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Multipliers of Hardy spaces, quadratic integrals
and Foiag—Williams—Peller operators

by
G. BLOWER (Lancaster)

Abstract. We obtain a sufficient condition on a B{H)-valued function ¢ for the
operator f — Iy f'(5) to be completely bounded on H™ B(H ); the Foiag-Williams—Peller
operator

st n
ro=[§ %]

is then similar to a contraction, We show that if f : D —» B{(H) is a bounded analytic
function for which (1 — r)|§f’(re"'9)||2B(H)rdrd9 and {1 — r)”f”(re*g)||3(mrdrcl9 are Car-

leson measures, then f multiplies (H 14:1)' to itself. Such f form an algebra A, and when
¢' &€ BMO(B(H)), the map f — I, f'(S) is bounded A — B(H?(H), L*(H) & H2(H)).
Thus we construct a functional caleulus for operators of Folag-Williams—Peller type.

1. Introduction. Much work has been done to characterize those
bounded linear operators 7" on Hilbert space H which are similar to con-
tractions; that is, T = SCS&"', where S is invertible and 1Cl sy < 1.
The results of von Neumann [13, p. 3], Paulsen [10] and Pisier [14] may be
summarized in the following:

THEOREM 1.1. An operator T is similar to a contraction if and only if
it is completely polynomially bounded, i.e. there is Cp < oo with

(1.1) [l (T2 caysem, € Crsup{||pse ()] as, | 12| < 1}

for all polynomials [p;n(2)] with n X n matriz coefficients, and all n > 1.
Burther, i is not sufficient that T' be polynomially bounded, where (1.1)
holds merely for all scolar-valued polynomials.

An important test case in achieving this result was the operator consid-
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180 G. Blower

ered by Foiag and Williams in [7], Peller [11] and others 3, 5, 14], namely

(1.2) R, = [%t l;i"} ;

where § : FH? — H? is the right shift operator on Hardy space, with trans-
pose 5%, and I, : H 2, 12 o H? is the Hankel operator represented by the
matrix [$(—(m +1))]mn>0 with respect to the bases {(z™)n>0, (2" )n>0. One
can show that R, is bounded if and only if the symbol @ has ||@||ze /e <
o0, or equivalently, if 575 #(—n)z" is in BMO. Further, Aleksandrov and
Peller have used multipliers of (H')’ to show that the functional calculus
map f — f(R,) is (completely) bounded H* — B(L?) if and only if ¢ (c*)
is in BMO; consequently, R, is similar to a contraction if and only if it is
polynomially bounded [5, Theorem 4.8]. See also {13, Chapter 6].

Here we generalize some of these results to the case in which R, has an
operator-valued symbol function; the example of [14] mentioned in Theo-
rem 1.1 invelves such a . We shall state our main Theorems 1.2 and 1.3
after introducing notation. Their proofs are in Sections 3 and 5 respectively.
Sections 2 and 4 are concerned with closely related results on square func-
tions and multipliers for (H'c').

Henceforth we let ¢ be a strongly measurable L?(df; B{H)) function on
the unit circle 7 with $(0) = 0, extended to define a harmonic function
on the disc ¢(z) = {, P5(0)w(e??)df/(2x) by the Poisson kernel. For any
Banach space X, we denote by HP(X) or HPX the Hardy space of analytic
functions f : D — X with norm || fllge(x) = ||f(rei9)”L3chX. The space
BMO(X) consists of L#(X) functions ¢ on the circle for which the norm

Wlissroce = [BO)lx + sup | 16(e%) — Pvl|x Po(0) oo
zeD 7 ™
is finite. We write 8 = 3/07 and 8 = 8/9z; and A(dz) is planar Lebesgue
measure. (' is a positive constant taking possibly different values in suc-
cessive expressions. We denote by ¢! the space of trace-class operators on
H, and by ¢? the Hilbert-Schmidt ideal. The dual of ¢* is B(H) under the
bilinear pairing {a, b} = trace(ab).

A positive Radon measure u on the unit disc D is said to be a Carleson
measure if there is a constant C.(u) sach that u(R(I)) < Cu(u}|I| for each
subinterval I of [0, 2x], where R(I) is the sector R(I) = {re¥! € D |r >
1 —|I|, 8 € I'} based upon I [8, p. 31].

