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B? for parabolic measures
by
CAROLINE SWEEZY (Las Cruces, N.Mex.)

Abstract., If £2 is a Lip(1,1/2) domain, & a doubling measure on 9,42, 8/8t — Ly,
i = 0,1, are two parabolic-type operators with coefficients bounded and measurable,
2 < g < oo, then the associated measures wy, w1 have the property that wp € BY(u) implies
wy s abseolutely continuous with respect to wg whenever a certain Carleson-type condition
holds on the difference function of the coeflicients of L1 and Lg. Also wy & BY{p) implies
w1 € BY(u) whenever both measures are center-doubling measures. This is B. Dahlberg’s
result for elliptic measures extended to parabolic-type measures on time-varying domains.
The method of proof is that of Fefferman, Kenig and Pipher.

A result of B. Dahlberg on two elliptic measures satisfying a BY{u) con-
dition for p a doubling measure is extended to parabolic-type measures on
time-varying domains. The B?{u) condition for w on 42 is

dw ~ N\% .~ N\ C duw
209 dud,5 2 du.

G,
BEA@ e
Here C is independent of (@, s), £y is a boundary cube in 802, ¥.(Q, s) is
a cylinder of dimension r centered at (@, s}, and r is any real number with
0<r<ry.

Dahlberg [D] proved that if one elliptic measure wp is in BY(p) and
if a certain Carleson-type condition holds for the difference function of
the coefficients of two elliptic operators Ly, Ly on a domain D with re-
spect to a doubling measure ¢ on 9D, then the second measure w; is also
in B(p).

The main result of this paper ig to obtain the preservation of the B?
condition for parabolic-type operators on Lip(1,1/2) domaing in R**1. This
result has been proved independently by Professor Kaj Nystrom [N
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Specifically, let

(Q—LO)UUZD in £2, 'U.g[@pﬂ”——fGLp(apQ),

at
E—L wy =0 inf2, wlsge="7
It 1 1= 3 1802 = [
where
20 a N o
=5 @tz L= o byt ),
LO ijZZI 8@.,: (amj(x:t)amj)z 1 ijz=:l 8.’!)1( J(CB t)a;[;J)

aij(z,t) and b;;(z,t) are bounded and measurable. Then given a Carleson-
type condition similar to the one in [FKP], Theorem 2.20, the following
inequality will be proved:

[N (wi)lize o, 0,dm < el Fllzeo,0.4m
assuming wg € B9(dp). If w is a center-doubling measure, then also wy €
B(dy). The method of proof is an adaptation of the proof of Theorem 2.18
in [FKP].

The paper is organized as follows: Section 1 contains the basic set-up
and definitions to be used in later sections; Section 2 gives some standard
estimates for parabolic measures and solutions on Lip(1,1/2) domains, these
estimates are used in the proof of Theorem 4; Section 3 contains Theorem 4
and its proof. The main paxrt of the proof is establishing the good-A inequal-
ity in Lemma 6. Section 4 has a brief discussion on extensions of absolute
continuity results to degenerate operator measures.

In addition to [FKP] the chief sources for the material presented here
are [RB] and [FGS].

1. A bounded domain 2 C R*™! = R*} x R! x R! is a Lip(l,1/2)
domain if its lateral boundary can be given in local coordinates as the graph
of a function ¢ which is Lipschitz in the space variable and Lip% in time.
Specifically, 32 can be covered by finitely many cylinders of the form

U(Q,s) = {{z',zn,t) : |z — Qi) <my i=1,...,n—1,

[t —s| <r?, |20 — Qnl < 2nMr},
where 7 > 0, @ € R® and s € R. In local coordinates 82 N&,.{Q, s) =
{&@ on, t) < |za| <7, |tY2 < r, @, = (2',t)} where we have set (Q,s5) =0
and (@, s) = 0. Moreover,

R0¥(Q, 8) = {(z/,Tn,t) : 2nM7 > Ty > (', 1), |m| <7, [HY2 <1}
and
lo(2',2) — (¥, 8)| < M(la' — 3| + |t — s[*/%).
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The parabolic metric is
8(Z, 47, 8) = (|’ — y/|2 + |zn — yn|2)1/2 + it — 5|1/2
so that §(%,; B} = inf(, cp (£, ¢ 7, s). Also the notation
8z, t) = 8(z,t; 8,02)
is used below.

The lateral parabolic boundary of {2 is defined as in [Do]: 8,2 = {(z,t) €
A2t > 0 and there is a path v C {2 whose initial point is (z,%) and whose
time cocrdinate function is strictly increasing with time}.

A surface cube A(Q,s) C 9,02 is given by A(Q,s) = ¥.(Q,s) N2 =
{(#, 2n,t) |2 — Q] <7yi=1,...,n—1, 2, = p(z',1), [t — s[*/2 < r} for
any (Q,s) € G,12.

