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Continuity of the Drazin inverse II

by
J.J, KOLIHA (Melbowne, Vic) and V. RAKOCEVIC (Nig)

Abstract. We study the continuity of the generalized Drazin inverse for elements of
Banach algebras and bounded linear operators on Banach spaces. This work extends the
results ohtained by the second author on the conventional Drazin inverse.

1. Introduction and preliminaries. The continuity properties of the
conventional Drazin inverse were investigated by Campbell and Meyer [1, 2]
for matrices, and by Rakogevié [13] for bounded linear operators and ele-
ments of Banach algebras. In the present paper we investigate the continuity
of the generalized Drazin inverse introduced recently by Koliha [9]. We start
in the Banach algebra setting, exploring analogies between the continuity of
the ordinary inverse and the continuity of the (generalized) Drazin inverse,
then move on to bounded linear operators.

We denote by A a unital Banach algebra with unit e. For an element
a € A we denote by g{a), o(a) and r{a) the resolvent set, the spectrum and
the spectral radius of a, respectively. The set of all isolated and accumula-
tion spectral points of a is denoted by isoc{a} and acco(a), respectively. If
X € o(a), then R(A;a) = (Ae—a)~" is the resolvent of a. By Inv(A), qNil(A)
and Idem{A) we denote the sets of all invertible, quasinilpotent and idem-
potent elements of A, respectively. For basic facts about Banach algebras
see {12, 15].

DerovurioN 1.1, Let a € A. Following [9], we say that « is Drazin
snverttble if there exists b € A such that

(L.1) ab="ba, ab®="b, o —a e gNil(4).

Such a b, if it exigts, is unique [9); it is called the generalized Dragzin inverse
of a, and will be denoted by o¥. If @b — o is in fact nilpotent, then aP
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is the conventional Drazin inverse of a (see [2, 3, 4, §]). The szi.n index
i(a) of a is equal to 0 if @ € Inv(A), to k if a?b — o is nilpotent of index k&
and a & Inv(A), otherwise i(a) = co. From this point on we use the. term
“Dyazin inverse” instead of “generalized Drazin inverse”. This extension of
the Drazin inverse was anticipated by Harte in [6].

The basic existence results for Drazin inverse are summarized in the
following lemmna ([9, Theorem 4.2], [10, Theorem 1.2]).

LEMMA 1.2. Let a € A. The following conditions on a are equivalent.

(i) a is Drazin invertible.
(i) 0 ¢ acca(a).
(iil) There is p € Idem(A) commuting with a such that ap € gNil(A) and
a +p € Inv(A). .

If (iii) is satisfied, then the Drazin inverse of a is given by

(1.2) aP = (a +p)"'(e - p).
The element p from the preceding lemma is given by
(1.3) p=e—a’a.

It follows that p = 0 if 0 € g(a); if 0 € iso o'(a), then p is the spectral idem-
potent of a corresponding to 0. From (1.2) we can deduce a representation
in terms of the holomorphic calculus for a (see (9, Theorem 4.4]), that is,

(1.4) a® = f(a),
where f is a function holomorphic in an open neighbourhood of o(a) such
that f(A) = A~? in a neighbourhood of o(a)\{0}, and f(A) = 0 in a neigh-
bourhood of 0.
The following result will be needed in the next section. For p € C
and K € C we define d(p, K) = inf {IA — | : A € K} if K # () and
LeMMA 1.3. Lef a be a Drazin invertible element of the Banach algebra
A and let r{a) > 0. Then

(1.5) d(0, 0 (a)\{0}) = (r(e®N~".
Proof. In accordance with (1.4) write a® = f(a) for a suitable holo-
morphic function f. For each A € o{a)\{0},
AT = £ < (S (a)) = r(a"),

that is, [A| = (r(eP))71, and d4{0,a(a)\{0}) = (r(aP))"1. By the spectral
mapping theorem and by the compactness of ¢(a)\{0} there is 4 € o(a)\{0}
such that |u|~t = r(aP), that is, |u| = (r(aP))~%. This proves {1.5).
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2. The continuity results for the Drazin ibverse in Banach al-
gebras. We start by reviewing two standard results on the continuity of
the ordinary inverse in a Banach algebra, formulated below as Theorems A
and B.

THEOREM A. If a is an invertible element of the Banach algebra A and
if an — a, then a,, are invertible for all sufficiently large n, and ;! — a™?.

