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The higher order Riesz transform for Gaussian measure
need not be of weak type (1,1)

by

LILIANA FORZANI (Minneapolis, Minn.) and
ROBERTO SCOTTO (Madrid)

Abstract. The purpose of this paper is to prove that the higher order Riesz transform
for Gaussla.n measure associated with the Ornstein-Uhlenbeck dlfferentlal operator L :=
d? /dm — 2zd/ds, € R, need not be of weak type (1,1). A function in L' (dv), where d~y
is the Glaussian measure, is given such that the distribution function of the higher order
Riesz transform decays more slowly than C/A.

Introduction. Let f € L'(dvy) be given, and let o be a natural number.
Then the Riesz transform of order « for the Gaussian measure is defined as

Kaof @) =pv. | ka(y, 2)f(2) dz,
R
where

—(z—ry)?/(1—r*)
) ¢ dr,

) .
koly, 2) = gﬁﬁa("”)ha ( = rz)y;/z (1 —r2)e/2

o[ —logr\&mH/2
‘Pa(T) =Co¢’fa 1(’1":'5_) )

Tz
and h, is the Hermite polynomial of degree a.

It is known that K, maps L?(dy) continuously into itself for 1 < p < oo
(see [M], [U] and [G-S-T]). Furthermore, for & = 1, K maps L'(dy) into
LY*(dry) (see [M]). The purpose of this paper is to show that even though
for a == 2 the operator is still of weak type (1,1) the result breaks down for
a > 2. In fact, a counterexample will be shown.

1991 Mathematics Subject Classification: Primary 42B25, 47D03, 42C10; Secondary
42A99, 60HSS.

Key words and phrases: Fourier analysis, Gaussian measure, Poisson-Hermite inte-
grals, Hermite expansions.
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206 L. Forzani and R. Scotto

-Indeed Ko f(y) can be written as the sum of two operators, one of which
sa:tlsﬁes the weak type inequality, while the distribution function associated
with the other decays more slowly than C/X as long as a > 3; i.e.

}Caf('y) = ’Ca,wf(y) + )Ca,lf(y)’
where K, is of weak type and there exists a function f € L*(dvy) such that
for A large
(log )\)(u—z—é‘)/z
5 .

The paper is organized as follows. In Section 1 it is proved that X, need

not be of weak type (1,1) for a > 3. In Section 2 it is proved that X
L (dy) into LY (d). ’ S

YyeR: Kayf(y) > A} 2 C

1. It is enough to work with ¥ > 0 and large, say y > R, where R is to
be chosen. Define

: 5

Ny={zeR:|z—y| <R/}, R\Ni=|)D!

where DY = (—00,0), Dy = [0,(1 — B)y), DY =[{1 - 2? — Y=

v %?/yfy/(l = A)] and DF = (y/(1 -)—y)),og)- =y = 24
early

5

Kof(y) =p.v. S koly, 2)F( z)dz—i—z S koly, 2)f(2)dz
R i=t D}

= Kone F(y) + Z Ko f (u)-
i=1
_ Set Ko = Ko npg+Kap +Ka,3. In Lemma 1 it will be proved that o vy
is of weak type (1,1); in Lemma 2 it will be proved that K, ;, i = 2, 3, are
of strong type (1,1). ’
For 0 < < 1, let

2

1(8) = SopXuep(2) € LA (@)

It is easy to see that K, 1f(y) = 0 for all ¥y > R. In Lemma 3 it will be
shown that K. 4 f(y) is bounded below by Gy“*lﬁ‘sey
shows that Ko 5f(y) > 0.

On the other hand, the distribution function of y kev® for y > R, lLe.
Ee(N) = viy > R: y*e¥ > A} > Cllog )(-1/2/3, A > 0, which decays
more slowly than C/A for k > 1 and X large.

* . The same procedure
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"Thus for & > 3, if K, were a weak type (1,1} operator then Kq,1+Ka,a+
Ko,5 would be as well. And this is a contradiction with the above statement
gincea—1-46>1

Let f € L'(dv) be given, and H be a Calderdn~Zygmund kernel, that is,

(1) He Cl(R - {0})7
(i) (7)< C.
(iif) {dH/dy| < C/yl.
We define
Tfy)=pv. | Hly— 2)f(z)d=
NU

This operator turns out to be of weak type (1,1) with respect to the
Gaussian measure. This result is standard; a proof can be found in [M], [Sj],
[U], or [F-G-5]. :

LEMMA 1. Ko ns satisfies the weak type (1, 1) ineguality with respect to
the Gaussian measure.