The points

AT‘(Qv 5) = (QI7 Qn + SﬂM'f', 5)7
A(Q,8) = (Q,Qn + 8nMr, s + 2r?),
A(Q,8) = (@, Q,, +8nMr, s — 2r?)
are used for estimates in §2.
The nontangential approach regions, which will also be called “cones”,

Ia(@,8) = {(Z,2) € 2:6(£,£,Q,8) < (1 +)8(w, 1)}
for (@,s) € 8pf2 are used in maximal functions and the Lusin area integral
Nalu)(Q,s) = sup lu(z, £)],

h’at}erm(Q’s)

and
2

/2

= 1

Na(F)(Qu 3) = sup (“’"?b““_ S IF(ya t)izdy dt)
6elal@e) \Wsrale, )l g <

(where § = §(z, ¢, 3,42)) is an averaged maximal function. Here
To(y,s) ={(@.8): fo—yl <r, [t—s| <’}
As in [FKP], if u(y, t) is a solution to {(8/8t — L)u = 0 in {2 then

Na(v)(@,8) € eiNs(u)(@, 5) < 2N, (u)(Q, 5)

where a < § < =y and ¢;, ¢; depend on the “cone” openings. These inequal-
ities are valid for solutions since Harnack’s inequality holds with a time
lag.

We will also use

1/2
Sa(u)(Q,s)z( { |Vu(x,t)|25_”(:c,t)dmdt)
Pa(Qﬁ)
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and the Hardy-Littlewood maximal function with respect to a boundary
measure fu

1
Mu(f)(@Q,8)= sup ~—— \ if(P.1)| du(P,1).
(D@ 5) M%QMAHQ
> !
Let (@, s) = IN(Q, 8), N(F) = N1(F} etc.
ug and uy will be called solutions to the Dirichlet Problem (DP) on 12 if
{8/0t - L;)u; = 0 in {2 in the weak sense, i.e.
8ui
{ Py, 8)5 (4, 8) + (Ve @i | Vus) (y, s) dyds = 0
o]
for all p € C§°(£2) and us|p, 0 = f. We then have u(z,t) € ng,’ltc(.(?); ulz, t)
is a global solution if v € Wy (§2) in addition.
For such solutions we have u;{z,1) = Sa},ﬂ F(@,5) dwgw’t)(Q,s) where

wi{"m”t)(-) is the parabolic measure on 9,12 associated with 8/t — L;. More-
over, w'™?) (E) is the solution to (DP) which has boundary values xg(Q, s)

for E a.%ny Borel subset of d,12.

The existence of such solutions will be assumed for f € LP(du). (See the
literature for solutions to (DP), in particular [LSU], [K], [YH], [HL], [LM]
for domains which are Lip(1,1/2) or slightly more regular—on these latter
domains one can take dy = surface measure.)

For Lip(1,1/2) domains, wp will always be assumed to be a center-
doubling measure (see Section 4) and f € LP(dwo) = f € L'(dwp) (s0
that Kemper’s results hold if A = Lg).

Iy(z,t;y, s) is the fundamental solution for 8/8t — L; on R™* and
Gi(z,t;y, 8) is the Green’s function for 8/8¢ — L; on §2.

One other construction, a saw-tooth domain over E C 8,02, will be
defined in Section 3.

For Lg = %(aij(m,t)a%j) and Ly = %(b”(m,t)a%j) define

a'ij(y'n 3) = bij(yi 3) - a'ij('y; 3)1
HE'ij(yv S):H - 5:-1313 ‘Eij(% 3)' = E(y: 3)7

a(z,t) = sup i£(y, s)l,
(5,5)EFs5(m 1y s (2,8)
80 that
1 1/2
(T_ S le(y, 8) 2 dy ds) < a(z,1)
W&/tl' &

5 /4

1/2
< ( ~— | |a(y,s);2dyds) for (2,t) € 2.
Ws/al 5

5/4
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If 1g, uy are solutions to (DP) on {2 as above let

F(E,t) - 'LLJ_(ZE, t) - '11:0(:1’:,?5),

ller oy = (§ fute, o) Pdnta,)) "
8,02

2. Assume that {2 is a Lip(1,1/2) domain and

=~ 8
Lo = Z B_z;(aij(mat)a—%)

i,j=1
where there are constants i, A > 0 such that

AEPR < Z §iaij(z, £)€; < p|€?  for all (z,t) € 2.
i=1

Go(x,t;y, s) is the Green’s function for 8/0t — Ly on {2 and wém’t) (E) is
the parabolic measure associated with ¢/0% — Lg of E, where E is any Borel
subset in d, 2.

The interior estimates for nonnegative weak solutions u of (8/8t — Lg)u
=0 on 12 such as Harnack’s inequality (with a time-lag), Holder continuity,
and the energy estimate are all valid by classical proofs from Moser, Nash,
Aronson etc. since they are independent of the kind of houndary {2 has.
Other results such as the maximum principle follow easily and can also be
found in the literature. The standard estimates given below for parabolic
measure and solutions vanishing on 8,{2 are valid at the boundary of any
Lip{1, 1/2) domain and are easily proved by methods in {CFMS], [FGS], [5],
[RB]. Such estimates have been proved on Lip(1,1/2) domains for parabolic
functions in [N], [YH] and for solutions to the heat equation in [FGSII].
The proofs are therefore only briefly indicated. These results will be used to
prove the main theorem in Section 3.

LEMMA 1. There is a constant ¢ = e(A, n,m, o) so that
wh @D (A(Q,5)) 2 e >0
for all (@Q,5) € 8,02, 0 <r <7y and A.(Q,s) € (2.

