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On multilinear mappings attaining their norms
by
MARIA D. ACOSTA (Granada)

Abstract. We show, for any Banach spaces X and ¥, the denseness of the set of
bilinear forms on X x ¥ whose third Arens transpose attains its norm. We also prove the
denseness of the set of norm attaining multilinear mappings in the class of multilinear
mappings which are weakly continuous on bounded sets, under some additional agsuInp-
tions on the Banach spaces, and give several examples of classical spaces satisfying these
hypotheses.

1. Introduction. In 1995, R. Aron, C. Finet and E. Werner proved a
positive result on the denseness of the set of norm attaining multilinear forms
on a space with the Radon-Nikodym property [5]. Afterwards, Y. S. Choi
and S. G. Kim also got some positive results on this topic [9]. The frst
counterexample of a Banach space X for which the set of norm attaining
bilinear forms is not dense in the space of all continuous bilinear forms
was given by M. D. Acosta, F. Aguirre and R. Pay4 [1]. Y. S. Choi proved
that the classical space L;[0, 1] also fails this property [8]. The doctoral
dissertation by F. Aguirre [2] contains several positive results in this line
for multilinear forms or polynomials. For instance, if for some Banach space
X, the set A("™X) (the set of (n + 1)-linear forms attaining their norms)
is dense in L("*'X) (the set of (n + 1)-linear and continuous forms on X),
then the same also happens for n-linear forms. After that, it was proved
that the situation really gets worse when the number of variables increases.
In fact, M. Jiménez-Sevilla and R. Pay4 provided, for each natural number
7, a Banach space X such that the set of norm attaining n-linear forms on
X s dense in the space of all n-linear forms, but such that this does not
hold for (n - 1)-linear forms [16].

In this paper, we follow the idea, already used for the analogous problem
with operators [19, 23], of going to the sccond dual by transposing the
bilinear form and get a positive result without any restrictions on the Banach
spaces involved, In this way, by using a perturbed optimization principle due
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to R. A. Poliquin and V. Zizler [22], we prove the denseness of the set of
bilinear forms whose third Arens transpose attains its norm. This statement
is the parallel version of Lindenstrauss’ result for operators [19].

Also, for some spaces with “enough norm-one projections”, we show
that multilinear forms (resp. symmetric multilinear forms) which are weakly
continuous on bounded sets can be approximated by norm attaining (resp.
syrumetric) multilinear forms of finite type. This can be applied, for instance,
to spaces like C(K) (K a compact and Hausdorff topological space) and
Li(p), for any measure p. Let us observe that under this assumption a
general result for all multilinear forms does not hold (see [8]). Also, the
result we get here extends a previous one [16, Proposition 2.10] for spaces
with shrinking and monotone basis, since under the conditions assumed
by these authors all multilinear forms are weakly continuous on bounded
sets. By using similar arguments, we will get analogous results for those
polynomials with weakly continuous restrictions to bounded sets. Finally, we
will check that if a Banach space X has the Dunford-Pettis property, By
is w*-sequentially compact and Y is reflexive, then any weakly continuous
bilinear form on X x Y is such that its third Arens transpose attains its
norm.

2. The resulis. Before showing the first result, let us recall the definition
of the transpose of a bilinear mapping, due to R. Arens [3, 4]. For a bilinear
continuous mapping

p: X xY —2
the first (right) Arens transpose of ¢, defined by ¢ : Z* x X — Y, is the
bilinear mapping given by
¢* (2", z)(y) = 2" plz, ).
Clearly, ¢* is continuous, [|¢*] = (4[| and, by the Hahn-Banach theorem, if
$ attains its norm then so does ¢*. Hence, the situation seems to be more

promising when one increases the order of the transpose and the next result
ghows that it is so.

THEOREM 1. Let X and Y be Banoch spaces. Then the set of bilinear
and continuous forms on X X Y such that the third Arens lranspose aitains
its norm is dense in L{*(X x Y)), the space of all continuous bilinear forms
on X xY.

