-
dition; namely, that the space support a (1, p)-Poincaré inequality for some
suitable p. In the classical case this means that there are constants C, A such
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that for any continuously differentiable function u and any ball B we have
1fp
(1) S |u—uB\dp§Cr( S |Vu|pdu)
B AB

where r is the radius of B, ug is the average value of w on B, and § denotes
the average value of the integral. This is satisfied by R® with p = 1 (and
hence for all p = 1). Of course, on more general metric spaces one needs to
avoid talking about “continuously differentiable functions”. This is where
the notion of an upper gradient comes in.

The importance of the Poincaré inequality for obtaining global results
from the definition of quasiconformality gives rise to the following natural
question. If a space supports a Poincaré inequality, and there is a quasicon-
formal map from this space onto ancther space of the same dimension, must
the image also satisfy a Poincaré inequality? We will prove that this is the
case when p is less than @, the dimension of the space, but that it is false
when p is greater than . With some additional assumptions sither on the
map or on the space, we show that if a space supports a (1, @)-Poincaré in-
equality, then so does the image of the space. The positive results are proven
in Section 2, while Section 3 contains the counter-example for » > @.

The question of how Poincaré inequalities behave under quasiconformal
mappings is intimately related to how quasiconformal maps affect the spaces
of Sobolev functions. Indead, we will demonstrate in Section 4 that for many
metric spaces the space of functions that satisfy & (1, p)-Poincaré inequality
with “gradient” in L? is exactly the same as the Sobolev space L either of
Korevaar and Schoen (see [KS]) or of Hajlasz (see [Ha]). The result alluded
to above, that quasiconformal maps preserve a (1, @)-Poincaré inequality,
then becomes a generalization of the well known fact that quasiconformal
maps from R onto RY preserve the Sobolev spaces L% (RQ) and L2 (R?),

For a more extensive treatment of the equivalence between Sobolev
spaces and Poincaré spaces see [HaX2]. Results on the preservation of clas-
sical Sobolev spaces can be found in [GR] (Theorem 4.2, Chapter 5), [L]
(Theorem 5.3), and [Z] (Remark 4.2).

Acknowledgements. This research was begun while the second author
was visiting the University of Jyviskyld in the autumn of 1995. He would

like to extend his sincerest thanks to the department there for its support
and warm hospitality.

NoTe. We have just recently received a preprint by Jeremy Tyson [T]
in which he shows that quasiconformal maps preserve the Loewner condi-
tion and so, by a result in [HeK2], they also preserve the (1,Q)-Poincaré
inequality. Thus the extra conditions that we need to treat this case are
redundant.
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1. Preliminaries. Our standing assumptions on the spaces we are con-
sidering are that they are locally compact, metric spaces equipped with a
regular, Borel measure, and that the space is regular with respect to this
measure. Regularity of a space X (or Q-regularity if we want to empha-
size the parameter Q) with respect to a measure g means that there are
constants C' and @ for which

(2) C7*R? < 4 (B(z,R)) < CR?

for all z € X and all R < diam X. Whenever we want to emphasize that
1 is a measure on X (and not on some other space) we write pux. We
will generally use |# — y| to denote the distance, in the appropriate metric,
between points 2z and y.

L}, . will denote functions that are p-integrable on all balls. This will be
more convenient for us than the usual definition, which requires p-integrabil-
ity only on some neighbourhood of every point. The two definitions agree
when the space is proper, i.e., when every closed ball is compact.

Throughout the paper, functions will take values either in R or in [0, co],
whichever is appropriate.

By a path we mean a continuous image of a closed interval.

A function g is said to be an upper gradient of another function w if
ufa(a)) — u(@(®)] < §° g(a(t)) dt whenever a,b € R and o : [0,5] — X is
1-Lipschitz. This concept was introduced in [HeK2], where the name very
weak gradient was used instead. See also [S]. A rephrasing of the definition is
that for every rectifiable path v we have [u(ay) — u(by)| < S,y g where a., by
are the endpoints of v. The function o of the original definition is simply
the arc-length parameterization of ~.

A homeomorphism f from a metric space X onto another metric space
Y is called quasiconformal if there is a finite constant H for which

. supy {|f(z) — F(W)| : |z —y| < 7}
lim sup - <H
r—0 1nfy{|f(m) - f(y)l : “'L' - y‘ z T}
at all points z € X.
A homeomorphism f from a metric space X onto another metric space ¥’
is called gquasisymmetric if there exists a homeomorphism 7 : [0, 00) — [0, 00)
50 that whenever |z - a| < t|z — b] for some ¢ > 0 and for some three points
x,a,bin X, then the inequality |f(z) — f(a}| < n(t)|f(z) — f{b)| holds in ¥".
The inverse of a guasisymmetric homeomorphism is also a quasisymmetric
homeomorphism. For a discussion of quasisymmetric maps see [TV].