Proof. Let w{ be the parabolic measure of ¥.(Q, s) evaluated at the
point A, 5(Q,s). Then wy is associated to 8/8¢ — Lj where Lj is the div
form operator on ¥.(0), 5) obtained by extending Ly across 9,12 (say to be
equal to A) in @, (@, s)N % Let B (@, s) = ¥ (Q, s)N{zn = ~2nMr}. Then
wh(B,(Q,s)) > ¢ by a result of Salsa ([S|, proof of Lemuma 4.2}. The max
principle gives wém’t)(&ur(@, sh) 2 wf,(w’t)(Br(Q, s)) for all (z,%) € ¥-(Q,s) N
2. Now Harnack’s inequality gives wi™ @ (A (Q,s)) > ¢> 0.
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LEMMA 2. Suppose u(x,t) is any nonnegative solution to (8/0t — Lo)u =
0 in 2 and u{z,t) vanishes continuously for oll {(z,t) € Nyp(Qo, s0). Then
there is a constant ¢ = c(\,n, M,70) > 0 such that u(z,t) < cu(A(Q,s))
for all (z,t) € ¥, ;4(Q, 5) N L2,

Proof. The method of Salsa (in the proof of Theorem 3.1 of {S]) can be
used here. There is 2 Whitney type decomposition of 2N%,.(Q, s) into dyadic
parabolic “cubes” whose dimension compares with their distance from 8,02,
80 ¥ (@, 8) N 2 = Qp, p,; Where

Qg =L@ zn,t) : cr (M)r/2% < 2 — o2’ 8) < ca(M)r/2571,

hr /2Rt <oy — Q| < (h+ 1)r/28 Y i=1,...,n—1,
~72 b g [T - 5| < (F A+ L /ak T — )
for k = 1,2,...; h = —=2F"1 _ok-1 4 1 9kl _ 1.4 =0,1,2,...,
2.4%t2 _ 1. (@;,0,s;) are parabolic dyadic lattice points.

Since odd reflection across a Lip(1,1/2) boundary brings in a drift term
whose coefficient can be unbounded, an internal estimate on % must be
used in place of the role of oscu in Salsa’s proof. The following estimate
for sclutions vanishing on Ng,.{Qq, 80) gives such a result and it can also be
used to prove Holder continuity at the boundary.

Assume supPy, (0, so)na ¥(@ £) = 1. Let w&,wr!? {OpWr 2N 12°) be the para-
bolic measure on ¥,/5(@o, s0) of the part of 8%, 2(Qo, s9) external to (2.

Now u(z, ) < 1 mngjg(ap@r,gm (2°) for (z,1) € By(2N¥,2) so by the max

principle the estimate holds for (z,%) € 2N &, ,3(Qo, o) also.
By Lerma 1 there is a constant ¢ > 0 so that ws(z’;) (0%, /2N 02°) Z >0

if (2,t) € ¥/4(Qo, 50). Then u(z,t) < 1 - wl(88,, N 2°) < 1—¢ =

(1 — €)8uPy, (gq,¢0) % Whenever (z,t) € ¥, ,4(Qo,s0) N £2. Iteration gives
Holder continuity for u(x,t), and the estimate

>
0 T
can be used to demonstrate the existence of a sequence {F;}{2, C ¥,(@, )
M {2 such that w(P) > HeME bt limy oo 0(P, 0,02} = 0; H is a constant
> 1, and ¢(M) > 0, as Salsa does in his proof. Here Fy and F,, are
the analogues of E;;‘; and Hp, for a Lip(1,1/2) domain. This contradicts u
vanishing continuously on Ho, (@, s).

Lemmas 1 and 2 can be used to prove a standard comparison of the
Green’s function with parabolic measure, the fact that two solutions vanish-
ing on 8,12 vanish at the same rate. The proofs of these results are basically
the same as the proofs on a cylinder domain and can be found in [FGS):
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LeMMA 3. There is a constant ¢ = ¢(A,n, M,ro) so that for all (z,t) € L2,
if t> 5+ 3r%, then

%THGO(W,t; -Zr(Qy 5)) < w(()w‘t) (Ar(Qa 5)) < CTnGD(m’ t,J AMT‘(Q’ 5))

Proof The argument in the proof of Lemma 4.8 in [JK] can be used,
with some minor changes needed to deal with the operator /8¢t — Lo and
its solutions, to show that

) wFNANQ ) < | e(Pr)duf™ (P, T)
8,02

17,
= S (GD($,t;y,3)"a‘(ﬁ('y,3)
g
gﬂr(Qis)

+ VyGolz, t;y, 8) - [as;(y, $)]Vye(y, S)) dy ds

where 1 < o < 2,suppp C U (@, 8), ¢ = L on (@, s) and p € CF(R™H1).
Since Lg = A on £2° and Gy(x,t;y, ) has been extended to equal 0 outside
2, it follows that Gy is a subsolution on R**1\{{x,t)}. The representation

Golw,t;y,8) = e(n) [P (@, t59,8) = § I(P,7iy,9) duf™ (P,7)]
B 12

has been used to avoid having to use surface measure on d,2 (which may
not be finite).

From ()} the proof of Theorem 1.4 in [FGS] shows that the result of
Lemma 3 is valid.

Now the local and global comparison theorems for solutions vanishing
on Ao, (Q, s}, resp. 9,02, follow on Lip(1,1/2) domains by the methods of
proof of Theorems 1.6 and 1.7 in [FGS] and [FGSII].