Proof. Let ¢ be a bilinear form on X x Y such that |¢ = 1 and
0 < e < 1/2. We define the mapping f : By« — R by

F™) = ey DI (y™ € Byw),
which is w*-lower semicontinuous. So, by applying [22, Theorem 1], there is
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an element ¥* € Y™ with ||y*|| < £ such that

o s (74 Rey () = F7)+ Re (4"

g l<
for some y5* € By« (Re will denote the real part). Since it is clearly true
that f(y**) = f(Ay**) for any scalar A with |A| = 1, it follows that in fact
we get

(2) Reyg*(y*) = lyg" (v*)]

and by the same argument we also have

(3) b‘llp (j:(y**) + RC y**(ly* = sl 7 ek H e *
e ) 1|ywﬁ)51f(‘j )+ ()

On the other hand, the choice of & and (1) give us f(y5*) # 0 and we set
. ¢tt (,yse*, 1)

=g € X*.
”{/)Lt(yo :]-)H

Now define
@(z,y) = d{z,y) + 2" (@)y"(v) ((z,y) € X xY).
Then ¥ is a continuous bilinear form on X x Y such that
1% — ol = [l="]| |y*f = "l < &

and we just need to check that W attains its norm. For this purpose, choose
an element x5 € Bx«« such that

5t (6 (W5 1) + 55" (")) = 16" (5™, 1) + w5* (v™) 2" |-

We will show that #** attains its norm at (z3*,y3*); on the one hand,
the choice of zf* gives us

(4) P (g 90") = " (T (g™, 1))
=g (¢ W8, 1) +up" (v*)2*) = 19" (55", 1) + w3 ™ (v™)= .
On t.ht.a other hand, if #** & Byw and y** € By, again by using the
definition of ¥ and the Arens transpose we get
!pttt:(m**, yw) — :2’:”(!17“‘(.?]**, l)) - w**(qb“"(y**, 1) mn y**(y*)m*)
< ™y, 1) - ™ ()|
< N DI 1y ™) (by (3), (1) and (2))
< e (we™, DI -+ g™ ()]
1, ok Aok f tt(yw7 1-)
0,1 + 15 ) S|
= 6" (5", 1) + 45" (v )™ || = T (27", 9457,
SO [|#H|| = Pt (g3 o) as we wanted to show. m
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REMARK 2. Equation (4) gives us

1] = 29 (g, ) = o3 (@ (57, 1) < 1w D <

So, W' attains its norm at (y3*, 1) and by using the usual isometric identi-
fication of £(2X x Y) and L{X,Y*) (bounded linear operators from X to
Y™*) given by
¥(z,y) = T(z)(y),

the first Arens transpose of ¥ is essentially the operator T. So, P, z)(y) =
T(x)(y). Hence, if ¥* attains its norm, so also does T. Since it is not true
in general that the norm attaining operators from a Banach space X to its
dual form a dense set in the space L(X, X *) (see [1, Theorem 6]), the best
we can say, for any Banach spaces, is that the set

{# e L(3(X x Y)): ¥** attains its norm}
is dense in L(3(X x Y7)).

The result we just showed is the version for bilinear forms of the theo-
rem by J. Lindenstrauss who proved the denseness of the set of operators
whose second adjoints attain their norms (see [19, Theorem 1] and also [23,
Proposition 4}).

Now we will consider spaces with lots of norm ene projections and the
special class of multilinear mappings which are weakly continuous when
restricted to bounded sets. If Xy,..., Xn,Y are Banach spaces, we will
denote by WLV (X1 x ... x Xy);¥) the space of N-linear mappings on
Xy %... %X Xn with values in ¥ that are weakly continuous on bounded sets,
i.e., the images of bounded and weakly convergent nets are norm convergent;
if all the spaces X; are equal to X, then WL(VX;Y) will be the subset of
symmetric mappings of WL({N X; V). We get a positive result for symmetric
multilinear forms, a case in which very little is known.