1.1. Poincaré inequolities and quasiconformal maps. A pair of measur-
able functions (u, g) satisfies a (g, p)-Poincaré inequality if there are con-
stants ¢ and 1 < X such that for each ball B, of radius r, there is a real
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number ag such that

(3) (§ju—asl?du) Y s cr(§ o du)l/p-
B AB

Here { denotes the average value of the integral. Note that there are no a
priori assumptions on the integrability of u or g. Both sides of the inequality
may be infinite. When u is locally integrable we can choose ap to be up,
the average value of v over B.

PLP(X) consists of all functions, u, on X for which there exists g €
LP({X) such that the pair (u, g) satisfies a (1, p)-Poincaré inequality. P:t’f(X )
is defined similarly.

There is a Sobolev-type embedding theorem for functions satisfying Poin-
caré inequalities.

THEOREM 1.1 (Hajtasz, Koskela). Suppose that X is Q-reqular and that
(u,g) sotisfies a (1, p)-Poincaré inequality for some 1 < p < Q: Then (u, g)
satisfies a {g,p)-Poincaré inequality for 1 < q < pQ/(Q — p), where the
right-hand term is co when p = Q.

This follows from Theorem 5.1 in [HaK2) and the proof thereof. The proof
of the theorem makes use of pointwise estimates of the type in L.emma 4.3
of this paper. See also [HaK1].

A space supports a (q,p)-Poincaré inequality if each pair consisting of a
continuous function and an upper gradient of that function satisfies a (g, p)-
Poincaré inequality. These are good spaces for quasiconformal maps, as the
next theorem illustrates {see [HeK2!). Say that X, Y, and f satisfy (f) if:

(1) X and Y are Q-regular spaces with @ > 1.
(il) X is proper and quasiconvex.
(iii) Y is linearly locally connected.

(iv) f is a quasiconformal map from X onto ¥ that maps bounded sets
to bounded sets.

We say that a space is quasiconvez if there is a constant C > 0 so that
every pair of points z and y in the space can be joined by a curve ~+ whose
length is bounded by C|x — y|. Linearly locally connected means that there
is a constant C > 1 so that for each # in the space and each r > 0 the
following two conditions hold:

(1) any pair of peints in B(z,r) can be joined in B(z, Or);
{2) any pair of points in the complement of B{z,r) can be joined in the
complement of B(z,r/C).

By joining, we mean joining by a continuum.

icm
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THEOREM 1.2 (Heinonen, Koskela). Suppose that X, Y, and f sotisfy
(1). If X supports a (1,@)-Poincaré inequality, then f is quasisymmetric.
If X supports o (1,p)-Poincaré inequality for some 1 < p < @Q, then in
addition to being quasisymmetric, f is also absolutely continuous, and the
pullback measure is Ay, -related to px.

The pullback measure vy is that measure on X that assigns to a set E
the measure uy (f(E)). We say that f is absolutely continuous if v5 is abso-
lutely continuous. We will use J; to denote the Radon-Nikodym (or volume)
derivative of v5 with respect to the measure px. When vy is absolutely con-
tinuous, then v;(E) = {5 Jrdux. A measure o is said to be A-related to a
measure 7 if for each € > 0 there is a § > 0 such that 7(E) < é7(B) implies
that o(E) < £c(B) whenever B is a ball and £ is a measurable subset of B.
If both measures are doubling then the A, relation is equivalent to several
other conditions. For example, do = wdr and w satisfies a reverse Hoélder
or A, condition. See Corollary 14, Chapter 1 of [STI.

2. Preserving Poincaré inequalities. As noted in the introduction,
we want to see what happens to Poincaré inequalities under quasiconformal
maps. In this section, X and Y will be Q-regular spaces, and f will he a
quasisymmetric map from X onto Y whose pullback measure is Ago-related
to p, the measure on X. These hypotheses on f are satisfied, for example,
when X, Y, and f satisfy ({) and X supports a (1, p)-Poincaré inequality
for some 1 < p < Q.

Given a pair (u, g), we define f(u,g) to be the pair

(wo £~ (go f~)(Jo F71) 9.