An analoguc of Theorem A is not available for the Drazin inverse, mainly
because the set of all Drazin invertible elements in a Banach algebra need
not be an open set [9, Example 8.4]; in such a situation we have to assume
not only the Drazin invertibility of a, but of the a, as well. Even under
this stronger assumption, the mere couvergence a, — @ is not sufficient to

enforce af) — aP.

ExampLE 2.1, Let A be the Banach algebra of all complex-valued func-
tions continuous on the set [0, 1]U]2, 3], equipped with the supremum norm.
Define o and an by a(t) = 0if ¢ € [0,1}, a(t) =t if t € [2, 3}, an(t) = t/n if
t€[0,1] and a,{t) =tift €[2,3], n = 1,2,... Then a is Drazin invertible
with o defined by aP(t) = 0if ¢ € [0,1], aP(¢) = 1/t if £ & [2,3]. However,
none of the a, is Drazin invertible as o{an,) = [0,1/n] and 0 € acco(a,)
(see Lemma 1.2).

ExXaMPLE 2.2. In a Banach algebra A let o be nilpotent of index 3,
and therefore Drazin invertible with ¢P = 0. Bach e, = a + ¢/n is Drazin,
invertible with a} = (a+e/n)™* = ne — n?a + n®a?. We have a, — a, but
al # aP as the sequence |[0Y| is unbounded. This phenomenon is already

in evidence for matrices {see [2, Example 10.7.4}).

THEOREM B. If an, are invertible elements of the Banach algebra A such
that an — a and that the norms |la; | are bounded, then a is invertible and
a=t — g1

- .
Since the set of all Drazin invertible elements need not be open, we also
have to assume the Drazin hvertibility of ¢ in the setting of Theorem B.
This is demonstrated in the following example.

ExaMmrLE 2.3 (based on Rickart [15, p. 282]). There is a sequence
(a,) of Drazin invertible elements of a Banach algebra A such that a, — a,
(a®) converges, yet the limit @ is not Dragzin invertible: Let A be the
Banach algebra of all hounded linear operators on the space £2. We denote
by ey, eg,... the standard Schauder basis of £2. Define a, = exp{—km),
where m = 28m (21, + 1) is the (unique) factorization of the positive integer
m. If k is an arbitrary positive integer, set

Tem = mema1, Them =Tem £k % kp, Them=0ik="Fk,
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(m = 1,2,...); this defines elements T,Tx € Afor k= 1,2,... such that
| T — T{ — 0. Each T} is nilpotent, and consequently Drazin invertible with
TP = 0; hence, Ty converges to 0. However, 0 is an accumulation point of
o(T), which means that T is not Drazin invertible (Lemma 1.2).

The main result on the continuity of the Drazin inverse in a Banach
algebra is expressed in the following analogue of Thecrem B. In the case
of the conventional Drazin inverse the equivalence of conditions (2.1), (2.2)
and (2.6) was proved by Rakogevi¢ {13]. The proof given here uses only Ba-
nach algebra arguments while the proofs in [13] are based on operator theory
techniques, in particular on the concept of the gap between subspaces of X,

For notational convenience we will write

Ar={D:0< M <r}
for the punctured disc with centre 0 and radius r > 0.

THEOREM 2.4. Let a,, and a be Druzin invertible elements of the Banach
algebra A such that an — a, and let p, and p be the spectral projections of
a,, and o corresponding to 0. Then the following conditions are equivalent:
(2.1)  ab —aP,

(22)  sup a2 < oo,
n
(2.3)  supr(al) < oo,

(2.4) i%f d{0,0(a, \{0}) > 0,

s a)

(2.5)  there is r > 0 such that 4, C g(a) N ﬂ o(an),
n=1

(2.6) ala, — ala,

(2.7 pn—p.

Proof The implications (2.1)=(2.2)=-(2.3)=(2.4)=(2.5) follow easily
when we take into account Lemma 1.3, remembering that d(0, c{a,)\{0})
= oo if r{a,) = 0. '

(2.5)=(2.7). Let o = {X: |Al < &r}, 20 = {X: |2 > Zr}, and let
f be the holomorphic function on {2 U £2; such that f(X) = 1 on {2y and
F(X) =0 on {2;. Since {2; contains the sets o(a)\{0} and o(a,)\{0} for all
n, we have f(a) = p and f(a,) = pn for all n. By [12, Theorem 3.3.7(i}},
flan) — f(a), and (2.7) is proved.

