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Injective semigroup-algebras
by

J. J. GREEN (Sheffield)

Abstract. Semigroups § for which the Banach algebra £%(9) is injective are investi-
pated and an application to the work of O. Yu. Aristov is described.

1. Introduction. Injective Banach algebras were introduced by Varo-
poulos in [12] and have continued to atiract investigation some 25 years
later. In this note we make some progress towards a structural qescrlptmn
of the semigroups S for which the Banach algebra £1(S) is injective.

To introduce our notation suppose that A and B are Banach algebras.
We write A ® B for the algebraic tensor product over C, and A ®. B for
A ® B equipped with (but not completed in) the injective tensor norm

“ zn:ai ® b; ls := sup H i Flai)g(bs)
i=1 P

Tensor products and tensor norms are given a detailed treatment %n [8],
while [3, §42| provides an introduction. Following Varcpoulos we will say
that a Banach algebra A is injective if the mapping

-.feA’{,geB;}.

7L
Rs:A®. B— A, im‘@bi "‘*Za’ibia
i=1

=1

often called the product morphism, s bounded.
If § is a semigroup we write C[S] for the algebra of formal sums

(1) T = Zéss

s€ES
for which only finitely many of the & € € are non-zero. When equipped

with the #! norm
lzlly =D 1€,
s&s
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216 J. J. Green

C[5] is a normed algebra whose completion is the £! semigroup-algebra uni-
versally denoted by £'(5). We will always assume that our semigroups are
countable and we use the notational convention that a semigroup S has an
unspecified but fixed enumeration of its elements, i.e. § = {s;: 4 € N}.

2. Necessary conditions. It is well known that an injective Banach
algebra is an operator algebra [10, Th. 4.2.26] and so Arens regular [4].
Thus necessary conditions for a semigroup S to have £1(5) injective follow
immediately from the characterization of the semigroups § for which £'()
15 Arens regular [11], [13], [2]. Indeed, the title of [11] indicates that the
Arens regularity of £'(S) places strong restrictions on the structure of 3,
hence the injectivity of £1(9) more so.

The following lemma enables us to utilise the results above but at the
same time to exploit the stronger hypothesis of injectivity.

LEMMA 2.1. Suppose that S and T are semigroups and that £1(T) is not
injective. Suppose further that there are finite subsets Ty, Ts, ... with

nocnhc...cT

whose union is T and, if m = m(n) denotes the smallest integer such that
T2 C Ty, that there are maps

Yn: Ty =8 (nEN)

with
Pu(a)Pn (b} = ¥n(ab)

(a,beT,, neN).
Then £'(S) is not injective.

Proof. If K > 0 is given then, since £2(T) is not injective, there is some
v € £4T) ®, £1(T) with |juf|, < 1 and [|Be:(y(w)]l, = K. Indeed, by a
density argument, we assume that u has a representation as a finite sum
u=) &;ai®b; (a,bjeT)
%)
and take n to be a number such that a; and b; are in T, whenever £;; € C

is non-zero. The map ¥, has an obvious linearisation, which we also denote
1, when we define

v D Eitn(0s) ® Yn(by) € £1(5) @ £4(S).
1]
Then we have

@) ol = sup {| 365 £ Walo)olunlen)| - £0 € (507}

< sw | 6 Fl@)G6:)] : .6 e (D))} = ful,
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i i i 1(T},) of norm no greater
since f ¢ ¥, and go ¥, are linear functionals on £ (T

than one, and so may be extended to such on £(T") by the Hahn—-Banach
theorem. Then

Rpsy(v) = Y &ijtn(ai)¥n(bs) = ¥a(Re () (W)
so that, by (2),
iRy @), = ltn(Regry ()l = Kllull, = flofl- =

Our first application of the lemma is to show that semigroups S with
2(S) injective are “uniformly periodic”.

PROPOSITION 2.2. If S is a semigroup with £(S) is injective then there
is o number N € N such that
card{s" :neN} <N (s€S).

In particular, such a semigroup is periodic.

Proof. If there is no such N then for each n € N we can find somes € 5

such that s, %, ..., s2™ are distinct. Writing T, = {1,...,n} (consic}ered as
a subset of the semigroup of N with addition as product) and defining
wn:T2'n““+Sm 'i""_)si)

we see that the conditions of the lemma are met once we h.ave sh?vs{n t-hat
the semigroup T = (N, +) has a semigroup a.lg;ebra_whlch is not 1n;|‘ect1-ve.
But it is not even Arens regular, as is shown by a straightforward application
of [2, Th. 2.7}. m

The hypothesis of injectivity in Proposition 2.2 cannot ‘Pe weakened to
that of Arens regularity. To see this we observe the following fact, whose
proof, again, is a consequence of [2, Th. 2.7].