THEOREM 1.2. Let @ € L2(d0; B(H)) be as above, and suppose that
(1.3) Qay (drdd) = (1 = r)[[@%p(re’®) [ aryrdrdd

defines a Carleson measure on D. Then
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(i) R, is similar to a contraction on
L*(H) = (I*(H) e H*(H)) ® H*(H).
(ii) The operator W, : H*B(H) — B{L*(H)) is bounded, where
. f(8%) I.f1(8)
(1.4) Wy o f = 0 (S)

(ili) Suppose further that %p(e?) is in BMO(B(H)). Then W, extends
to define a bounded linear operator L® B(HY) — B(L?(H)).

(f € H*B(H)).

When ¢ is scalar-valued and anti-analytic, (5, is a Carleson measure
if and only if dp/df is in BMO [8, p. 240]. Thus Theorem 1.2 generalizes
the sufficient condition for complete polynomial boundedness of R, from [3,
Theorem 1; 11, p. 202].

For a B{H)}-valued analytic function f, we introduce measures on D by
(1.5) Qy(drdd) = (1 — )| f'(re’®) |} gryrdrds,
(L6) Ag(drds) = (1= )| (re®)| mrdrds.

THEOREM 1.3. Let A be the space of bounded analytic functions f : D —
B(H) for which the norm
(L) 1Flla = 11y + Cul@s) + Culdg) /2
is finite. Then W, defines a functionol calcwlus map in A:

(1) A is a Bonach algebre under pointwise multiplication;

(i) Wy, : A — B(L?(H)) 4s a bounded linear operator for each o with
dip/df € BMO(B(H)); and

(ii1) W, is a homomorphism on the subalgebra A, of A given by

Ap ={f € Al f(2)p(2) = p(2)f(z), z€ D}.

2. Square functions. For ¢*? on the unit circle, 2 is the non-tangential
approach region {z € D | |z — €*¥| < 2(1 ~ |2|)}. For any Banach space X,
and 1 € p < oo, we let GP(X) be the Banach space of analytic functions
gD — X for which the norm

02 ¢ 1/p
(2.1) loltarxy = llg(O) )| x + {‘ (S‘ g (re®®) |2 r drdﬁ)i'/z -é%}
T Sy

is finite. When X is a Hilbert space, the norm of GP(X) is equivalent to the
norm of HP(X) for 1 < p < 00, by a theorem of Littlewood and Paley. This
equivalence does not hold when X is the trace-class operators; nevertheless,
due to the isomorphism ¢! ~ H & H, we can apply the following principle
of derivations for projective tensor products; cf. [1; 5, Remark 4.11].

ProrosiTion 2.1. Let X end Y be Banach spaces for which:



icm

182 G. Blower

(i) the multiplication map H*(X)® H*(Y) — HY(X RY) is surjective;
and

(i) the formal inclusions H*(X) — G?(X) and H(Y) — G*(Y) are
bounded.

Then the formal inclusion HH(X ®Y) — GH(X 8Y) is bounded.

PROPOSITION 2.2. Punctions from H®B(H) multiply (H'c')' into
(GLe')'; that s, if f € H*B(H) and g € Hcl, then k belongs to G*¢!
where
(2.2) k(z)= | flw)d(w)dw (2€ D).

[0,2]

Proof. We give a detailed proof, for the same method may be used to

prove Proposition 2.1. By Sarason’s factorization theorem [12, p. 62], we can

write g = hyhy where h; € H2¢? has ||hj |20 = |9llazer for j=1,2. Then
fg' = fhiha + fhihl, 50 we can estimate the area integral of k& by

23)  Sk)()? = |||k (re")||%r dr 8
2

2 {{ 11£(re By (re® Yho(re®) | 2ur dr 8
24

2 {1117 (re® o (re® R (re®) |2ar dr d
2y

{2.4) < 25up {| F(2)Beay sup ha(2)]|%28 (A1) (e")?
zcD 2EL2,
-+ gimilar term.

Hence by the Cauchy-Schwarz inequality

AN d
@9 (§505E) < Ollrmnim | 22 eIl
P S S{h1)(e)? g—g -+ similar term.