Proof. The procedure is to split ka(y, z) into the sum of two kernels

ka(ys Z) = H&(y - Z) + k?:-u(y} z)

where

1 x At
Halz) = S‘Pa(”")ha((l 1/2) (1—r2) 372 dr

The weak type (1,1) inequality follows once it is proved that H. is a
Calderén—Zygmund kernel, and the operator § NE kL (y,z)f(z)dz is bounded

on L(dr).
We have
falf) = | €4 Halz)dz

Pa(r) S etvi=r 5‘77;0[(3)6:_"2 dzdr

‘ch('r)( —1)® S iI—r7 z__(e—z ) dz dr.
After an integration by parts,

1 ——
&) = (60)*§ 22T (1 - )TV P gy dr

:. (zg)a (Pa('l")(l - ?"2)(&_2)/26—(1—1'2)57/4 dr.

ey L O



208 L. Forzani and R. Scotto

Thus

Ha€)l < CJiE*(
0

o
e

— p)la-2/2g (/e gy

<C e~ e g < €,

(1- 7‘)1/2

and

d 1
E:;Ha(w)=§soa(r) [0(1—7"2)1/2”'“” ((1 r2)1/2)

P e—mz/(l-—rz)
et e
Using the fact that any Hermite polynomial h, can be bounded in ab-
solute value by €'}, ;< Iz), we get

= 31 —lz)?{(1~r?) - j+11 e—lol?/(1~r?)
< c(z |z 5 —ryaras 4t > lel S_““““““—(l ERTEEEYE d"”)
j"""l jﬂl ]

c
"""["2".

d
"&;Ha (x)

<

Now define

Then

B(t) = e~ 1tv—=/0—") g <<,

[’ ()] < YAt

)1/2 Z Z ((1 —r) 1/2) (1- T)1/2|y|)j_k:

0<j<a—1 0<k<y

8’ (t)| < GT"J"L)WE

emely=a* /-y g5p NE.
Thus

k& (y, 2)] <

i Pa(r) [, (227U —jry—s?/1-r%)
) (1—r2)3/2 |72\ (1 —r2)1/2

Z -y - —p2
_h, (m)ew 2/ )] i

,1 1
< Cémw

Y(1)je vl /a~") g
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: 1 z
+G§) 3y ha(( 2)1/2) |6(r) — O(L)| dr

= ko, 2) + k% (y, 2).
On NY the following estimates for k1! and k%2 hold:

1 k
el ol ¥ (fE) e
[t}

rooe 1—r)l/2

0<i<a—1
j—k>0

x ((1 — ) 2|y —*ke=O-m) vl /e gp

L gmely=21%/(1-)

C
<C ———— i < C(1 + log ~——-—
1y§) — L+ ful) log =,
" and
el /2g=cly=+1"/(1=r)
)2 - _ /2 —cy—-z*/@-r
[k (y,z)lsc):{j)g(l_r)(,.+3),2|y|(1 r)!/2eely dr
J:
L L gmly=af?/(e(1-))
e
— ol _
SCIyIEIZ d (S} (1—r)G+2)/2 dr
c
< O + [yl)log ———o-.
Ot bbe gy =)
Therefore on N% we have |kL(y,2)| < C(1+ |y)log(C/(ly} - |y — =})) and
hence SNV L(y, 2)f(2) dz is of strong type (1, 1) with respect to the Gaussian
measure.”

LEMMA 2. The operators Ko 2 and Ko,z are continuous on LY {dry).

Proof. First of all we prove the strong type (1, 1) for Ka,2.

Since ‘
_ETTY e——(z—'r'y)gf(l—rz)
(1 7.2)1/2

it follows that

< Qeelz=rvt/(-r")

1 e—c(zmry) 2/(1—r%)

lka,2(y: z)l < GS

— .
) (1—r2)3/2

This last integral is bounded by a constant as was proved in [Sc]. From these
estimates the strong type (1,1) of Kq,2 follows.
Let us prove the strong type (1,1) for Ke.3.
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IfzeDfthen (1-Bly<z<y—R/ . . ) _
- y. We split the integral
the sum of integrals over P gral in r into

1-8 y—=z
B = [0,1- —£.
' [ ! 8 y ]’

By = {1_1_;_@'1;-2',1_)61/—,3] and

Then

Gd 3(y= z) Z

i=1

3 S a(r)ha z"”’"y e~ (z=ry)*/ (1~r%)
=g i) (i v

3

On F; we use

(11135)(1 —r)y <f~ry < (%g)(l ~rly

to get
1-1z2 u—=
1 i ] ] .
[ka sy, 2)) < C’Z S ¥ (1 — r)i=8)/2g—el=r)? g
J=0 o

yﬂ

a4
<oy |
1=0 L (y—z)y

e~ g5 < Oy,

since (y — z)y > C.