THEOREM 3. Let N > 2 be a naturel number and for each i < N,
assume that X; is o Banach space satisfying the following condition: For
every finite-dimensional space F, every operator T : X; — F and £ > 0,
there is ¢ morm one projection P X; — X; with finite-dimensional range
such that ||T° — T'P| < e. Then, for any Banach space Y, the sei

{6 e WL (X1 % ... x Xn);Y) : ¢ attains i norn}

is norm dense in the space WL(N (X1 x ... x Xy} Y) and the parallel as-
sertion also holds for the subset of symmetric mappings in WC,(NX;¥).

Proof. Fix a multilinear mapping ¢ : X7 X ... X Xy — Y and assumne
that ¢ is weakly continuous on bounded sets. Now, by using the proof of [6,
Theorem 2.9] (or {12, Theorem 2.2.1] for multilinear forms), the associated
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operator
T Xy = WL Xy % ... x Xx)Y)
given by
Ty(z)(za, ..., 2x) = ¢(z1,...,2an)  (z: € Xy, 1 <i < N)
is compact.

Now, the assumption on X, implies that X} has the 1-metric approxi-
mation property (see [17, Lemma 3.1] and for instance [20, Theorem 1.e.5]),
and so, for any £ > 0, there is a finite rank operator S such that

€
S - € ——.
15 =Tl < 55
By the hypothesis on X1 again, there is a norm one projection P; on X3
with finite rank so that
€
81— 5P € —.
181 = $1P. € o5
Thus far, we have a multilinear mapping (associated with Sy)
¢1:X1X...XXN—>Y
given by
d1(@1,. .- 2N) = Sizn) (2, .., an) (@ € X;, £ < N).
Note also that, since Sy is a finite rank operator whose values are weakly
continuous mappings on bounded sets, it follows that ¢ is again weakly
continuous on bounded sets. Now, by writing the conditions satisfied by the
operator 51 in terms of ¢, we get

g
(1) l[p1 — 9l < N
and
lps(21,.. s 2n) — Gu(Przy, o, ..., x|
= ||(S1z1 = S1Piza (g, -, 2N )| < 5%“351“ ozl

Now, we can repeat the same procedure using the multilinear mapping ¢4
instead of ¢, and the compactness of the operator

Ty Xp — WLV X x Xy x ... x Xy);Y)
associated with ¢q, that is,
TZ(mZ)(ml:a:E: vy iI?N) = (/)l(mlzwﬂwméﬁ ey .‘L'N) (:33'1; = X’in 1 S T 5 N)
Now, after N gteps, we get, for any ¢ < N, a norm one projection
B Xy — X with flnite-dimensional range and an N-linear mapping
¢ € WL(Xq x ... x Xn;Y) such that

(2) g =il S 5% (SN =1)
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and
(3)  lesler,-- - an) — ¢i(z1,. -, Pz zn)l € 2N||551|| Nzl

Finally, the multilinear mapping given by
!p(.’ﬂl, . ..,ZN) = qu(Plxl, e ,PN:L'N) ((fL’i, . ..,CL‘N) e X7 x... X XN)

attains its norm, since P;(Bx,) = Bp,(x,) foreachi < N and each projection
P; has finite rank, '

Now, we will show that ||¢ — ¥|| < &; if we fix ; € Bx, (i <N), we
clearly have

”(45 - Lp)(mlz LR IJ\v’)”

= ||p(z1,. .., o5) — dn(Pr21, ..., Pray)||

- "(¢_¢1)(m1,...,mN)

N
"}"qui[(})lwl:-")Piwlmi—lam’i:"':mN)
i=1
—(Piz1, ..., Pizi, Tig1,. .5 2n)]
+Z ~ @ip1)(Prxy, - ,Pimi,$¢+1a---=iﬂN)”
= ||¢— ¢1E|+Z[|¢z Pyzy, ... P11, iy TN)
=1
—(Puxy, ..., Py Zapa, - m)]|l
N-1
+ Z s — il
=1
£
— - 1y— by (1), (3 d (2
<DV (by (1), (3) and ()
—e,

as we wanted to show.