PROPOSITION 2.3. Let § be a semigroup with zero 6 such that for (?ach
s € 8 there are only finitely many t € S such that st # 8 and only finitely
many © € § such that rs # 0. Then £1(8) is Arens regulor.

The conditions of Proposition 2.3 are met by the semigrou3 § which 1?
the zero direct product [7, Ch. 3, Sect. 3] of a sequence of cyclic g?)w;tpi Icln
increasing order. So we find a semigroup tha,t.clea.rly does nqt sa 11}5‘. X e
conditions of Proposition 2.2, but whose sernigroup algebra is not Arens

lar. .
regl'll:;le second application of Lemma 2.1 CODCErnS the set E(S) of ;idelgli)o_
tents in a semigroup S. Let < denote the partial order on E(S) defined by

e < f, if and only if ef = fe=e.
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PROPOSITION 2.4, Let § be a semigroup such that £1(S) is injective. Then
there is a number N € N such that no chain of idempotents in E(S) ezceeds
N in length.

Proof. If there is no such N then, for each n € N, we can find some
chain of n idempotents, say e, < en—1 < ... < e;. Writing T, = {1, ... ,n}
(considered as a subset of the semigroup of N with the max product) and
defining

Un T — 8§,

we see that the conditions of Lemma 2.1 are met once we show that the
semigroup (N, max) has a semigroup algebra which is not injective. Again (2,
Th. 2.7] shows that it is not even Arens regular. m

1 €niyl,

One may show that Arens regularity cannot replace injectivity as the
hypothesis of Proposition 2.4. The method is similar to the above — consider
the semigroup which is a zero direct sum of a sequence of chains of increasing
order. Notice, however, that the Arens regularity of # (S) implies that the
chains of idempotents in S must at least be finite, else S has a sub-semigroup
isomorphic to (N, max).

The contrast between the associations of Arens regularity with finiteness
and injectivity with uniform boundedness seems a theme of subject and is
maintained in the next section.

3. Sufficient conditions for semigroups with zero. For semigroups
S with zero there are some conditions that force the injectivity of £1(S): con-
ditions which prescribe the sparsity of non-zero products in S. Qur approach
to these is via a well-known algebraic construction.

If § is a semigroup with zero 8 then we will write C, [5] for the reduced
semigroup-algebra of S, the linear algebra C[S}/C[{8}], and denote by 248
the completion of C,[8] in the #* norm

> aof= 2kl
ses\{6} sES5\{8)

Our interest in such algebras lies in the following fact, whose proof is,
but for a change in notation, essentially the argument used by Varopoulos
in [12] (and attributed there to S. Kaijser) to show that £ is injective.

LEmMMA 3.1 (Varopoulos, 1972). Let S = {6,e;,e3,...} be a countable
semigroup with zero 8 and suppose that

u= 3" £ e @e; € LH(S) ®, £(S).

4=l

icm
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Then for any permutation o on {1,...,m},

S 1w < llull,.
=1

PROPOSITION 3.2. Let 8 be a countable semigroup with zero 6. Suppose
that there is some K € N such that for each non-zero s € S there are ‘at
most K elements t € S with st # 0 and of most K elements r € S with
rs # 0. Then £1(S) is injective and ||Ry (s < K.

Proof. We write S = {0, €1, g, ...} and suppose that u € £2(3) @ £;(5)
is of the form

m :
(3) U= Z éi,jei@)ej.
ij=1
We set M = max{n : e;e; = e, for some 4,7 = 1,...,m} so that
m M
Ry(sy(u) = Z §ijeie; = Z ( Z E«;,j)ek,
i,j:l k=1 ejej=ep

from which we obtain the inequality

(4) IR < Y. il
1gi,7<m
eje; %0
Setting

0 if e 9,
Aig = { |€:.5]  otherwise,
we see that the right-hand side of (4) is the summation over the elements
of the m x m matrix A = [A;;], a matrix which has at most K non-zero
clements in each row and in each column. Such a matrix can be written as
the sum of exactly K matrices with at most one non-zero element of A in
each row and in each column (this is shown in Mirsky’s book [9, Th. 11.1.6])
and so the right-hand side of {4) is the sum of exactly K sums of the form
S 1 |€i.os) |- Hence, applying Lemma 3.1, we find that

[ Be o) (W) < Kllul,
for all % of the form (3). The result now follows from the fact that such
elements are dense in £}(5) ®. £(5).