3. Let u be a doubling measure on 8,12
As in [FKP], [CS] the difference function F(z,t) = ui(z,t) — uo(z,t),
defined in Section 1, has an integral expression over 2. For f € C(8,42),

(3.1) F(z,t) = S V,Golz, 6y, 8) - [ei; (¥, $)|Vyua(y, s) dy ds

e
by using Green’s identity for smooth operators Lf* = aim (0 % pm{z, t)g%)
and smooth functions «, v, F™ etc. on the domain 2, = {(#,5) : § =
(', ¥n), s = t; (¥, 8) € 2} in R™. Then proceeding as in Doob [Do] one can
show

F™(z,t) = éG?(m,t;y, s)([% - Lg‘] F™{y, 5)) dy ds.
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By elementary manipulations, (3.1) follows for smooth solutions. Now
from the fact that GI*(z,t;y,s) is a solution to 8/8s + L' for (y,s) € 2,
s < t, and that ul™ — u;, G§* — Go in I/V2 ]Dc( ) and uwf* — u; pointwise by
Holder contlmuty of the solutions on the interior of §2, (3 1) holds for rough
coefficient operators in the weak sense.

Two inequalities will be used in the proof of the theorem:

(iii) [V (o) o < el fllzeiap).
(iv) 15 Cun) |l oqapy < €11 F iz ap)-

(iii) follows from the comparison of N(ug) with M., (f) and a standard
maximal theorem for 1 < p < oo; (iv) is easy to obtain when p < 2, but

for p > 2 a more subtle argument is needed. For 1 < p <2, using Green's
theorem on u(z,t) € C2(12) if £(Q,s) > 0, u(z,t) = 0 we get

| £(Q, 5)Pdwo(Q,5) = ulzo, To)* —~ | plp — Lule, )7~

a0 ]

Bu ” Ou
- Y - : )
X 1.(azz,lt)a, (m,t)a i(:l:,t)G[](.’E[),Tb,m,t) da di

Hexce
[ rraszc| | (| pe-1w=2Vul?) du).
an 802 riQ,s)
Let,
E={(Q 8):5a(u)(@ s) < Ng(u)(@,5)}, B> o
= {(Q, ) : Ng(u)(Q, 8) < Sal(u)(Q,5)}-
Then for (@, s) € E°,

1 1/2
<|R'ﬂfﬁm3| S |u(y’T)2dydT> S,Sau(Q:S)
i

RiNIpNs
by definition of N(u)(Q,s) and Harnack’s inequality if oo < 5. Here B; =
{(z,t) € 2:dp(z,#;8,02) ~ 277}, and S is any subset of R;.
Now
SSa(u)T’ dwo S SNﬁ(u)p dwg < S fp Clw()
E E an
by (iii), whereas

| Sa(w)P duwg = | sa(u)P~2(Z i Lvm%-") duwo

Ee Ee i Fa(Q,s)NR

{(p—2}/2
13 (mrm, L9 (L o)

Ee 3 I'sNR;
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where p — 2 < 0 and S(u)(Q,s) > (|S;]7* {5 u?)V/? for (Q,s) € E° have
3
been used for
S;=RynNIg\ Lo N{(z,t) :t > maxs: {y,58) € I, Yn = Tn}
where b > 1.

Now
1 (p—2)/2 _
IS (i) () e
Ee 3 8y I'gNR;
=< S Z S w72 Vul?d ™ duwyg
E° j I'sNR;
ST 1 plo- D oa¥ 2L 5 g
B9 I(Q,4) = i
_oOu ;. Ou
< | p(p— 1)ur ¥ o Godadt < ¢ | f7 duwo.
o 5‘:231' 5‘$ Y
Harnack was used again to obtain the first inequality.
Altogether,
V (S)(@, ) deo(@,8) < {+ | < | fPdwg
agn E E° 30

when 1 < p < 2.

Now let fr, — f € LP, fn € C™(822) to obtain the inequality for f & L,
u € Wh2(02).

If (iv) holds for solutions of (8/0¢ — Lo)ug = 0 in {2, uplo,n = f, then
Theorem 4 is true for 1 < p < oo by the same arguments shown below
for the case p < 2. For w; a center doubling measure, {iv) holds if p > 2.
This result is proved in Nystrom’s paper [N] using Russell Brown’s proof of
the area integral theorem for solutions to the heat equation on Lip{1,1/2)
domains [RB], and by using (iii).

For 8/0t — L;, us, wi{z,t) being parabolic type operators, solutions and
measuras on {2 as in Section 1, 1 = 0,1, the following theorem can be proved:

THEOREM 4. If wp € BYdu), 2 < q, 1/p+1/g = 1 and if for every
(@, ¢) € 8,12 and r < 1,

_aly, s 00\ @)
(Ce) A,-(SQH’) ( (S )(5(:{/, 5)nte dy ds) A < Celr)

with ¢ independent of r and £(r) — 0 as r — 0, then |N(u1)|lzea, 2,du) <

CHf”Lp(ap_Q dp), and wy is absolutely continuous with respect to wo. If wy is
a center-doubling measure then wy € BY(dp) (1).

(M If w( &) ~ 77 for all Ap C 8542, condition (Cc) can be replaced by a(j‘s) dyds

being Carleson of vanishing trace with respect to 2 {see Theorem 2.18 of [FKP]).
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See Theorem 2.18 of [FKP].
In the following lemmas I'z(@, s} is a nontangential approach region of
larger aperture than I"(Q, s).