If the multilinear mapping ¢ fixed at the beginning of the proof is also
symmetric we proceed as before and get the multilinear mapping ¥ satisfying
|¢ — &|| < €. Now, consider the partial operators R; : X — WLV "1X;Y)
associated with ¥, given by

Ri(mi)(ml,...,:vi_l,:ci.l.l,... ,fL‘N) = !p(l‘l,.. .,IL‘N) (ZL‘{ S X)

Since R;P; = R;, the operator R : X - @;11 WLE1X,Y) given by
Rx = (Riz,...,Rxnt) is also a finite rank operator, hence there exists a
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norm one projection P on X with finite rank so that |[R — RP|| < £/N.
Since we can consider the maximum norm in the finite sum, this clearly
implies that

|7 — B:P|| S /N (1<4i<N).
Now, if we define

' (x1,...,0n8) =F(Px1,..., Pry),

then ¥’ is weakly continuous on bounded sets. With the same kind of trick
we did for the previous case, it is easily checked that

'~ <e so o—w| <2,

and finally the symmetrization ¥ of ¥’ is the multilinear mapping we were
looking for. It is clear that it attains its norm since

Vi(x1,...,en) =P Pr1,...,Pzyn) (m€X)

Let us note that, as a consequence of the polarization identity, the sym-
metric N-lincar mapping ¢ associated with a polynomial on X with weakly
continuous restrictions to bounded sets is also weakly continuous. So, by
using the same proof as in the symmetric case we also get the analogous
result for polynomials.

ProrPoOSITION 4. Let X be a Banach space such that for every finite-
dimensionel space F, every operator T : X — F and any ¢ > 0, there
is a finite rank and norm one projection P on X with |[T — TP| < e.
Then, for any N > 2 and any Banach space Y, the set of norm attaining
N-homogeneous polynomials which are weakly continuous on bounded sets
is dense in the space of N-homogeneous polynomials from X to Y which are
weakly continuous on bounded sets.

Now, we will try to exhibit “classical” Banach spaces for which the pre-
vious results can be applied.

COROLLARY 5. For N > 2 and 1 < N, let X; be a Banach space of one
of the following fypes:

(a) A space with a shrinking and monotone finite-dimensional decompo-
sition,

(b) Co(L), for some locally compact and Hausdorff topological space L.

(c) Lp(ss), where w is a finite measure and 1 < p < co.

Then the subset of the norm attaining multilinear mappings which are weakly
continuous on bounded sets is dense in WL(N (X1 x ... x X§);Y), for any
Banach space Y. If all the spaces X coincide, also the set of symmetric
multilinear mappings attaining their norms is dense in WL (N X;Y) and
the analogous statement also holds for polynomials weokly conlinuous on
bounded sets.
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Proof. If X has a shrinking and monotone finite-dimensional decompo-
sition {X,}, then for any finite set a7,...,%q in X*, and for any £ > 0, we
can choose m large enough so that

| Prai — il <,

where {Py} is the sequence of projections associated with {X,}. Mono-
tonicity gives us ||Pn|| < 1, so X satisfies the assumption of Theorem 3 or
Proposition 4 (see [17, Lemma 3.1]). Also Cp(L) and Lp(y) share the same
property (see [17, Proposition 3.2]). =

As we mentioned in the introduction Ly [0, 1} is a space not satisfying the
denseness of the norm attaining bilinear forms (or polynomials), so, for the
spaces considered in Theorem 3 or Proposition 4, only results in this line for
concrete classes of multilinear mappings or polynomials can be obtained.