The explanation for this definition is that if g = |Vu|, then f(u.g) is basi-
cally (wo f~%,|V{uo f~1)).

TuEOREM 2.1. If (u,g) satisfies a (1,p)-Poincaré inequality in X for
some 1 < p < Q, then f(u,g) satisfies a (1,p")-Poincaré inequality in Y,
wherep' =p ifp=0Q, and 1 <p' < Q fl <p < Q.

Proof, Write (v, k) for the pair f(u,g). The measure of a set E, whether
in X or Y, is denoted by |E|. Because a (1, p)-Poincaré inequality implies a
(1, g)-Poincaré inequality for ¢ = p, we can assume that p is as close to @
as is necessary for the following proof to work.

Because f is quasisymmetric, we can treat pre-images in X of balls
in Y as “balls” in X. The various Poincaré inequalities can be expressed
using these sets instead of balls, with minor modifications. To wit, for
A = f~1(B'), A is defined to be f~'(AB’), and the radius term is re-
placed by diam A.
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The map f is absolutely continuous, so | f(A4)| = §, J; for any measurable
set A. The pullback measure is Aoo-related to 4 and it is also doubling. This
last fact is a consequence of f being quasisymmetric and ¥ being regular.
Thus Jy satisfies a reverse Hélder condition and also an 4, condition. So
there exist constants € and 0 < & < 1 such that for every ball B C X we have

(4) (ij}“) < c(iJf)H"e and (iJ;‘E) < O(E.Jf)—s.

The second inequality is the A, condition for p = 1 + ™. It follows easily
from quasisymmetry of f and regularity of ¥ that these inequalities remain
valid when B is replaced by the pre-image in X of a ball in V.

Denote the exponent conjugate to 1+ & by k. Recall that Theorem 1.1
states that (u, g) satisfies a (¢, p)-Poincaré inequality for ¢ < @p/(Q - p).
In particular, (u, g) satisfies a (k, p)-Poincaré inequality.

We will prove that (v, h) satisfies a (1, p')-Poincaré inequality for p’' =
Qp(l+e)/(p+¢eQ). Fix a ball By in Y. Let A = f~1(By), a = a4 and

A’ = XA, Then
_ 4 A 1/ 1/(1be)
5 —al = =L — inind I _ €
0 §lomei= g - = g (f-e) (1 57)
4 e |
< Om(im —af*) iJf < o(dmmA)(j o)

The equality at the start comes from a change of variables, while the last

two inequalities follow from reverse Holder, the (k, p)-Poincaré inequalit
and the fact that (k. p) quality,

1/p

ﬂ & Jp=1
[Bol 3 '
We will convert the g integral into an h integral by playing around with
exponents. Set
s_c@-p) QL +e)
= o=, § == ————
Q1 +e) p+eQ

and let ¢ be the conjugate exponent of 5. Note that /
. ps = 0t = £, and
1 — 45 =p'/Q. We now have i

(6) (jl gp) /e _ ( S nggJ}'G)l/p < ( 5. gszﬁs)l/(Ps)( S j}f‘”) 1/(pt)
A

Al

- ( j 7 J}mp'/ca)lfp'(

/3

A!
_ {|ABy| N A\ 1/p-1/p
- (% ih) (§77)7

A

5) 1/p—1/p’
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The second-last equality comes from our choice of exponents, while the last
equality comes from a change of variables in the first integral and the defi-
nition of k. Recalling property {4), we obtain

A\ Ve —£(1/p—1/p") B |ABq| 1/Q-1/¢
(é 57*) < c(§ 7) — (TATG) _

Combining this last estimate with (5) and (6) we see that

[ h-a < C[BD|1/Q( i hpl)l/p’ < GT( ! hp’)
Ba By

By

1/¢'

where r is the radius of By, This is the required Poincaré inequality. m

Note that the function h in the above proof is Q-integrable if and only
if g is Q-integrable. Thus we get the following corollary:

COROLLARY 2.2. If u € PYO(X) (resp. u € PL2(X)), then uo f~' €
PLR(Y) (resp. uo f~1 e BE(Y)).

loc

The next theorem is morally also a corollary; however, we need to deal
with a technical problem involving upper gradients.

THEOREM 2.3. If X supports a (1,p)-Poincaré inequality for some 1 <
p < Q, thenY (= f(X)) supports a (1,p')-Poincaré inequalily, where p’ = p
Fp=Qand1<p' <Qifl<p<Q.

If X only supports a (1,p)-Poincaré inequality for some p > @, then Y
need not satisfy any Poincaré inequality. An example is given in the next
section.