T

By the Hardy-Littlewood Maximal Theorem [8, pp. 22, 24], the nontan-
gential maximal function of hy € H?c? is square-integrable; while the area
integral 3(h1)(€**)? is integrable, as may be seen from the Littlewood—Paley
identity [8, p. 236], which is valid for c*-valued functions. The right-hand
side of (2.5) is bounded by C||f|}=pea 19130

3. Proof of Theorem 1.2. (ii) Let us consider the top-right corner
of the matrix of (1.4) representing W, (f). When ¢ takes values in B(H),
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one can view I, as an operator H*(H) — L*(H) © H?*(H). With this
interpretation, it is easy to see that

| T f' () ie i) L2 (mnyem: i)

:Sup{ §(o(e™) F'(e%), ha(e)hy (e’f’» ’
T
s farseas e roes < 1}

5. - mp{m ()1 (6, 006 g | lallmar <1},
T

We can write f'g = (fg) — k', where fg € H'c! for f € H®B(H)
and ¢ € H'c'. As we shall see below, &' = fg' need not be the derivative
of an H'e' function; nevertheless we can use the factorization ¢ = hiha,
where h; € H?c* have ol = fhihe + Fhyhl.
Integrating by parts and using the Littlewood—-Paley identity, we see that

82 Yo, K g = [ e le ) ke ) 5

T T
(3.3) = 21§ @eB0(2), 1 () (2 ha2)
D
-+ f(z)hl(z)hg(z)}log A(dz).

|2

We can bound a typical contribution to (3.3) by using the Cauchy-—
Schwarz inequality:

(3.4) %H”CT)-BSO(ZJHBCH)W(Z)||B B3 (#) ] c2] | Ra ()2 10g| |
D

2 e 1/2
< | f il e 3oy (‘7; L1820 ()% a1y 1o (2} % log P EA(dz))
D

A(dz)

1/2
< (2 [ g Alas))

The last integral may lm hounded using the Littlewood- Paley identity,
whereas the other intogral on the right-hand side of (3.4) involves the Car-
leson measure @y, of (1.3). An application of the Carleson Theorem 8,
p- 33] to this factor leads to the following hound on (3.4):

(35)  Clflmr=pnCu(Qap)" 2 hallmae b2l mace
< O||f 1 e penyCx( @) P llgllaries
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A similar, but easier, argument shows that the same bound holds for

e, (F9))-

These give the following bound on the top-right entry of the matrix of
(L4):
2
(3.6) I F (S Brae iy, Locmanz(m)) < OC Q) * 1l o= B
Since f is bounded, one can easily show that the other entries of the matrix
(1.4) are bounded by

(3.7) £ meaacmy, 1F (S sreanenziy < | Fllm=pumn);
and so, combining this with {3.6), we have the desired bound
(3 8) HWQD(JC)“B L2(H)) < C( (Qa_tp)l/2 + 1)”fHH°"B(H .

(iii) For f € L B{H) we form the harmonic extension of f to the unit
disc by the Poisson integral. For ¢ as above and such f, one can define
a bounded bilinear form T, (f) by Ty (F)(h1, he) = (3.3) for each hy, hy €
H2c2. Also, the map f — T (f) is bounded L*B(H) — Bi{H%c?, H*c?)
by the estimation which produced (3.6). There is a natural 1sometr1c iso-
morphism between H3(H) and L?(H) & H*(H) arising from the “flip” map
h(z) - h(Z) on formal power series. Thus T,(f) gives rise to a bounded
linear operator T,(f) : H*(H) — L*{H) © H?(H) of norm not greater than
NTo (£ Bi(rr2e2, m2c2y. Here Bi denotes the bounded bilinear forms, with
usual norm.

The contribution arising from (fg)’ requires more careful treatment, and
we suppose additionally that ¢’ € BMO(B(H)). By the H*-BMO duality
theorem of {4, Corollary 16], we have, after integration by parts,

i((to( 16) (f.g) ) di §RS <d;f9(ie_wsa(ei9)),f(e*'”)g(e"‘g)> %

(3.9) H 5%

HQHchl”fHHoaB(H)-
BMO(B(H))

The bounded linear functional on Hle! associated with ¢’ by (3.9) may
alternatively be obtained from some ¢ € L B(H) by an application of
Nehari’s Theorem [9, p. 316]: precisely, there exists ¢ € L™B(H) with
N9l zespray < Cllv'liBmo(s &y for which

; ; ; oy, G0
(3:10) Vi f)(ha, ho) = §((e™), F(e¥)ha(e)ale®)) o=

s 2

= [ (9(e), Sl () afe ) o2

T
is a bounded bilinear form on H?c? x H%c? for each f € H®(B(H)). The

(h.l, ho € HQCQ)
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first integral also converges when f € L°(B(H)) and so defines a bounded
bilinear form on H%¢* x H2c?. Thus, for each ¢, (3.10) defines a bounded
linear map L*B(H) — Bi(H?c?, H?c?) and hence, using the flip map, a
bounded linear map V,, : L°B(H) — B(H*(H), L*(H) © H?(H)).