LeEMMA 5. Given the hypotheses of the theorem there are constants C)
and Cy depending on A\, n, M and rq so that

(i) N(F)(@,$) < CreoMag(Sa(u1))(@, 9),
(i) | N(EVF)|zr(a,nd0 < CosolllSwi)ll oo, 2,0 + I flize(o,0.am)-
LEMMA 6. There is a constant Cy = C{A\,n, M, 7y, 3) such that
IS CEN L2 (6, 2,0
< O ‘Nﬁ F)“]Ep(apn,d#) + |iﬁﬁ(5VF)I|pLP(3PQ,dp + ”f“m(a,,n d) )
To prove Lemma 6 the good-A ihequaiity of Lemma T is needed:
LeMmMa 7. There are constants c,n > 0 so that for any v < 1,
W(E) < enyu(SF > A)
where
E={(Q,5) €8,2: S(F) > 2\, Na(F)(Q,5) <7\,
N3(8VF)(Q, 5) < ¥A, Np(uo)(@Q,8) < v,
Np(uo)Sp(u1)(@, 5) < (v2)%,
Na(F)(Q,)S5(u1)(@. 8 < (70,
Np(89F)S5(u1)(@,9) < (7A)*}-

Given the lemma, the theorem follows as in [FKP]. In particular, the
condition {Ce) gives a Carleson-type condition for

2
GO(XO:TUaya )a(y,s) d ds
d(y, 5)?

with respect to wy, and reducing the theorem to the case Ly = L1 on {25, =
{{Z,t) € 2 :4(%,1,0:12) > do} allows one to take the ¢ in Lemma 5 as
small as necessary, given the vanishing trace condition in (Cc).

In fact, £q sufficiently small gives the estimate

(1N (F) “z},p(apn,dm + ||ﬁ(‘SVF)HZp(3pn,du)) < C”f“ip(apn,dﬂ)
by using Lemmas 5 and 6:

~ ~ L.5
| (N(FY + NEVFP)du S e0 | Mo (Spun)Pdu+ § |£1Pdu
8,02 : B0 8p 2
(i)
Seo | Sy(w)Pdu+ | [FIPdp
8p 12 8,02
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Seo | (Sy(FY + 8(ug)® + | F1P) dps
8,0
L.8, (iv) —~ _
S e | (N(FYP+ N@EVEF)P +|fP)du
12

so for g¢ sufficiently small,

(1—e0) | (N(F)? + NEVFP)du<c | |f? dp.
8,02 8,02
Here v is smaller than 3 and smaller than the opening of I°(Q, 5). (i) uses a
standard maximal function result. For the change in cone aperture see below.
Now

||N(u1)||f,.:p(d#) < ”Na(ul)”Lp(d“) < QEN (F)+ Na (“O)HLp(d#) < C“f”z,p(dp):

and N(u) ~ My, f for wi a center-doubling measure (see [FGS] and Sec-
tion 4) gives that wy € BY{du).

The places where there are some differences in the proof of the theorem
from [FKP) are in the lemma proofs. These are outlined below; they are
mainly due to 942 being a Lip(1, 1/2) domain.

First to show that Lemma 7 gives Lemma 6 is a standard good-A in-
equality argument:

[ 0]
\ S(FWdp= | pX~"u{S(F) > Ardx = | p20)P " u{S(F) > 22}d(2))
B 02 0

< \ p2PAPIu(E) dX

Ot § O]

+ | o220 [u{Np(F) > vA} -+ u{Np(ua) > ¥A}
0

+ u{Ng(§VF) > yA} + p{Na(F)Sp(u) > (vA)?}
+ p{Np(6VF)Sp(u1) > (vA)?}
+ p{ Na(uo)Sp(uz) > (vA)?H dA

o0

< oy | X u{S(F) > A} dA
Q

+ c@INp(F)E + | N(EVF)E + | Na(uo) 17
+ [|Na(F)IB/2Sp(ua) |52 + | Na SV F) 22| S () |2/
+ [| Vg (uo) 12721 S (wn ) 17

< em|S@E+. ..
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Hence for ~ sufficiently small {depending on p)
(1= en)|IS(FYE < I Na(F)Z + | N5 (uo)lf + N (6VEIE
+ |\ Na(EEISEE? + 1S (ualils) + .. ]

I | S(M)]l, < ||ng(F)||p, |lﬁ(5VF)||p or ||f|lp we are done, if not the
right hand side of the last inequality is less than or equal to

e S 2{|Na()E/2 + INEVF)E + 17115/}

and dividing by HS(F)H?/ 2 and taking (p/2)th roots gives Lemma 6.

Any integral of S(u;) with respect to a doubling measure x can be written
(up to a harmless constant) as an integral of Sg(u;) for a “cone” of different
aperture (as long as 8 > fp = a minimal constant depending on n, I' and rg
such that [Tz, (@, s)] = 8 > 0, for some fixed dp, see remark after Lemma
3.1 of [RB]). This fact allows norm estimates over uniform approach regions
to be used in proving the theorem, although the estimates in the lemmas
Tequire increasing “cone” apertures.

Proof of Lemma 5. The argument in [FKP] to prove Lemma 2.9 is
used. The estimates taken over Fjy /2 (z,t) are exactly as in the proof of
Lernma 1 of [CS] since this region is well inside 2, and they are not affected
by the Lip(1, 1/2) boundary. To prove the stopping time argument on {2, the
only new ingredient is that the dyadic decomposition of #,Dy and the re-
gions R; in Dy, whose dimension compares with that of Projy o R; = I; =
parabolic cube of dimension 2795(x, ) in 8, D, must be defined to fit the
time-varying boundary of {2,

In the following argument (z,t) is a fixed point in I'(Q,s) and (z*,t%)
is its projection onto 8,82. Break Ag = Agy y(a*,*) = 02N W5 1 (z*,1")
into “dyadic” subsets (I;) where I; is a dyadic parabolic cube of dimension
2=ir, I; C ¢~ YAyg); for example I; = {{</,0,1) : |zs| < 2797, i = 1,...,
n—1,t72 < 2737}, Now p(I;) form a disjoint cover of Ag {up to boundaries
of -cubes; taking I; to be half-open cubes gives a cover of Ao which is dis-
joint). In fact, o(I;) = AH{Q4, ¢(Qj, 55}, 85) if (Q;,0, 55) is the center of Jj.

