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Ergodic theorems for subadditive superstationary families
of random sets with values in Banach spaces

by
G. KRUPA (Utrecht)

Abstract. Under different compactness assumptions pointwise and mean ergodic the-
orems for subadditive superstationary families of random sets whose values are weakly (or
strongly) compact convex subsets of a separable Banach space are presented. The results
generalize those of [14], where random sets in R? are considered. Techniques used here are
ingpired by {3].

1. Introduction. A generalization of Birkhoff’s pointwise ergodic the-
orem for superstationary families of random variables was given by Krengel
[13]. In [12] Kingman proved Birkhoff’s ergodic theorem for stationary sub-
additive processes. Abid [1] generalized previous results and showed an er-
godic theorem for subadditive superstationary families of R-valued random
variables. Using Abid's result Schiirger [14] proved pointwise and mean er-
godic theorems for subadditive superstationary families of convex compact
random sets in R?, Here the results of [14] are generalized.

Let (2,.A, P) be a probability space. Subadditive superstationary fami-
lies (Fy ) of multivalued functions on {2 with values being weakly (respec-
tively strongly) compact convex subsets of a separable Banach space are con-
sidered. Certain compactness conditions are imposed upon (Fs,). Namely,
it is agsumed that %-Fg,i(w) are a.s. contained in some, dependent on w, ball-
compact set for all t € N, or, in the case when the Banach space and its dual
both have the Radon-Nikodym property, clcol e, 1, Fo is supposed to
be w-compact for all subsets A of an underlying o-algebra. Tt is noteworthy
that in the finite-dimensional case there is no distinction between weak and
strong topology and that the conditions mentioned above are automatically
satisfied. Later, under some additional conditions, the convergence of sub-
additive superstationary families of subsets of a Banach space to a constant
limit is proved.
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The main idea used in the proofs is to scalarize elements of subadditive
superstationary families using support functions, then use Abid’s one-dimen-
sional results and prove the existence of multivalued infinite-dimensional
limits using techniques from [3] and [10].

2. Preliminaries. Let {2, A4, P) be a probability space. Let X bhe a
separable Banach space with norm || - ||. We will denote by X* the dual of
X and (-,-) will stand for the usual duality. The strong and weak topology
on X will be denoted by s and w respectively. Let Pyi{X) (respectively
Psx(X)) denote a family of w-compact (s-compact) subsets of X. We will
write Puye(X) and Pee(X) for the families of w-compact convex and s-
compact convex subsets of X. A subset of X will be called w-ball-compeact
(s-ball-compact) if its intersection with any closed ball with center at the
origin is w-compact (s-compact). Denote the family of w-ball-compact (resp.
s-ball-compact) sets by R (resp. Rs).

A multifunction is any mapping F : 2 — Puie(X). A multifunction F is
said to be (Effrds) meesurable if the preimage F~U == {w € 2: Flw)NU
# 0} belongs to A for any s-open set U C X. Measurable multivalued
functions will be considered and the adjective will often be omitted. Also,
the term random set (r.s.) will be used to denote measurable multivalued
functions.

The support function and the radius of the set C & Poike(X) will be
defined in the following way:

s(z*, C) := sup(z, z*), |C|| := sup ||z}l
zel el

A sequence (C,,) C Pyic(X) converges scalarly to a C' € Py (X) if
lims(z*,Cy) = s(z*,C) forall z* € X*.

"The topology of scalar convergence will be denoted by Tecalar-

Given any topology n on X, the sequential n-Kuratowski limes superior
(n-Ls Cy) of a sequence (C,,) C X is the set of all n-limits of subsequences
(2n,) such that z,, € Chn, for all n;. In the sequel 5 will be the weak or the
strong topology.

Denote by D a countable subset of the unit ball B* in X* dense with
respect to the Mackey topology . Let H be the set of all rational linear
combinations of vectors in D. For details see (5, TI1.32]. Notice also that, by
[5, ITI1.34], for any C € Py (X),

(1) C= ﬂ {zeX: (x,a* < s{z*,C)}).
z eI

Denote N_U {0} by Ny. Let A = {(s5,t) € (No)? : s < t}. Families
(Fot)etyea in Pue(X) (or Psie(X)) will be considered. They will be de-
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noted simply by (Fs:). The concepts of subadditivity and superstationarity
are defined in the following way.

DerFmITION 2.1. A family (Cs 1) (5,664 C Puwke(X) (0r Paie(X)) is called
subadditive if
Cot CCspu+Cuy foralls <u<t.
Let D be a space of families F = (F, ;) in Pyie(X)2 (or Pere (X)2):
[ For  Flp Fags
Foo  Fis Fy 4

Fow Fiop Fanez

endowed with the product topology. Let (£, ) € N? and m; ; : D — Puike(X)
{or Pake(X)) be the projection that gives the (4, 7)th coordinate of F € D,
i.e. TI'.i'j(F) = E;'—l,i-!—j—]-

Define the shift T : D — D such that m; ;(T(F)) = Fj4; forall 4, € N.
Let M(D} be the family of probability measures defined on B(D), the Borel
o-algebra of subsets of D.