(2.7)(2.6) since p, = € — ala, and p = e —aPa.

(2.7)=(2.1). If (2.7) holds, then a, + p, — a+ p with a + p & Inv(A)
(see Lemma 1.2), and hence {an, + pn)™t — (a+p)~! by Theorem A. By
Lemma 1.2, a2 = (an +pn) "t (e —pn) — (a +p)~ (e — p) = a® as n — oo,
and (2.1) holds.
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3. Preliminaries on bounded linear operators. We denote by L{X)
the Banach algebra of all bounded linear operators acting on the complex
Banach space X with the usual operator norm ||T'|| = sup{||Tz|| : ||z|| = 1}
The null space and the range of T € L(X) will be denoted by N(T) and
R(T), respectively. Following Kato [7, p. 197], for any closed subspaces M,
N of X we define the gap (or opening) between M and N by

gap(M, N) = max{6(M, N), §(N, M)},
where
(M, N) = sup{dist(u, N) :u € M, |Ju| =1}

Alternative notation for the gap is E(M , V) (see [7]) or 8(M, N) (see [5, 11]).
The following lemma, needed in the sequel, generalizes results obtained
by Rakoevié [14, Lemma 2.1 and 2.2] for Hermitian projections.

LEMma 3.1. Let P,Q € L(X) be projections. Then.

(3.1) gap(R(Q), R(P)) < max{[|(I - Q)P|, I - P)@ll},
(3.2) gap(N(Q), N(P)) < max{||Q(I - P)|, || P{I - Q)|]},
(3.3) I(I - Pl < |II - Plll|Qllgap(R(Q), R(P)),
(3.4) [P(I = Q) < |1 PN — Qllgap{N(Q), N(P)).

Proof. To obtain (3.1), let w € R(P) with |jul| = 1. Then
dist(u, R(Q)) = Inf |[u - @z < lu—Qull = [T - Q)|

= (T - @) Puf < |{I - Q)P
Consequently, ¢{R(P),R(Q)) < |(I - @)P|. A symmetrical argument
shows that 6(R{Q), R{P)) < ||(I — P)@|, and (3.1) follows. Inequality (3.2)
is (obtain)ed from (3.1) on observing that N(P) = R(I — P} and N{(Q) =
R(I-Q).
Let w € R(P) with |[u|| = 1. Then, for every z € X, (I — P)Qr =
(I — P)(Q@z — w), which implies
(I = P)Qz|| < |[(I — P)||dist{Qux, R{F))
< I~ Pllgap(R(Q). R(P)) Q=]
< W = Pllgap(R(Q), R(P) Q|5
hence (3.3) follows. Observing that N{(P) = R(I -~ P) and N(Q) = R(I-@Q),
we deduce (3.4) from (3.3).
COROLLARY 3.2, Let P,Q € L(X) be commuting projections. Then
(3.5) 1P — @l < (P, Q)gap(R(Q), R(P)),
(3.6) 1P =@l £ (P, Q)gap(N(Q), N(P)),
where a(P, Q) = |1 = PI|Q|| + [P - CIl-
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Proof. By [7, Theorem IV.2.9] we deduce that gap{N(T™*), N(S*)) =
gap(R(T), R(8)) for any T, S € L(X). (See also [L1, p. 269].) Hence we can
replace P, @ in (3.4) by P*,Q* to obtain
37 = QP| =PI - Q" <Pl - Qlleap(R(Q), B(P))-

If PQ = QP, then |[P— Q[ < |(I~ P)Q| +|I(I - @)P], and (3.5) follows
from (3.3) and (3.7). Inequality (3.6) follows from (3.5) by duality.

The following result characterizes the convergence of projections in L(X)
in terms of the gap convergence of null spaces and ranges.