On Es, si —
ad n B3, since 0 < 1—7 < By — z)/y, we have (1-9)(y—2) < ry—z < y—z

- 1 i
k(_; ’z < C M
Fealy, 2l sCY DT

F=C1-Aly—2)/y

< <Cy

Y—=z

e—eW=2*/(1-1) g,

On E» we use the fact that 1—r ~ (y—2z)/y and we write e~ (3~ y)?/ (1=

= ¥ g (rz=u)?/(1-r?) g2 , therefore

icm
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2 o3 (¥ o i { gm(y=ra?/(1~1?) gp o=
ikas(y2)i < Ce Z — (y —=z) Se dre

F=0 B2

2 — . 1 2
< Oe¥ NI 2 ey )~ p-F
—_ Ce jzﬂ(y(y Z)) € yl/z(y _ 2)3/26
< Oeyz 1 _?

=0 Ry =

From these estimates, it is easy to see that K 5 for 1 = 1,2,3 are of
strong type (1, 1) with respect to the Gaussian measure.

LEMMA 3. For f(z) = (ezz/z”"‘i)x(l,m)(z) we have

’Y{y > R: ’Ca,4f(y) > )\} > %(]ogA)(a_l—a)/2.

We wgll prove that for ¥ > R, Ka4f(y) can be bounded below by
y*~1-%e¥" . Hence
vy > R:Kaaf(y) > A 27y > R: y“_1_5692 > CA}
> —(j—(log Ayle—2-8)/2,

Thus if we take @ — 2 —§ > 0, i.e. & > 2+ 4, then the operator Ko, is not
of weak type (1,1).
If 2z DY theny+R/y <z<y/(l—pF)and
z - 1/2 1/2
—-—m( ONE > C((z —y)y)/? = CRY™.
Pick R large enough so that C+/R > max (roots of ha), where hy is the
Hermite polynomial of order . Thus

43
z—TY z—TY
”‘“((1 - r?)w) = C“(u = r2)1/2> |

Therefore
L= {z—y)/(22) & o= (z—ry)?/{1—")
z—rY €
Kaafly) 2 Co S Pa( )( 3 1/2) s O
1-2(z—y)/z (1-r%) =
1—(z—y)/(22) o —(rz—y)?/(1—7?
cae) | e S e
= — (o3} 2 — r2)3/2 )
L2y (1—nr)e (1—r?)
The second inequality is true since
2= 28 1-38
— >1- =
e T

and @4 (r) is bounded below on that interval by a positive constant.
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We now use the fact that 1—r ~ (2 — y)/z, 2(z—y) > (1-r)y, 2(z—y) >
R and z ~ y to get

1-(x-y)/(22)
haa) 2 C( |
1-2(z—y)/z

1-(z—y]/22 (x—3)/2
> C( S g—ez(rz—)?/(z—y) dr) (z — y) ,yaleyLz2
1-2(z—y)/z z
ey/z(z—y)
>c( |
—oy/z2(z—y)
erfz(z—y
>o |
—ey/z(z—y)

> Cly(z —y)) oD/ 2ze’ 7",

(1 _ r)(a—3)/2e—-cz(rz—y)2/(z—y) d"r) ycxeyz—z2

(a—3)/2
e (z~y)2 (2 —y a_,2
e ™ du) iz . y%e¥

fewiy

e du) 3z — )@

Therafore
¥/ (1~-8)
K:O:Af('y) = S ka,fl(ya z)f(z) dz
y+R/y
L v/(1=5) 2 &
> Cyle=2/2gy S (z —y)l@ 2/ 2> e dz
y+R/y
y/(1-3)
> (;'g,,((w—Z)/?-%r5,39r2 S (z — y)(cn—?)/2 dz
y+R/y