One can extend W, to a bounded linear operator L*B{H) — B(L*(H))
by using T(,a, Vw and the cornpletely positive map

f|—>Zj S”—I—fon 5%~

nz0 n<()

(i) The preceding estimates hold whether or not ¢ and f commute. With
our conventions, §*2™ = "1 for m > 2. When ¢(z) and f(z) commute
for all z € D, one can deduce that Iy f(S) = f(S*)I,, which implies that
W, is a homomorphism. Forming [f;x(Ry)] for a matrix-valued polynomial
[fix(2)] € H* M, amounts to having a symbol v, = ¢®1I, and f of the form
Iy ®[f(2)]- In this case, the homomorphism W, ®1d, : g&a — W, (g)®a
is precisely the map W, : H*M, — B(L*(H))® M, and so, by (3.8), has
operator norm

(3.11) W, ®Ida|| € C(Cu(@5y) 2 +1) (n21).

Hence R, is completely polynomially bounded and so, by Theorem 1.1, is
similar to a contraction.

4. Multipliers of (H'c'). A (left) multiplier of (H'c')! is an analytic
function f : D — B{H) for which

(4.1) k(z) = S flw)g' (w)dw (2 € D)
[0,2]

belongs to H'c' whenever g € H'e!. Davidson and Paulsen have shown that
there exists an f € H*°B(H) which is not a left multiplier of (H*¢') [5,
Corollary 4.10]. Other properties of square functions on H'e! are given in
{1]. We recall the notation of (1.5) and (1.6).

PROPOSITION 4.1. Let f belong to HOB{H), and suppose that Qf and
Ay define Carleson measures on the disc. Then f is o multiplicr of (He),
and when g € H'el and k' = fg' with k(0) = 0, we have

(4.2) [Ellarer < Clfllallgllee
Prool. Ouce again we bogin by taking a typical g € H'c' and factoring
it as g = hyhg, where hy € H2%¢® has ||hy !|Hg 2 = gl for = 1,2

We sce, on integrating by parts, that k(z) = f(2)g(z) — £(0)g(0) — ki (2),
where k| = f'g. Since fg is clearly in H'¢?, it suffices to show that so is
k1. This we do by duality: we recall that (Hlc')* may be identified with
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L®°B(H)/HE B(H) [9, p. 316, so we let ¢ be the harmonic extension to
the disc of an L*B(H) function of unit norm, and consider

(43)  [(e) k() o
T

— : o 0 i 1
N ?SES <¢(T6 " (3_95 + 25~ 1)161(7'6 )>log - rdrdb.

This last identity may be verified by considering Fourier series, and the most
threatening terms in it arise from the second derivative, namely

. . . . 1
(4.4) % “ (h(re'®), f (re®) g(re?®))r2e®* log ks dr d8
D
and two terms such as
. , . . . 1
(4.5) 2 §§ (wre®®), F'(re?) R} (reYha(re'®))r?e* log — «rdrdf.
T
D

The term {4.4) is bounded in modulus by

. é 1
(46)  Clpllzmnm §] lotre®) e |7 (re) e log - - dr db,
D
which involves the Carleson measure Ay. By Carleson’s Theorem [8, p. 33,
this is

L df
<CC, (A o Y| —
< CO{Af)|1lL B(H)iﬂ_oigglllg(re e 5

(4.7) < OCAR) [ poo eyl gll 1er s

where we have used Bourgain's maximal theorem [4, Corollary 16]. For ex-
pressions such as (4.5) we use the Cauchy—-Schwarz inequality to achieve the
bounds

i fr i 1 1/2
(48)  Cllwlzoosiam (| alre) 15/ (re )b ay log - - dr db)
D

; 1 1/2
x(SDSth(ree)Hgglog;-'.rdrdﬁ') .