Notice that Proposition 3.2 applied to the semigroup S = {6,e1,e3,-..}

with product
_ € ifi= j,
€1 =19 otherwise,



220 J. J. Green

shows that £1(5), which is clearly isomorphic with ¢!, is injective. Thus we
recover the result and implicit bound described in Varopoulos [12].

We can apply Proposition 3.2 to the subject of this article by use of the
following theorem.

THEOREM 3.3. Let S be a countable semigroup with zero 8 and such that
£X(9) is injective. Then £1(S) is injective and
| Rex(syli < 6] Rexsyll + L.

Proof. We will write § = {eg,e1,...}, where ey = 8, for simplicity of
notation. If

(5) u= Y &je®¢; € £1(5) R £1(S)

i,§=0
then |ZZ}=0 &i 5| < |lulj, and since

we find that

| Z &ij Sli&,jl-l“;’ Z &ig

gi€j=¢q i,j=0 eig; =gy

5”1‘”5"‘}:’ Z &ig

k=1 gy ei=Ek

k]

which gives

©  IRam@l, =Y 3 &

k=0 eze;—es

<fule+23| 30 &

k=1 ejej=eg

Now
(7) Z‘ Z §ig| = “Re;(S)( z £ijei® ej) |
k=1 ejej=ey i,j=1 1
S||R£15i|l| i-ei®e-|
1) i,ji-—-:l‘fd Hlesisees
= ||Res 5 i€ ® ’
3 )”Hi;fd | PO

since injective tensor products preserve subspaces [5, §4.3], and since

i £ijei®ej =u— (i&i,oei) ®eg—ep® (iﬁe,jﬂj)
i=0 =1

i,7=1
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we have
m m m
(8) ” 21 fije: @ ej“ < Jul + ||50||1(” > e 11 + “ Z?Eo,jef“l)
Q= i=0 =1
el + 3 ol + 3 o] <3l
i=0 j=1

Combining the inequalities (6)-(8) now gives the bound

1Ras;(w)ll, < 6l Resy(w)lln + llully

for elements u of the form (5). This bound extends to the closure and so
proves the theorem. m

COROLLARY 3.4. Let § be a countable semigroup with zero 6. Suppose
that there is some K € N such that for each non-zero s € S there are ai
most K elements t € S with st # 8 and at most K elements r € S with
rs # 0. Then £1(S) is injective and | Rp(g)l| < 6K + 1.

We remark that the above results do not provide a characterisation of the
semigroups with zero such that £1(8) is injective. Consider the semigroup
S = {6,e1,eq,...} with product e;e; = & (i,7 € N). Clearly, S satisfies
the conclusions of Propositions 2.2 and 2.4, while not the hypotheses of
Corollary 3.4.

To conclude this section we invite the reader to compare Corollary 3.4
with Proposition 2.3.

4. The weighted case and an application. Some of what is described
above can be extended to cover the weighted case: if S is a semigroup with
zero @, we say that w: §\{6} — (0,00) is an algebra weight if

wist) < w(s)w(t) (st 5t € S\{6}).

The weighted reduced semigroup algebra £1(S,w) is then defined analogously
to £1(S) as the completion of C,[S] with respect to the norm

“ > &»SHw = Y slwis).
seS\{6} se5\{6}

In particular, the following version of Varopoulos's Lemma holds, the proof
again being an increment on that in [12].

LemmMa 4.1, Let § = {f,e1,62,...} bea countable semigroup with zero
8, w an algebra weight and suppose that

u= Y &ijes ®ej € 4(S) De £(8).

iy=1
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Then for any permutation o on {1,...,m},
Y ot lwleswlean) < lull,.-
f=]

The point of passing to the weighted case is that a sufficiently rapid

rate of decrease in the weight can play the role that finiteness does in the
unweighted case.

Let e; ; denote the infinite matrix with one as the 4, j-th entry and zeros
elsevafhere, and f# the infinite matrix of zeros. Then with the usual matrix
multiplication the set

S={e;;:1 <7< jru{6}
is a semigroup with zero. Define a weight w on S\{6} by
wi,H =279 (1<i<y
To see that this is an algebra weight note that
w(d, Hw(f, k) = 2~ G- k-D? _ 22U =—5) (5 k)
and so, by a short calculation,
w(i, k) < 2720700, flo(, k) < 272N, Hw (k).

PRIOPOSITION 4.2. With § and w defined as above, the Banach algebra
A= £S5, w) 5 injective.