Suppose that v is continuous in ¥ and h is an upper gradient of v. We
need to prove that (v, h) satisfies a (1, p')-Poincaré inequality. Let u=1wvo f
and g = (ho f)|J¢|*/Q. Note that (v,h) = f{u, g). If we knew that ¢ were an
upper gradient of u, then (u, g) would satisfy a (1, p)-Poincare inequality and
so, by Theorem 2.1, (v, h) would satisfy a (1,p')-Poincaré inequality, and we
would be done. Unfortunately, g may not be an upper gradient. The problem
is caused by the fact that f need not be absolutely continuous on all rectifi-
able paths in X. Nevertheless, f is absolutely continuous on (modulus) a.e.
path and this suffices to show that g is as good as an upper gradient. Recall
that ¢ > 0 is admissible for a family I of paths if 37 o> 1forally eI, and
I' has p-modulus zero if the infimum over all admissible g of § x 0F is zero.

Say that a measurable function 7 is a p-weak upper gredient of a function
w if for every rectifiable path -, except for a family of p-modulus zero, the
following estimate holds;

(7 w(ay) — w(by)| < ST
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where a.,,b, are the endpoints of v. When p = @, or when we arc not
interested in the precise value of p, we simply refer to weak upper gradients.

The next lemma implies that weak upper gradients can be uged instead
of upper gradients in integral estimates.

LemmA 2.4, If 7 is a p-weak upper gradient of w, then for all g <
p there is o decreasing sequence {Tn} of upper gradients of w for which
170 — 7llg — 0.

We need anocther lemma first.

LEMMA 2.5. If a path family I' has p-modulus zero, and cvery vath in I
is bounded, then I' has g-modulus zero for all g < p.

Proof. Choose a point g in X. Set By = B(zg, k). Define I}, to be all
those paths of I" that lie in By. Then I' = |52, k. It suffices to show that
Iy, has g-modulus zero. This is trivial because the measure of By, is finite. =

Proof of Lemvma 2.4. Let I' denote the exceptional path family in the
definition of weak upper gradiens. All the elements of I" are rectifiable, and
so bounded. The previous lemma says that I” has g-modulus zero. Therefore
there exist f; > 0 such that { f; > 1 for all v € I' and ||f;]lg < 277. Define
T to be T-+377 | f;. Clearly, the 7, are decreasing and ||7, —7[|q — 0. Note
also that S,y Tn =00 for all v € T and that S«, T > ST r for all rectifiable .
Thus each 7, is an upper gradient of w. w

Returning now to the proof of Theorem 2.3, we will show below that
g ~ 7 ae., for some 7 that is a weak upper gradient of u (we are using
~ to indicate that the quantities are comparable with constants depending
only on f and on the spaces). It follows from this that there is a decreasing
sequence {7, } of upper gradients of u for which |7, — 7{/g - 0. Each pair
(u, 7) satisfies a (1, p)-Poincaré inequality, thus (u, 7), and as a result {u, g),
must also satisfy a (1, p)-Poincaré inequality. Theorem 2.1 now implies that
(v,h) = f(u, g) satisfles a (1, p')-Poincaré inequality, as required.

Define

L¢(m) = lim ( sup M) and 7= (ho f)L;.
TN Jy—e|<r r

Note that by regularity of the spaces, and the quasisymmetry and absolute

continuity of f, we have Ly ~ J }/ 9 a.e. Thus g~ 7 a.e. It remains to check

that 7 is a weak upper gradient of «.

The proof of Theorem 8.1 of [HeK2] shows that our assumptions on f
are enough to ensure that f is absolutely continuous on every rectifiable
path in X, except for a family of Q-modulus zero. When we say that f is
absolutely continuous on a path we mean that foo is absolutely continuous,
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where o is the arclength parameterization of the path. Consider a rectifiable
path v on which f is absolutely continuous. Then 7 = f(y) is a rectifiable
path in Y. Denote the endpoints of v by a and b. Because h is an upper
gradient of v we have

Ju(b) — u(a)| = le(f(a)) - v(F BN < | &

T
Since f is absolutely continuous on v, we can do a change of variables and
obtain

fr =S NI,

s it

where |f'](o(y)) denotes |(foo)'|(o(y)). It is clear that | f'|(o(y)) < Ly(a(y)),
and thus we have

[u(d) —w(a)| < f(ho )Ly = |
¥ ¥
So 7 is indeed a weak upper gradient of u. m

3. The Cantor diamond. We are going to construct subsets X, of
C which are 2-regular and support a (1,p()})-Poincaré inequality, where
p(A) > 2 and p(A) — 2 as A — 0. We will then show that for each Xy
there is a quasisymmetric map from X onto another 2-regular space, Y,
whose pullback measure is A-related to the measure on X, yet Y, does
not support any Poincaré inequality. In particular, this demonstrates that
Theorem 8 is false in general for p > Q.