The last factor may be bounded using the Littlewood-Paley identity, while
the other integral in (4.8} involves the Carleson measure Q¢. An application
of the Hardy-Littlewood maximal theorem [8, pp. 22, 24] to this factor leads
to a bound on (4.5) of

(4.9)  CllgpllLonanCul@n) I hallmzea [|ha |22 < CCLQY 2|9l a1t -

Combining the estimate || fg||ma < || fllgeoimyllgll mrer with (4.9) and
(4.7) gives the estimate (4.2).
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REMARK. An example mentioned in [2, (6.22)] shows that A is a proper
subset of H° B(H); this is also implied by [5, Corollary 4.10] and Proposi-
tion 4.1.

5. Proof of Theorem 1.3. (i) To check that A4 is an algebra, we take
f1,f2 € A and use the Leibniz rule and the Cauchy-Schwarz inequality to
show:

(51) C.(Qrp"® < CuQp) | falltre sy + Cul @) 2| fr | oo By
(5.2) Cu(dyr1.) < CulAp)| 2l e By

+2Cu(Q5,) 2Cu(Qp) Y% + | il 5 B O (A ).
From these it follows by an elementary calculation that f — || f]| 4 is sub-
multiplicative.

(ii) Now let o and f be as in the Theorem, and g € H'e!. On account
of (3.1), to bound W, it suffices to bound the integral

g @ ; ; df
gy 8 afy \ 2
59 ] (A0 ) 37
_ d i iy, iy \ 08 d o iy \ ¢
== | (Gt 10t 5+ § (G e ) 5
where k' = fg'. Since f is a multiplier of (H'c')’ by Proposition 4.1, &
belongs to H'c¢'; clearly, fg belongs to H'c!, since f is bounded. By as-
sumption, ¢’ € BMO(B{H)), and so by the H'-BMO duality theorem of [4,
Corollary 16], (5.3) is bounded in modulus by
(5.4) o

One can conclude the proof of (if) and (iii) using similar arguments to those
of Section 3.

iy HBMO(B(H)) [ A allgllz e

REMARK. The spaces Hc' and A have a natural matricial structure
associated with their presentation as spaces of operator-valued functions on
Hilbert space. The space of bounded left multipliers of (H'c!) also forms a
matricially normed gpace [6]. The proof of Theorem 1.3 shows that (¢, f) —
I f(8), BMO(B(H)) x A — B(H*(H), L*(H) © H*(H)), is a completely
bounded bilinear map in the sense of Effros and Ruan [6].
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Multiplier transformations on H? spaces

by
DANING CIHEN aud DASHAN FPAN (Milwaukee, Wisc.)

Abstract. The authors obtain some multiplier theorems on H® spaces analogous to
the classical LV muitiplier theorems of de Leeuw. The main result is that a multiplier

operator (TF)" (@) = Mz () (A € C(R™)) is bounded on HP(R™) if and only if the
restriction {A(em) }mea 18 an HP(T") bounded multiplier uniformly for & > 0, where A is
the Integer lattice in B™.

1. Introduction. Congider the n-dimensional Euclidean space RB™; let
S(R™) be the space of all Schwartz test functions on R” and A be any
function on IR™. fh.r: multiplier operator T associated with A is defined by
(T'HINE) = AE)f(€) for all f € S(R™). Let X, Y be two function spaces on
R with normns || || x and || |y, respectively. If S(R"} is dense in both X
and Y, and if there exists a constant C such that

1Tflly < Clfllx

uniformly for f € S(R™), then we say that 7' is a bounded operator from X
to Y with finite norm
Tl = sap [Tflly <C.
17l %=1
We denote this by writing 7" € (X, Y).
The n-torus T can be identified with K™ /A, where A is the unit lattice
which is the additive group of points in R* having integral coordinates. The
multiplier operator Te on T associated with a function A on R” is defined by

Tefla) ~ 37 Metn)ape?mim

meA

1991 Mathematics Subject Classificotion: 42B15, 42B30.

Bditoriel note: The first version of this paper, signed only by the second author, was
submitted on December 17, 1991, Ii already contained the preof of Theorem 5.3 which
covars a result pablishod in Studia Math. 108 (1994}, 201-299. The editors deeply regret
for the unusually long publication process.
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