LEMMA 3.3. If P and P, are projections in L(X), then the following
conditions are equivalent:
@) [|1Pn— Pl =0,
(ii) gap(R(P.), R(P)) — 0 and gap(N(P,), N(P)) — 0.
If PP = PP, for oll sufficiently large n, then either of the conditions in
(i) implies (1).
Proof. (i)=(ii) follows from (3.1) and (3.2) with @ = F;.
()= (i). From Py — P| < (I - P)Pul + |P(Z = Pa)ll, (33) and (3.4)
with § = P, we obtain
(38) [Pn— Pl
< p(Pa){llI — Pligap(R(Fr), R(P)) + | Pllgap(N{Fy), N(P))},
where p(P,) = max{||P,[|, |I — Py|[}. The result will follow when we show
that w(PF,) is bounded.
Since p(P,) < || Pu|l+1, we can rewrite (3.8) as [P — P|| < (|| Pall+1)en,
where £, > 0 and £, — 0. Then
1 Pnll < [P+ 1P = Pl < [P + ([|Pa]] + 1)en,
(1 —en)|| Prll < [|P]| + £n,
[ Pell < (L—en) ' (IP| + &) < 2(IP[+1) 0 <en <1/2.
The statement about commuting projections follows from Corollary 3.2.
The noncommutative part of the preceding lemma is implicit in the proof
of [11, Theorem 3] under the additional assumption that the projections are
of finite rank.
If T € L(X), we define the reduced minimum modulus v(T) of T by
Y(T) =00 if T"=0 and
(3.9) Y(T) = inf {||Tu|| /dist{u, N (T)) : dist(u, N(T)) > 0}
if T' # 0. We recall that v(T") > 0 if and only if R(T") is closed [7, p. 251].

An operator T' € L(X) is upper semi-Fredholm if v(T) > 0 and the nullity
a{T) = dira N (T} is finite.
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For convenience of the reader we recall the following relations between
the reduced minimum modulus and the gap.

LemMa 3.4 (Markus [11, pp. 268-269]). The following inequalities are
true for any closed range operators A, B € L(X )} provided gap(N(A), N(B))
< 1/2 in (3.10) and gap(R(A), R(B)) < 1/2 in (3.11):

(310) () =) € bl
(31) Y(A) =B < Tl s,
(312)  gap(NV(A), N(B)) < Inax{;(—%)—, ?y“(lB_)}“A — B,
319 gs(RUA)R(B) < max{ 1A= Bl

This leads to the following result on convergence of operators.

LeMMA 3.5 (Markus [11, Theorem 2 and Remark 1]). Suppose that C,,
and C are closed range operators in L(X) such that C, — C. The following
conditions are equivalent:

(3.14) i%fW(Cn) >0,

(3.15) Jim ¥{(Cn) =+(0),
(3.16) gap(R(Cn), R(C)) — 0,
(3.17) gap(N(Ch), N{C)) — 0.

If Cn and C are upper semi-Fredhobn, we have an additional equivalent
condgtion

{3.18) (Fng)(Yn = np)  a(Ch) = a(C).

4. Drazin inverse for bounded linear operators. After we review
some facts about the core-quasinilpotent decompaosition for a Drazin invert-
ible operator [9, Theorcmn 6.4], we will be ready to present the main result
of this section concerning the continuity of the Drazin inverse for bounded
linear operators. Let A € L{X) be Drazin invertible. Then

A = O -+ Q)
where i{(C) < 1, @ is quasinilpotent, and CQ = QC = 0. We call C the
core operator of the Drazin invertible operator A. Since @ is quasinilpotent

and commutes with 4 and C, Al — A is invertible if and only if AT — C' is
invertible; hence

o(A) = a(C).
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Further, by [9, Theorem 5.7], ¢P = AP. The spectral projection. Pof A
corresponding to 0 is also the spectral projection of C corresponding to 0,

and

(4.1) N{(C) = R(P), R(C)=N(P).
Hence C is a closed range operator. From [13, Lemma 2.1] we deduce that
(4.2) ¥(C) < d(0, a(AN{0}).

THEOREM 4.1. Let A,, A € L{X) be Drazin invertible operators such
that A, — A, and let P, and P be the spectral projections of Ap and A
corresponding to 0. In addition, let Cp, and C be the core operators of Ay,
and A. Then the following condifions are equivalent:

(4.3) AD — AP,
(44)  sup[AT]| < oo,
n

(4.5) supr{AP) < oo,
(46)  inf d(0,a(APN{0}) >0,

o0

(4.7) there is v > 0 such that A, C p{A)N ﬂ o(An),
n=1
(48)  ADA, — APA,
(4.9) P, — P,
(410)  gap(R(Pa), R(P)) — 0 and gap(NV(Py), N(P)) = 0,
(4.11)  gap(R(Cy), R(C)) — 0 and gap(N(Cn),N(C)) — 0,
(4.12) Cpn — C and gap(R(Cr), R(C)) — 0,
(4.13) G, — C and gap(N(Cyp), N(C)) — 0,
(419)  +(Ca) = (O),
(4.15) i%f’y(Cn) > 0.