Proof. Suppose that w € A®, 4 is of the form
U= D Eigifis ® ey

i<y, k<
where only finitely many of the &; ;1 are non-zero. Then

oo
Ra(u) = Z Siggteit= Y 3 &ijgitmeiiim
i<yl me=2 i<j<itm
so that

@ IRaWlle =Y > |igsirmlwl,i+m)

m==2 i f<it+m

SN a2 V0, (i +m)

m=2 i<j<itm

A

— —2(m-—-1 .. ..
=y 27EmD N g rmlw(E Dl i+ m).
me=2 i<j<idm

Now, with m fixed, for each pair (i, ) there is exactly one pair {k,1) such
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that £ jx, occurs in the inner sum of (9). Thus, by a suitable relabelling of
the semigroup elements e; ;, we can apply Lemma 4.1 to obtain

3 lsgirmlw(iw(d, i +m) < lul,
1< <it+m
and so, from (9),

(m=23,...)

Ra(w) < 3 27"Vl = 3],

m==2

The result now follows since elements of the form u (i.e. those with finite
support) are dense in A ®; 4. »

We find the injectivity of this example to be of interest for the follow-
ing reason. In [1] Aristov shows that a C*-algebra is injective if and only
if it is subhomogeneous, i.e. if there is some uniform bound on the dimen-
sions of its continuous irreducible representations. It is well known that a
semisimple Banach algebra is subhomogeneous if and only if it satisfies a
polynomial identity [8, Prop. 6.1], so it is natural to ask whether these three
properties coincide for Banach algebras more general than C*-algebras. The
fact that there are commutative semisimple Banach algebras which are not
Arens regular (for example £(Z)) gives a negative answer in one direction,
while the above proposition gives a partial negative answer in the oppo-
site direction once we note that A does not satisfy a polynomial identity.
If an algebra (not even necessarily normed) satisfies a polynomial identity
then it satisfies a homogeneous multilinear identity of no greater degree [6,
Lemma 6.2.4], so it suffices to show that A does not satisfy an identity of
the form

P X, Xn) = X1 X+ 3 A Koy - Xan)
oFLl
where the summation is over all non-trivial permutations on {1,...,n}. But
this is obvious since A contains half of “Kaplansky’s staircase”

ple12, €28 s Ennsl) = €Lnt2 # 0.

We conclude by mentioning that A is a radical Banach algebra and so
trivially subhomogeneous. Thus it does provide an answer to the more dif-
ficult question as to whether there is a semisimyple injective Banach algebra
that does not satisfy a polynomial identity, or equivalently is not subhomo-
geneous.

Acknowledgments. The author is indebted to P. G. Dixon for his guid-
ance in the research leading to this paper.
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Li-spectrum of the Bernoulli convolution
associated with the golden ratio

by

KA-SING LAU (Hong Kong and Pittsburgh, Penn.) and
SZE-MAN NGAT (Ithaca, N.Y.)

Abstract. Based on a set of higher order self-similar identities for the Bernoulli
convolution measure for (v/5 —1)/2 given by Strichartz et al., we derive a formula for the
L9 -spectrum, ¢ > 0, of the measure. This formula is the first obtained in the case where
the open set condition does not hold.

1. Introduction. Let p be a positive bounded regular Borel measure on
R? with compact support. For 2 > 0 and g > 0, we define the L2-(moment)
spectrum of u by
YWY CAWIN
= lim -2\
(1.1) (g} h—i-»%l_'i' Yy

where {Q;(h)}; is the family of h-mesh cubes
[n1h, (n1 -+ DA) X ... X [ngh, (ng + 1)h),
We also define the (lower) L9-dimension of u by
dim, (u) = (g)/{g— 1), g¢>1

These notions were first used by Rényi [Ré] to extend the entropy dimension
(corresponding to ¢ = 1). Some variants of these definitions and the basic
properties of 7(g) can be found in [LN1], [St]. We prefer to use lim rather
than lim because the 7(g) defined by using lim is concave.

Recently there are a large number of papers in the mathematics and
physics literature investigating the relationship of the Li-spectrum and the
local dimension of the measures that arise from dynamical systems (the
multifractal formalism) (e.g., Frisch and Parisi [FP], Halsey et al. [H], Collet
et al. [OLP], Lopes [Lo], Rand [R], Cawley and Mauldin [CM], Edgar and

(n1,...,7ma) € 7e.

1991 Mathematics Subject Clasaification: Primary 28A80; Secondar:y: 28ATS.
Key words and phrases: Bernoulli convolution, golden ratio, multifractal measure,
L7-gpectrum, L9-dimension, Hausdorff dimension, renewal equation, self-similarity.
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