Sometimes the space WL(N (X1 X ... x Xn);Y) coincides with the set
of all continnous N-linear forms; this is the case for a space with property
S, for some p > N (see [13, Theorem 2.5] and [11, §2, Lemma}), so Cerol-
lary 5 generalizes Proposition 2.10 of [16]. More generally, if each space X;
has separable dual, then there are some criteria which guarantee that the
coincidence WL = £ holds, in terms of the Gonzalo—~Jaramillo indices (see
[11, §2, Lemma)] and {13, Examples 1.3 and Theorem 2.5|). For instance, this
happens for X; = Xy = ¢g, X5 =4, for 1 <p < o0 and ¥ = K (the scalar
field), so the set of norm attaining 3-linear mappings on co x cg x4, is dense in
L(*(eg % g X £p)). For a survey where examples of spaces for which the coin-
cidence WL = L holds see [15]. If K is dispersed, A. Pelezyiski proved that
all the multilinear forms on C(K) are weakly continuous [21, Corollary 4.4].
D. Leung provided an exampie of a space with a monotone shrinking basis
and withont the Dunford-Pettis property satisfying the above-mentioned
coincidence; this space is also hereditarily cg, so the known results cannot
be applied to it [18, Example 13].

To finish, similar ideas to those used by J. M. Baker in [7] for norm
attaining operators can also be applied to the questions we are dealing with.
Certain isomorphic assumptions on the spaces allow us to strengthen the
assertion of Theorem 1. Before stating this, let us recall that a Banach space
X has the Dunford—Pettis property if for every Banach space Y, any weakly
compact operator T : X ~+ ¥ maps weakly Cauchy sequences into strongly
Cauchy sequences (see [14, Définition 1.2.2] and [10, Theorem, p. 177}).
A. Grothendieck showed that the spaces C(K) and L () share this property
[14, Théoréme 1.3.1], so these results are also related to Corollary 5.

PRrOPOSITION 6. Let X be o Banach space for which Bx-+ is w*-sequen-
tially compact. Then
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(i) If Y is a Banach space, then any bilinear form ¢ on X x Y which
is weakly continuous on bounded sets is such that o™ attains its norm. The
same result also holds for the Aron-Berner extension to X** of o polynomial
on X which is weakly continuous on bounded sets.

(i) If X has the Dunford-Pettis property and Y is reflexive, then all the
bilinear forms ¢ on X X ¥ are such that " attains its norm on X** x Y.

Proof Let ¢ : X x ¥ —~ K he a bilincar form and consider the corre-
sponding operator T : X — Y™ given hy

T()y) =d(zy) (zeX, yey)
Choose a sequence {z,} in By such that
[Tznll = 171 = ll¢]-

Passing to a subsequence we can assume that {z,} converges in the w*-
topology of X** to an element z** € Bx... If we are assuming (i) then ¢
is weakly continuocus on bounded sets, so T° is compact [6, Theorem 2.9].
Now, since {2} is weakly Cauchy, either of the hypotheses implies that the
image of a subsequence under 7" is norm convergent to some y* € Y*. Again
we asswme that this happens to {2, }:

{[T2n —y*||} — 0.

On the other hand, since {z,} converges to z** in the w*-topology of X **
it follows that {T'z,} converges to T**z** in the w*-topology of Y*** so
T**z*™ = y*. Now, we choose a sequence {yn} in By such that

{Tan(yn)} = 4

and in view of the Banach—Alaoglu Theorem, there is a w*-cluster point y**
of {y,} in Y**. Consider the inequality

1T (yn) = T (y™)
S |T:17'n (?,’n) - T**m**(yn)' -+ IT**.'L'** (yn) . T**m**(y**)l
SN Ten = T |+ v (g — ™).

By using the fact that y**(y*) is a cluster point of {y*(y,)} and the norm
convergence of {1, } to T a**, we see that also {T'2, (yn)} = T 2** (y**)
and [T™*x**(y**)| = ||¢||. The definition of Arens transposec is such that
THg**(y**) = ¢t (a*, y**), so ¢¥* attains its norm at (2**,y*).