Now set R; = {{2',%n,t) : |ms — @i < 279r, i=1,...,n—1, |t — 5] <
4~9p% and 279 < z, < 2797} in R"' x R} x R}. Then the regions
o(R;) = {(z', (', t) + zp,t) ¢ (', 2n,t) € R;} give a disjoint cover of the
region near the boundary, T(Ao), at Ag, and form the usual decomposition
of T(/\q) into subsets whose dimension is comparable to the distance from
8p82, Projy o p(R;) = @(I;). Here the dimension of p(R;) is defined as
[volp(Ry) |1/ (n+2).

The image sets (I;) retain the property of being either nested or dis-
joint. The fact that the usual Lebesgue measure of w(I;) or the surface area
of p(R;) may be infinite does not cause a problem here: the cubes (I;) are
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considered with respect to the parabolic measure wy and the regions ¢ (R;)
have volume ~ vol{R;).

The stopping time proof can now be used with these regions in 842 and
{2 taking the place of the dyadic decomposition and dyadic approach regions
used in the case of a cylinder domain.

If necessary to keep the “cone” apertures from becoming too large the

regions ¢(R;) can all be subdivided into a fixed number of subregions. The
second Carleson condition

S GO (XU:TU; Y, S)a'(y1 3)2
8y, s)?

can be used on the regions ¢(R;) and estimates for Go{Xo, Tp; 4, 5), Go(=, t;
v, 8), Golz;,t5;, s) are valid for

dyds < CEouJQ(Ag/g(fE*, t*))
P a(mt)

N
('y, S) S (,D(Rj), (asj,tj) e ,Qj = !pz;ig(:c7t)($*,f*), (:‘E,t) c Q\ U .Qj
=1
since §(p(R;), Opd2) ~ 27r,
The stopping time argument gives (i) of Lermnma 5.
The second estimate follows from the pointwise inequality

() [NEVF)Q,s)? < e(Nu(F)NL(6VF)(Q, 5)
+ eo(Na(F) + Na(6VF))Sa(u1)(Q, 5))

which holds a.e. dwg, hence a.e. du. I, is a “cone” of wider aperture than
I'. Given {*) and using (i) No(F)(Q,s) < ceaMu, (Sp(u1)}{(@Q, s) along with
the inequality

NL(8VF)(Q,5) S Np(uo)(Q, 5) + Salu1){Q, s)

one obtains a pointwise inequality in terms of quantities whose ¥ (dy) norms
can be bounded by |[S(u1)||zr(a,02,a) and || fliLs(a,02,du)- If p is not taken
to be wy, the B? condition must be used.

{(x) follows by the argument used to prove Lemma 1 in [CS] (derived
originally from Lemma 2.9 of [FKP]) with only minor changes.

Proof of Lemma 7 (see [FKP), proof of Theorem 2.18). What follows is
a standard saw-tooth domain argument.

The set {S(F) > A} is divided into Whitney (parabolic) cubes A;{@;, s;)
and B; = EN Aj(Qj,Sj). Now fix 7 so that Aj = Z-\r,-: E; = EnN Aj and
one can construct a Lip(1,1/2) region W = Ug yer r{@,s)n ¥, as in
[RB], p. 572. The estimates of Lemma 3.1 and in the proof of Lemma 3.11
in the same paper are used below. By the B? condition it suffices to show
that wy(E) < e{yA\)2wo(Ay) to prove Lemma 7. For any 7, 0 < 7 < 1 the
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cones I'(Q), s) can be truncated to obtain the estimate
(**) S (F)Q,8) > A/2
for any (Q, s) € E if «y is chosen sufficiently small, where

1/2
Se®@a)=( | |IVF@H@) " ddt)
rEr(Qs)
(@, s) = Tu(Q,s) N {(z,t) : 8(z,t;Q, 8) < 77}
The proof of (++) follows the proof of Lemma 1 in [DJK].
Write S, (F)(@,5) = S{F)(Q, s) — Su, (F)(@, 8) — Sy, (F)(Q, s} where
Uy ={(Z,1): (&,t) € I (Q, 8)°NI{PYNT(Q,8)},
Uy = {(&,t) : (Z,t) € I'(Q, 5)° NI{(Q,s)\I"(P*)}.
Here P* & 3,02 is a point in {S(F) > A}° such that §(P*;Q, 5) ~ diam{A) =
r,ie 8(P*;Q,s) =cr, for c = (M, n).
For simplicity assume ¢ < 1. Then

_o\L/2
S, (F)(@,5) = ( { |vFPs)
TP {(Q:s)\Irr(@,8))

142
<( 1 wrr) P
r{p=}

by definition of P*.