The restrictions of the Fuclidean metric and Lebesgue measure furnish
a metric and a measure for the various spaces considered here.

E denotes the Cantor set in [0,1] obtained in the usual way by first
taking out an interval of length 1 — A and leaving two intervals of length A\/2
and then continuing inductively. The dimension dy of By is log 2 divided by
log(2/A). The space X in which we are interested is obtained by re'placing
each of the complementary intervals of Ex by a square having that interval
as one of ity diagonals. Thus we have a line of diamonds along the uni_t in-
terval, and they are joined up by Ex. X satisfies our standard assumptions.
In addition, it is compact, quasiconvex, and 2-regular.

TurorEM 3.1. X supports o (1,p)-Poincaré inequality for each
2~ dy
1—dy
Proof. Fix a p in the indicated range. For any two points ¢ and b in
X, we set By, = Bla, [b—af) U B(b, |b - al}.

P>
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Suppose that g is an upper gradient of a function v on X. If we can
show that for all a,b,

© u(t) ~u(a)| < Clo - al*2/#( | ¢7)",

By
then we easily get the Poincaré inequality. Inequality (8) holds whenever ¢
and b lie in the same diamond, as each diamond is just like R?. We show
below that the inequality also holds whenever a,b € E». The general case is
a simple consequence of these two special cases.

The map F(z,y) = (=, 6(x) tan(ry/4)) is a Lipschitz map from @y =
[0,1] x [~1,1] onto X). Here &(z) is the distance from = to Fy. On B, x
[—1,1] the map I is simply vertical projection. On S5, the complement of
Ey x [-1,1], F is one-to-one and locally bi-Lipschitz.

Set ' =wo F and ¢’ = go F. The map v is constant on each of the
vertical fibres of E x[—1,1]. By a fibre, we sirnply mean a line segment con-
tained in QJq. Clearly, ¢’ is an upper gradient for w’ on each of the horizontal
fibres. On each horizontal fibre, F is 4-bi-Lipschitz. We can now conclude
that if a,b € E), then

ud) —u@)| =W (l) ~w(e) <0 [ g=C | ¢
Riab R:i.hﬂ'g’\
where Ry, is [a,b] x [~1,1]. Let Rgp = F(R.,} and Dy = F(R., N S»). The
volume derivative of F' at a point w = (z,y) in Sy is essentially §(z). This

in turn is comparable to §(F'(w)). Performing the change of variables in the
nequality above, we obtain

u(b) ~ u(a)| < CDSM,%% < c(D{bgp)”’“( ] 1)

The construction of F, guarantees that § D § 1< Cla—- b|2“1. This yields
the required estimate: *

lu(b) ~ ufa)| < Cla—bﬁ""?/p( { gp)l/“’ < C\a—b|1“2/1’( S gp)l/p' ]

Doy Bas

REMARK. The usnal chaining argument (Theorem 5.1 of [HaK2), for ex-
ample) shows that if (u, g) satisfies a (1, p)-Poincaré inecuality, with p > @,
on some (-regular space X, then a Hblder estimate of the type (8) holds
for a.e. ¢ and b.

Fix A. Tt is easy to see that there is a quasisymmetric map from R onto R
that maps ) onto E; /3, the usual Cantor set. This map can be extended to
a quasiconformal {(and herce quasisymmetric) map of the plane. Lemima 2.3
of [K2] shows that for any 1/2 < & < 1 there is a quasiconforma) map of the
plane which satisfies |f(z) — f(y)| ~ |z — y|® for all z,y € R. In particular,
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there is a map sending By /3 to a regular set of dimension 8 for soroe 5 > 1.
By composition, we get a quasiconformal map f of the plane that maps FE»
onto a regular set of dimension 8 > 1. As f is quasisymmetric, it is easily
seen that Yy = F'(X,) is 2-regular and satisfies our standard assumptions.