> Cy((a—2)/2)~56y2ya/2 — Cya—l—sef_

2. In this secticn the weak type (1,1) inequality for K; will be proved.
Due to the symmetry of kx(y, 2), it is enough to work with y > 0. NZ is
now defined as {z € R : [z — y| < RA R%/y}. The split of Xzf(y) into the

sum of six operators is carried out in the same fashion as before. Just a few
modifications are necessary in the definition of DY’s:
DY = (—00,0A(y—R), Di=(0,{L-ByAy—R/y),
Df=((1- B, (v— RB*/y)], DY=I[ly+R/y,/(1-B)),
Df = {((y + B) A (y+ R®/y) Ay/(1 — B), 00).
. These regions are the ones into which R\ N¥ is divided and they are
essentially the same as Muckenhoupt’s in [M]. So the estimates on ka(y, z)

Riesz transforms for Gaussion measures 213

on R\ NY% are quite the same. Once the right estimates for ka(y,2) ate
obtained, the weak type (1, 1) of KCp follows by means of standard procedures
thoroughly detailed in [M].

Ko ng and Kq i, © = 2,3, were already proved to be operators of weak
type (1,1) for all a. Moreover, the equivalence between ka,a(y, z) a.nd. the
kernel y(z — 1))@~/ 2,e%° =% follows as well since the inequalities obtained
there can be reversed. \ . .

Thus if @ = 2, then kp4(y,z) < Cye¥ ™ on Dy Tt 1:2emzams to prove
that k21 (y, 2} £ Ce=* on DY, and ka5(y, 2) < C(1Vy)e? =% on Dg

On D¥,y2<0,y—2z>Randy—22y. We split ko,1{y,2) into the
sum of two integrals: k3 ; (v, ) over [0,3/4], and k%, (y, z) over [3/4,1]. Thus

3/4 8/4 . . »
ki1(y,2) < 0[1 + S r{ry)2e 9 dr 4 S ree— (%) dr] e < Qe
) 0 0

and
1/4

z—y+ ry)z (z—y)}2  2uly—z} 1—7
a2 <O | [1+ S ki 2 ]
0

Syt mluza  1-7
AR CEDEE

2

1/4
_SEma® 1—7 8y (y—z)
<Cly - Z)z( S e G-or (@ = r)ry’/? dr)eﬂ :
0

i u = (2 — )/((2 — )r)/%, then

— 18 (z-y)?
) T ePvlv—2) < ge_lz.
y—2

On D¥, z—y > Bz,and 2z —y > CR. We split

1 2 —(y—rn)?/(1-r%) s 3
(ry — %) € ¥ -z
kg,s(y,z)=0(§)f‘(4 1— -2 (1= r2)3/2 dr e

c
k3 1(u2) < ;__"—z(’y —z+

r2

into the sum of two integrals over [0, 1—(z—y)}/(22)) and n—(z —.y)/(2z), 1].
On the first interval 1—r > 1—3/2. Replacing 1—r by the appropriate bo;md,
and using the fact that r(z —ry) = |z - rylr(z —ry) < 2(jrza—yl+(1—r*y),
we bound this part by
1
C( S z(1v y)e—(”_y)?/c' dr)ey2’22 <C@Av y)eyz_‘g.
0 :
1
On the second interval (z —ry)? < C(z —y)* and |y — 72| 225(5 —y). By
3 -z
an appropriate substitution this part 1s then bounded by Ce¥ .
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Injective semigroup-algebras
by

J. J. GREEN (Sheffield)

Abstract. Semigroups § for which the Banach algebra £%(9) is injective are investi-
pated and an application to the work of O. Yu. Aristov is described.

1. Introduction. Injective Banach algebras were introduced by Varo-
poulos in [12] and have continued to atiract investigation some 25 years
later. In this note we make some progress towards a structural qescrlptmn
of the semigroups S for which the Banach algebra £1(S) is injective.

To introduce our notation suppose that A and B are Banach algebras.
We write A ® B for the algebraic tensor product over C, and A ®. B for
A ® B equipped with (but not completed in) the injective tensor norm

“ zn:ai ® b; ls := sup H i Flai)g(bs)
i=1 P

Tensor products and tensor norms are given a detailed treatment %n [8],
while [3, §42| provides an introduction. Following Varcpoulos we will say
that a Banach algebra A is injective if the mapping

-.feA’{,geB;}.

7L
Rs:A®. B— A, im‘@bi "‘*Za’ibia
i=1

=1

often called the product morphism, s bounded.
If § is a semigroup we write C[S] for the algebra of formal sums

(1) T = Zéss

s€ES
for which only finitely many of the & € € are non-zero. When equipped

with the #! norm
lzlly =D 1€,
s&s

1091 Mathematics Subject Clussification: Primary 46HO05.
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