To estimate Sy, (F)(Q,s) subdivide U into the regions B; = {(&,t) :
2 Yrp < §(#,1;0,02) < 287r}. Then R; N Uz can be further subdivided into
a bounded number of parabolic cubes (or partial cubes) that are of Whitney
type with respect to 8, £2. The regions R; MU, will be treated as if they were
these cubes. Now

§ |V F(x, )|26(z, t) ™ da dt
U,

N N
=3 [ IvFPsT™<c) | VRV + [ Vue )™
3=0 B;NU2 3=0 R;NUs
The argument that follows is identical in up and uy. A p-Caccioppoli
estimate for solutions is used on these functions (see [GS]):

N
3>V IVF|- [ Vugle
5=0 R;NUz2
X 12 1/2
< e |5VF|2) |Vug |26~
j=20 (mjl R3-§1Un (Rjrng ’ )
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< N(@EVFYQ,s)

N ez (29 rr)?
(]

J=0 (20— 1yp)2

ifp
I IVuglPsem ds:)
RNl xt

x( } 1XRj(:c,t)|qdm)1/th)1/2
R,y

. N . e (27 7r)? 1/ps 1/2
SNEVR)Q) Y@ (| [ [Vuolrdz) )
3=0

1 (29—1rr)2 R;NUa Xt

P sup |R; N Uz x t1/(24),

e (27— 1rr)2 <t <ea (29 1r)2
N has been chosen so that 2Vrr ~ 1, ie. N ~ —log(rr)/log2. Also
\RyNUsxt| ~ (29~ 2rr )=t if (297 2rr)? < ¢ < (2777)2 By the p-Caccioppoli
inequality the above is
< eN(SVF)Q,s)
N

XS 00 (93 1)/ 20 (zj—lTT)n/(zp)( Ili*i
7

1/2
S]uol2 dx dt)

j=0

N
< F(EVFY(Q, 8)Np(uo)(@,5) S (28 ) 13073/ < c(ya)2e(r)
j=0
because (Q,s) € E and 1/p+ 1/g¢ =1.

If ¢ > 1, one can proceed as in [DJK] to break the region I'(Q, s} N
V,.(@, s)° into three regions, one inside I'(P*) as above, the other two being
IQ,s) NP,.(Q,5)° NF.(Q, s) and I'(Q, s) N¥-(Q, 5)°. Here ¢ is chosen so
that inf; 51ep(Q.e)nr(p) § = t. Just as in the elliptic case,

{  [VFPsT™ <clog ?(7/\)?‘,
InPe By
The third region is estimated as above.
Consequently, for (@,s) € E,
S(F) = Suy (F) = Sp, (F) 22X — e {vA) — ea(vA) 2 A/2
for v sufficiently small.
Now

wo(E) < +5 § S2(F)(Q, s) dw(Q, s)

E
< <5 { (VP ([a]VF))(y, $)Go(Xo, Tos y, 5) dy ds.
w
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Using identities with 8/8t — L;, ¢ = 0,1, and integration by parts the latter
integral equals

e L1
T?‘- [agv GOF([am]VF) R 5 6§,V

S GoF div([es|Vur) + = ! S gt(FzG )]
W
The last expression is only a formal one since the boundary integrals
may not be defined unless the functions involved are smooth. Also since
OW is a Lip(1,1/2) surface (see p. 572 of [RB]), the surface measure may
not be finite. As in the proof of Theorem 2.18 of [FKP] both problems
can be handled by using averaging over cones I,(Q,s), a < ¢ < 3; this
means that boundary integrals are replaced by integrals over solid regions
inside £2. The integration by parts formulas can be used on regions W,
converging to W, = ;g s1en Iy(Q, s) where initially W} has finite surface
measure. Then averaging over g allows the integrals to be well-defined as
W"’L \Wa — W3 \ W,. Notice that F(Z,t) = 0 on J,{2 so only regions

1nter10r to 12 are mvolved in the averaging. Specifically, one can estimate

o 1 g
wo(B) < 5 [:—:— | § (78 gl VP Guducs dg]

F([aiVGo)? - 7

~

ﬁ GoF([aij]VF) . ﬁg dy ds

3|8

[W“§We¢

—%S

WE\WQ

F({aij]VG0)2 ' ﬁf,_, dy ds

Ty

a
g S PGy div([ei;]Vur) dy ds do + % { S [cm;o Jdy dsdo

[+ Wa
when F, Gg and the coefficients of Ly and Ly are smooth. The functions
can now approach rough coefficient operators and solutions in Sobolev space
norm of WH2(12).

Tt is easy to see that showing that the following four integrals are bounded

above by ¢(vA)2we(A) will show that wo(E) < e(vA)2wo(A):

WV (GolFl-lay)| - [VF|)(y, 5) dy ds,
Wﬁ\Wa

@ § (Flegll VGol)ly, s) dy ds,
Wa\Wa
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3

(3) |§ § (FGhodiv(leis|Vur))(y, 5) dy ds de,

alW,

@) | (F?Go)(y, s) dyds.

Ws

Certain further identities will be used on (3) so in fact weak convergence
in the Sobolev space is used later.

The main fact for the estimates is that if & < § and (@,s) € & then
L{@Qys) N Wﬁ forms an area which will be contained inside some larger
“cone” R,(@,’s‘) where ((,%) € E. The proof of this fact is an easy applica-
tion of the triangle inequality.