We can assume that f fixes 0 and 1. Define a function u on Y) by
w(y) = inf, Ha(v), where Hg denotes S-dimensional Hausdorff measure and
the infimum is taken over all curves in Yy joining y and 0. Note that u is
constant on the images of the diamonds and that 0 = u(0) < u(y) < w(l) =
Hy(f(E,)) < oo. For any two points a,b in Y, we have

() — wu(a)| < Clb —af”.

This follows from the f-regularity of f(E,) and the quasisymmetry of f. In
particular, v is continuous. Because the exponent is greater than 1, v must be
constant along any rectifiable path. Consequently, 0 is an upper gradient for
u. But v is non-constant and so ¥, cannot support any Poincaré inequality.

4. Sobolev spaces for p > 1. If X is a Riemannian manifold, the So-
bolev space LYP(X) is the space of locally integrable functions with weak
derivatives in LP. This definition makes no sense for more general X as
derivatives will no longer be defined. We shall give two ways of defining the
Sobolev spaces, for the case p > 1, on metric spaces. The first is due to Haj-
tasz [Hal, the second is a modification of a definition of Korevaar and Schoen
[KS]. Both definitions involve some sort of modulus of continuity. We aim to
show that these spaces are equal, for reasonable spaces, and that they are, in
fact, the same as P1'P(X). This will then allow us to prove a general theorem
on preservation of the Sobolev space L'? under quasiconformal maps.

In this section we do not need X to be a regular space. It is sufficient for
the measure to be doubling on X, i.e., that x4 is non-zero and u(2B) < Cu(B)
for every ball B. The reason is that the key estimate, Lemma 4.3(ii), holds
with this hypothesis. Note that the doubling condition implies that every
ball in X has positive measure.

Say that u € MYP(X) if there exists g € LP(X) such that for a.e. 2,y
the inequality
(9) u(z) — u(y)] < |z — yl(g(=z} +9(v)
holds. We can define a seminorm on M»P{X) be setting [lujl = inf ||g!|r-
where the inf is taken over all g satisfying the above inequality. In R?, this
definition yields the usual Sobolev space and the seminorm is equivalent to
the usual seminorm (see [Hal).

For £ > 0, write
|u(z) - u(y)|

and el(miu) = | eP(z,up5u)du(y).
£

B(z,c)

ec(T,y;u) =
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The Sobolev space of Korevaar and Schoen consists of those funetions for
which

(10) sup (lim sup X Jlz)el(z;u) d,u(m)) < 00,
f £— X

where the sup is taken over functions in C.(X) with values in the range

[0,1]. When X is a Riemannian manifold this definition yields the usual

Sobolev space and the quantity in (10) is equivalent to the usual seminorm
(see [KS]). We will change this definition slightly. Set

BP(u, X) = sup (lim sup S el (5 u) d,u(m)),
B

e—0 B

where the sup is taken over all balls. The function u is said to be in £YP(X)
if B (u, X) is finite. It is clear that this space is the same as that of Korevaar
and Schoen when X is proper, i.e., when the closure of every ball is compact.
In particular, we get the usual Sobolev space when X is Euclidean space.

THEOREM 4.1. We have the following inclusions:
MBP(XY C PYP(X) C LYP(X).
The first inclusion is trivial, while the second is proven below. Theo-
rem 4.5 below gives a sufficient condition for the spaces PL?P(X), £L1P(X),

and M'P(X) to be equal, while Proposition 4.4 considers the reverse of the
first inclusion above.

CorOoLLARY 4.2. All the above spaces coincide when X = RY .

For proving the theorem, we gather some facts about Poincaré inequal-
ities and Riesz potentials together in a lemma. Set

[e0]
Jplg,r, @) = Z Q_k?‘( S lg|P du)lfp.
k=0 B{x,2—kp)

This is a minor variant of the generalized Riesz potentials defined in [HaK2).

Lemma 4.3. (i) If the pair (u,g) satisfies a (1,p)-Poincaré inequalily,
then for almost every x,y we hove
lu(z) — u(y)] < G(Jp(gﬂ"myam) + Jp (g, ray, ),
where ryy = 2|z — y|.

(ii) There is a constant C, independent of e, such that for any € X
and any 0 < e < 2diam X we have

| Gelocw)yduy) <cer | gran
B(z,e) B(z,2¢)

icm
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(iil) There is a constant O, independent of &, such that for any 0 < € <
2diam X we have

V (Iplg,e,9))P duly) < Ce? | g7 du.
X X
Part {i) follows from the nsual chaining argument (see the proof of The-
orem 3.2 in [HaK?2], for example). The second part follows from Theorem
5.3 of [HaX2] and its proof. The third part follows from (ii) and a covering
argument.