The result for polynomials can be obtained with an identical argument,
taking at the beginning y, = ,, for ecach n, and using the fact that
multilinear forms which are weakly continuous on bounded sets extend
w*-continuously on bounded sets to mappings on the bidual [12, Theo-
rem 2.2.1], w



164

(14]
18]
[16]

(17}
18]

[19]
{20]
(21]

[22]

M. D. Acosta

References

M. D. Acosta, F. J. Aguirre and R. Pay4, There 45 no bilinear Bishop—Phelps
Theorem, Istael J. Math. 93 (1996), 221-228.

F. Aguirre, Algunos problemas de eptimizacidn en dimensidn infinite: aplicactones
lineales y multikineales que alcenzan su novina, doctoral dissertation, University of
Granada, 1996.

R. Arens, Operations induced in function classes, Monatsh. Math. 55 (1951), 1-19.
—, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
R. M. Aron, C. Finet and E. Werner, Some remarks on norm-atiaining n-linear
forms, in: Function Spaces, K. Jarosz (ed.), Lecture Notes in Pure and Apph, Math.
172, Marcel Delker, New York, 1995, 19-28.

R. M. Aron, C. Hervés and M. Valdivia, Weakiy continuous mappings on Ba-
nach spaces, J. Funct. Anal. 52 {1883), 180-204.

1. M. Baker, A note on compaet operators which attain their norm, Pacific J. Math.
82 (1979}, 319-321.

Y. 8. Choi, Norm attaining bilinear forms on Ly[0,1], J. Math. Anal. Appl. 211
(1997), 295-300.

Y. 8. Choi and S. G. Kim, Norm or numerical radius attaining mulfilinear map-
pings and polynomials, J. London Math. Soc. 54 (1896), 135-147.

J. Diestel and J. . Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math.
Soc., Providence, R.I., 1077.

V. Dimant and I. Zalduendo, Bases in spaces of multilinear forms over Banach
spaces, J. Math. Anal. Appl. 200 (1998), 548-566.

T. W. Gamelin, Anclytic functions on Banach spaces, in: Complex Potential The-
ory, P. M. Gauthier and G. Sabidussi {eds.}, Kluwer, 1994, 187-233.

R. Gonzalo and J. Jaramille, Compact polynomials between Banach spoces, Ex-
tracta Math. & (1993}, 42-48.

A. Grothendieck, Sur les applications lindaires fuiblement compactes d’espaces
du type C{K), Canad. J. Math. 5 (1953), 129-173.

J. Gutierrez, J. Jaramillo and 1. G. Llavona, Polynomials and geometry of
Banach spaces, Extracta Math. 10 (1895), 79-114.

M. Jiménez Sevilla and R. Pay3a, Norm atteining muliilinear forms and poly-
nomials on preduals of Loreniz sequence spaces, Studia Math. 127 (1998), 99-112.

J. Johnson and J. Wolfe, Norm attaining operators, ibid. 65 (1979), 7--19.

D. Leung, Uniform convergence of operators and Grothendieck spaces with the
Dunford-Pettis property, Math. Z. 197 {1988}, 21-32.

J.Lindenstrauss, On operators which attoin their norm, Israel J. Math. 1 (1963),
135-148.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence Spaces,
Springer, Berlin, 1977,

A. Pelezyniski, A property of multilinear operations, Studia Math. 16 (1957),
173-182.

R. A. Poliguin and V. Zizler, Optimization of convex functions on w™-conves
sets, Manuscripta Math. 68 (1990), 249-270.

icm

23]

Multilinear mappings 165

V. Zizler, On some extremal problems in Banach spaces, Math. Scand. 32 (1973)
214-224. 7

Departamento de Andlisis Matemdatico
Facultad de Ciencias

Universidad de Granada.

18071 Granada, Spain

E-mail: dacosta@goliat.ugr.es

Received September 22, 1997 (3963)
Rewvised version March 8, 1998