Now, we have

(W= | (GolFi: |4l |VF|)(y,5)dyds
W5\ Wa
< S S Golzg, Toyy, 8°)

A NT(Qs)N{W5\Wa) wo(Ds(y*, 5%))

% |F{y, )| - [V P(y, &) dy ds') dusol(Q, 5)
N

<el 2 J

A j=—00 I(Q,s)N{W3\Wa)NR;

|F| - [VF6(y, ") dy ds’ dwo(@Q, 5)

where the regions R; are as in the proof of the stopping time argument and
are of dimension ~ 277 in the z,, variable and 6(R;, 8,12) ~ 277, |2’ — Qj| <
e(M)r; [t—sg| < c(M)r? where (Qg, s0) is the center of the original Whitney
cube A,. Now from |VF| = |V(us — wo}| € |Vuy| + |[Vug| and Cauchy-
Schwarz the last integral is
1/2
7

S (mws
|Vui|2)l/2dwo(Q,s)

A i=0,1 j=—o0 N(We\Wa)NRy
—n/2+1
x 4 ( §
PO(W. AW )r‘lR

<e 3 [ Re(R)@9( Z 52)1/2

i=0,1 A j=—o0

N 1/2
x( 3 { |Vu£125"“) dwo(Q, 5)

J=r00 T NR;N{(We\Wg)

< e | Na(F)(@, 9[Ss(ua}(@,3) + Na(uo)(@, 5)] dwn(Q, 5) < c(vA)wo(L).
Fa
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Here N is a fixed constant depending on 7 and 3. (@,3‘) denotes a point in
E, and the estimate I'(Q, s) N Wz C I',(Q,3) has been used several times.
(2) and (4) can be bounded similarly by

| c(Na(F)@.9)? + Na(uo)(@,5))" duwo(@, 5) < e(7y))?wo(A)

AN
and finally
@< | 1P 1G] - sl - [Van | dy ds

Wa\Wa

- ([VF|-[Gol - |leigl - 'V |}y, s} dy ds
Ws

+ S (1F|- 1V Gol - [[es]] - [Vual)(y, 5) dy ds.
Wa

The second integral is less than or equal to
N

y >

A j=—00 RyNW3NI{Q,8)

> """’”(iR AT )

j=-oc0 RNW5NT{(Q,9)

(IVF| - |e| - [Vur |}y, 8)8{y, s} " dy ds duwg

(|5w|)2)”2

3!

X S |V |2 6‘“) i duxy

Rynwnr

2 N %2 /2 -~
ML) ) Ra(avF)(@,3)

(
( (RHP(Q) 8(y, s)n+?
(
10

IA
Pt

1/2
x { Ve ? (g, 8) 8y, 8) " dy ds) dwy(Q, 5)
P(QuNWaCT3(B,9)

a?

1/2 N
5n+2) Nﬁ(JVF)Sﬁ(ul)(Ql’S\) dwg(Q,S)

I (Q,s)
5 a(y, 5)2 2/2 1/2 o 1/2
<e{vA) (JSA <1~(§3,5) ‘5(3;,3)”"’2 dy ds) de) (i O)I
< (A wo (D) Pwg( A7 = e(7A) wo(4)

by the Carleson condition for 4®/6"*? which implies that {,(a®/6""?) is
BMO with respect to wg. The other two terms have similar bounds.
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4. A result similar to the one in [CS], Theorem 1, for a “nondoubling”
measure wy found by using L? boundary data can be proved if the boundary
function f is in I?(8D). In fact, one can obtain

w1 (E) wo(B) \'*

e S Aatiew)  ECA@s)
without assuming a center-doubling condition for w;. However, the B re-
sult of Theorem 4 cannot be proved unless both measures wg and wy sat-
isty center-doubling conditions. This condition is true for several parabolic-
type measures: caloric measure associated with 8/8t — A satisfies a center-
doubling condition and so do the measures whose operators 8/8t — L have
coefficients satisfying certain Lipschitz conditions [YH].

Consequently, the theorem in Section 3 holds for all center-doubling
strictly elliptic parabolic-type measures. However, it is a fact that the norm
inequality ||V (wi}llz2(am,dw0) < ellfllz2(6D,dw0) can be proved given a Car-
leson condition using only the doubling property of the measure wq and back-
wards Harnack for Go. The properties needed for the second operator 8/8¢—
L; are that its solutions satisfy Harnack’s inequality and that the “measure”
w%m ) (-) be a well-defined, nonnegative set function. For elliptic operators
Chanillo and Wheeden [CW] give conditions on a weight w(z) so that if

w(z)[Ef < &bY (@)€; < cw(z){£|® then L, = Ezy 1(8/0;)(bi;(x)0/Ox;4)
has solutions that satisfy a scale invariant version of Harnack’s inequality.
For any such operator on a domain where w§ @) (-) is well-defined the following
result is valid:

THEOREM 8. Suppose aly) = SUDgep, u(y) e(x), e(z) = Sup; ; las; () —
bij(z){, and Go(zo;y), the Green’s function for Ly on D, satisfy

1 a(y)*Go(zosv) )”2
sup dy < cgp
for eg sufficiently small. Then wy is absolutely continuous with wy on 8D if
wo @5 a center-doubling measure.

Ly must be assumed to be a strictly elliptic divergence form operator on
D, but Ly can be degenerate as described above.

The same result can be extended to a degenerate parabolic measure
{or set function); in this case the coefficients of ellipticity are assumed to
form measures (w(z,t)dzdt) which compare with Lebesgue measure on ap-
proaching the boundary of the domain, as well as several other conditions
(see [GW]).

An interesting open problem is to determine what kind of condition on
the operators would vield absolute continuity of the associated measures
when one of the operators is nonlinear.
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