Proof of Theorem 4.1. Suppose now that (u,g) satisfies a (1, p)-Poincaré
inequality and that g € LP(X). We abbreviate J,(g,7,x) to J(r,z). Part
(i) of Lemma 4.3 implies that for a.e. z and a.e. y € B(z,¢) the following
inequality holds:

u(z) — u(y)l < C(J(2e,2) + J (26, 9)).
From this estimate and parts (ii) and (i) of the lemma we have

‘ ek (w; u) du(z) < CS (E"pJ(Ze,m) + S g° d,u) du(z) < C S g* dp.
X X B(z,4e) x

Consequently, E?{u, X) < C{, g du < co and so u € LYF(X). =

Lemma 4.3 also allows us to describe more precisely the relationship
between M1P(X) and P1#(X).

PROPOSITION 4.4. (i} Ifu satisfies a (1,p)-Poincaré inequality, then there
is a function h in weak L? of X for which |u{z)—u(y)| < |z —yl(hlz)+h(y))
for a.e. z and y in X.

(i) If diam X < oo, then PYP(X) C MbY(X) for all 1 < g <p.

(iid) If (u,g) satisfies a (1,q)-Poincaré inequality for some 1 < ¢ < p,
and g € LP(X), then u € MMP(X).

Proof. The potential Jy{g,7z) can be trivially estimated by
2r{Mg?)*/?(z), where M denotes the usual maximal function. Because g*
is in L', the corresponding maximal function is in weak L. Putting thess
facts together with part (i) of Lemma 4.3, we obtain (i} above.

Part (ii) follows easily from (i).

For (iii), note that the inequality of () is satisfied for h = (Mg?)*/4. But
g% is in LP/¢ and p/q is greater than 1, therefore Mg9 is in. /9. Tt follows
that h € L7, and this implies that u € M>?(X). w

This proposition tells us that the reverse of the first inclusion in Theo-
rem 4.1 is almost true. One of the questions raised by Hajtasz and Koskela in
[MaX?2] is whether (u,g) satisfying a (1,p)-Poincaré inequality with g € L?
actually implies that (u,g) satisfies a (1, g)-Poincaré inequality for some
g < p. If this were the case, then part (iii) above would imply that there is
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actually equality in Theorem 4.1. This is a delicate question because it is
known that there are spaces that support a (1,p)-Poincaré inequality but
do not support a (1,g)-Poincaré inequality for any ¢ < p; nevertheless, the
answer to Hajlasz and Koskela’s question is yes in these spaces (see [K1]).

We next present a sufficient condition for the various Sobolev spaces to
be equal.

THEOREM 4.5. If X supports o (1,q)-Poincaré inegquality for some 1 <
g < p, then PYP(X) = LYP(X) = MLP(X).

Proof. By Theorem 4.1, it suffices to show that £?(X) € MbP(X).
Suppose that v € £Y?(X). A priori, we do not even know that u has an
upper gradient. To enable ourselves to apply our Poincaré inequality, we will
approximate u» by functions which have upper gradients, which we can esti-
mase, and then take a limit in order to get the required information about u.

Let ¢ be some positive number. By the usual covering arguments there
is a subcollection {B;} of the set {B(x,&)}zex of balls which is at most
countable and for which X = |JB; and the balls —;—B,,.; are digjoint. This
last property implies, for example, that the number of B; containing a given
point is uniformly bounded. By following the standard construction of a par-
tition of unity, we obtain non-negative functions ¢; that are Ce~-Lipschitz,
and for which supp ¢; C B; and ¥, ¢; = 1.

Next we check that u is integrable over any ball. A little bit of work
combining the definition of £1?({X) and the fact that all balls have positive
measure reveals that given any ball B there is some § > 0 with the property
that ef(z; ) is finite for all z in B. In particular, v is integrable over B(z, §)
for all z € B. The covering property described in the previous paragraph,
along with the doubling property of p, can be used to show that B can be
covered by a finite number of these balls B(z, §). It follows immediately that
y is integrable over B.

Now define k. to be 3 A\;¢;, where A; is the average value of h over
the ball B;. The L! norm of k. is bounded (independently of £} by a mul-
tiple of the L' norm of A, and when & is continuous one easily verifies that

{glh— hel = 0 as e — 0 for any ball B. It follows that this property holds
whenever h is integrable over all balls.