Proof. (4.3)-(4.9) are equivalent by Theorem 2.4.

(4.9)«(4.10) is a consequence of Lemma 3.3.

(4.10)<=(4.11) follows from (4.1).

(4.11)=-(4.12). By the preceding arguments, (4.11) is equivalent to (4.9).
Therefore Cp, = A, (I~ P,) = A(I - P)=C.

(4.12)¢(4.13) holds in view of Lemnma 3.5.

{4.13)=-(4.14) holds also by Lemma 3.5.

{4.14)=-(4.15) is clear.

(4.15)=(4.8) follows in view of (4.2).
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ExaMPLE 4.2. Condition (4.12) or (4.13) in the preceding theorem can-
not be reduced to ), — C alone. For a counterexample set

0 0 0 0 0 0
Ay=Ch= |0 1/n 0|, A=C=|0 0 0
0 0 1 0 0 1
Then A, — A, C,, — C, but
0 0 0
Al =10 n 0| 4 AP = A
0 0 1

NOTE 4.3. From Lemma 3.4 it would appear that, in general, (4.12)
cannot be reduced to gap(R(C,), B(C)) — 0 alone. Similarly, we may expect
that (4.13) cannot be reduced to gap(N(C,), N(C")) — 0 alone. However, at
this stage this remains an open problem, Let us observe that this reduction
is successful in several special cases:

(i) If A, A= AA, for all sufficiently large n—see the commutative part
of Lemma 3.3.

(ii} If 0 is a simple pole for A, and A, then O, = A,, C = A, and
O, — C follows automatically from A, — A.

{iii} If the indices i( A,) are finite and uniformly bounded--see [13, Corol-
lary 3.3].

(iv) If the space X is finite dimensional—a special case of (ili).

If Theorem 4.1 is specialized to operators A,, A of finite Drazin index,
we recover [13, Theorem 2.2]. Note that (4.5), (4.6), and (4.7) are new con-

ditions, even in the case of finite index operators; (4.7) is already implicit
in [13].

5. The finite index Drazin inverse. In this section we focus our
attention on one aspect of the continuity of the finite index Drazin inverse,
namely on a generalization of a theorem due to Campbell and Meyer [2,
Theorem 10.7.1]. Rakodevié [13, Corollary 3.4] gave a somewhat different
generalization of this result.

TuroreM 5.1, Let A,, A € L{X) be Drozin invertible operators such
that A, — A, the indices i(A,) are bounded, ond the spectral projections
P, P of Ay, A corresponding to O are of finite rank. Then AL ~+ AP if and
only if there exists ng such that rank P, = rank P for all n > ng.

Proof. By hypothesis there is an integer p such that p = i(A,) for all
n and p 2> i(A).

First suppose AD — A", According to (4.9), P, — P. Then by Lem-
ma 3.3, gap(R(P,), R{(P)) — 0. By [7, Corollary IV.2.6], dim R(P,) =
dim R(P) whenever gap(R(P,), R(P}) < 1; the result then follows.
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Conversely, assume that there exists ng such that rank P, = rank P for
alln > ng. Let A, =Cp,+ Ny and A=C+N be the core-nilpotent decom-
positions. Then AZ = (Cy - Np)P = CE + NE = CE and AP = (C + N)P =
CP+NP = C?. Hence CF — CP. By |13, Lemma 3.1] applied to Cy, €, we ob-
tain C,, — C. Since i(Cr) < 1 and §(C) < 1, N(C§) = N(Cn) and N(C*) =
N{C) for all k. From (4.1) we get a(Ch) = rank B, = rank P = o(C) for all
n > ng, and by Lemma 3.5 we conclude that gap(N(Cy), N(C)) — 0. The
result then follows from Theorem 4.1.

The preceding theorem provides an alternative route to [13, Coral-
lary 3.4]. More importantly, it implies the main result of Campbell and
Meyer on the continuity of the Drazin inverse for matrices.

THEOREM 5.2 (Campbell and Meyer [2, Theorem 10.7.1]). Let A, and
A be complex d % d matrices such that An, — A. Then AP — AP if and only
if there exists ng such that rank Cy, = rank O for all n > nq, where Cy, and
C are the core matrices of A, and A, respectively.

Proof. Follows from the preceding theorem when we observe that the
index of matrices is bounded by the dimension d and that rank C,, = d —
rank P, and rank C' = d — rank P, where P, and P are the eigenprojections
of A,, and A at 0.
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