LeMMA 4.6. If 10— a| < &, then
ue(®) —ue(a)l < Mp—al | ef. (z5u) du(z).
B(a,2¢)
Proof. Label the B; so that a € By. Then

Z Midi() — 3 higi(a)

uE b) e '?.LE(CL

icm
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= 2 = 20)8u(0) = (% — do)i(a)
= Z()\i — X0)(:(b) — ¢i(a)).

Now if {e,b} N B; = 0, then ¢;(b) = ¢;(a) = 0. There are at most C of
the B; for which {a,d} N B; # 0, so the above sum has at most C terms.
Consider one of the B; for which {a,b} N B; # §. We have

M=do=fu—fu=§ §uly) - u@)duy) dula).
B; By By B,

Taking absolute values and taking into account some obvious inclusions we
find that

Pi=xl<C | b ul) - w(@) duly) dulz).
B(a,2¢e) B(z,5¢)
Recalling our earlier definitions, we see that

Ai-dol<Ce §§ (o yiu) duly) dulz)
B{a,2z) B{z,5e}

= (e S et (z;u) du(z).
B(a,2¢)
Combining the various inequalities we obtain the inequality we seck:

[ue(B) — ue(a) < Y i = Xol - [63(8) — ¢i(a)]
< Z |Ai = Ao|Ce™ b — g

<SMp—al §  eb(nu)duz). =
B{z,2¢)
Set
ge(a)= §  ed(w;w)du(z).
Bla,2e)
The lemma above says that |u.(b) —ue{a)| < C|b—a|g:(a) whenever [b—a| <
¢. Because u is integrable over any hall, the function g is uniformly bounded
ot each ball and so u, is locally Lipschitz and has Mg, as an upper gradient.
We want to get estimates on the L? norm of the g.. We first note that
et (z;u) is bounded by (e, (z;u)) /P As a consequence, we obtain the es-
timate "
P
e@s<( | ElmwduE)
B(a,2¢)
By Fubini’s theorem we deduce that {5 g? < C'{, 5 ef, (#; u) du(z) whenever
B is a ball of diameter at least 2c. Now we make use of the definition of
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LYP(X) to deduce that for any ball B,

(11) lim sup S gf < EP(u, X) < co.
e=0 g

Next we want to find a convergent subsequence of the g., because wa
will need to take limits later om. The bound (11) implies that for each
patural number N there exists ey > 0 such that {5 ¢f < 2EP(u, X).
Here By is the ball of radius N centred at some fixed point of X. Lot
GN = GenXBy- Then |Gn|5 < 287w, X) for all N. This last can he

rewritten as HG?\,Hyg < 2BP(u, X for all N. Some subsequence of the G

converges weakly in L#/? to H € LP/9, as p > q. Write G for HV/4. Then
G € LP and G converges weakly to GY in Lr/e,

We are finally in a position to use the Poincaré inequality which X sup-
ports. The function u,. is continuous and has g, as an upper gradient. Thus
for any ball B of radius r we have

§ [ue — (weoldu < Or( § gza) .
B 2B

We can now switch to the cut-off subsequence Gy of the g, that we obtained
above and take a limit to find that (u, G) satisfies a {1, g)-Poincaré inequality.
But G lies in LP, so by Proposition 4.4 the function « must lie in M*?(X), =

THEOREM 4.7. Suppose that f is a quasiconformal map from X onte Y,
that X, Y, and [ satisfy (1), and thet X supports a (1,p)-Poincaré inequality
for some 1 < p < Q. Then u € LY9(X) (resp. w € MYR(X)) if and only if
we f7te LHQ(Y) (resp. uo f71 € MMR(Y)).

Proof. Our first two assumptions, and Theorem 1.2, guarantee that
f satisfles the standing hypotheses of Section 2, ie., it is quasisymmet-
ric and its pullback measure is A, -related to u, the measure on X. The
same is true for f~*. Corollary 2.2 implies that u &€ PL9(X) if and only if
uwo f~1 € PLA(Y).

Theorem 4.5 implies that PH?(X) = £M9(X) = MLR(X), because X
supports a (1, p)-Poincaré inequality for some p < . However, Theorem. 2.3
says that ¥ supports a (1,p’)-Poincaré inequality for some p’ < @, and so
PLR(Y) = L5(Y) = MM2(Y). The theorem follows. m

Our results in this section can be refined somewhat by taking into ac-
count dependence on seminorms, For example, in Theorem 4.5 the spaces
LYP(X) and MYP(X) are not only equal (as sets) but also the seminorms
are comparable. In Theorem 4.7, the seminorms of u and w o F1 are also
comparable. The details are left to the reader.
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