A probability measure Py € M(D) is stochastically smaller than Ps €
M(D) (notation: Py < Py) if

| fap < | fapr

D ]
for all bounded measurable functions f : P — R which are increasing, i.e.
C < D implies that f(C) £ f(D), where ¢ S D means that C;; C Dy ; for
all {i,7) € A.

DEFINITION 2.2. Let F = (F, ;) be afamily of Py {X)-valued random
sets defined on (£2, 4, P). Let Q; denote the probability distribution of T*F,
ie Qi(A) = P(T'F € A), A € B(D). The family F is called superstationary
if @1~ Qo

Note also that if F is a superstationary process then @41 < @4 for all
i € N,

A nontrivial example is the following,

ExamprLe 2.1. Consider the positive half of the real line. Let (p,) be a
non-increasing sequence of numbers in (0,1). For any n € N define random
variables

1 with probability pn,
n = { 0 with probability 1 — pn.
The binomial distributions on Z.. define a probability measure on the space
£2 1= {0,1}*+, For any w € 2 and i € Zy set w; = w(i). Define a family
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of random intervals F, ,,(w) = (0, EZ::L z{w;}) where z(w;) := x;. Then
(Finn) is an additive and superstationary process.

3. Results. Theorems 3.1-3.3 give different conditions under which The-
orem (4.1) of [14] can be generalized for r.s. with values in a Banach space.
‘We begin with pointwise ergodic theorems.

THEOREM 3.1. Let F' = (F; ;) be o subadditive superstationary family in
Puic{X) satisfying the following assumptions:

(i) (Fas+1) 18 ,Ci,wkc( x)-bounded, i.e. there exists a constant k such that

§o 1Fsstill <% for all s € Ny,
(il) for almost allw € 12, | Jsoy 3 Fo+{w) is contained in some, dependent
on w, element of Ry

Then there exists F., € E%,wkc( x) such that

(a) %Fo,t Tscalar FDO}
(b) Feo(w) C cleo w-Lsi Fp¢(w) a.s. in (2,

Note that if the space X is reflexive then balls in X are w-compact, thus
condition (ii) of Theorem 3.1 is trivially satisfied. Namely, X itself is w-ball
compact.

The next theorem is a version of the previous one for Pake (X )-valued
functions.

THEOREM 3.2. Under the assumptions of Theorem 3.1, where Priee(X)

and Ry are replaced by Pac(X) and Re respectively, there exists an F,e
["}’m( X) such that

(8) limy—s oo 01 (3 Fo,ts Foo) = 0, where pg denotes the Hausdorff distance,
(b} Foo(w) C clcos-LstFy ,(w) a.s. in £2.

Another generalization of Theorem (4.1) in [14] is possible. The assump-
tions of the next theorem are inspired by [3]. In this result both X and X*
are required to have the Radon-Nikodym. property (RNP). Recall that X has
the RNP with respect to (12,4, P) if any P-absolutely continuous measure
Q with bounded variation has a deusity f € £} with respect to P, that is,
Q(A)={,fdPforall Ac A

THEOREM 3.3. Suppose that the Banach space X and its dual X* (with
the dual norm) both have the RNP. Let F = (Fst) be a subadditive super-
stationary family in Peeo(X) satisfying the following assumptions:

(i) (Fs,s41) s qu,wkc( xy-bounded, i.e. there exists o constant k such that
Sn | Fsop1ll <k forall s e Ny,
(ii) the set clcolU2) +§, Fos is w-compact for all A € A.

icm
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Then there exists Fo € L'.%;wkc( x) such that

(a‘) %Fo,t q—scnlnr FDO’
(D) Foo(w) € Ny €leo Uyspy Y Fop(w) a.s. in 2.

Observe that here condition (i) is of more global nature than in Theo-
rem 3.1. Note also that for a separable Banach space X, X™* has the RNP
if and only if X* is separable for the dual norm (see [8, Stegall’s theorem,
p. 195}).

The following theorems give conditions under which limits that occur in
Theorems 3.1, 3.2, 3.3 are constant a.s. These conditions appeared in [9],
[14].

THEOREM 3.4. Let F = (F,,) be a family of random sets satisfying the
assumptions of Theorem 3.1. Suppose also that

(i) § 8(a*, Fou)® < oo, for allt €N, ¢* € H,
(i) imymoo 75 § o (8(2*, Fot))® = g emists and is finite for all z* € H,
(iil) there is a constant 0 < dg+ < 1 depending on z* € H such that for
all z* € H,

2
Var(s(z*, Fo2e)) -+ ( | (5", Foae))
? 2
< 2(1 + &) Var(s(a®, Fo,e)) + 4( | (0, Fos))
7
where Var denotes the variance.

Then there exists a set C € Py (X) such that

(2) $ Ry, Tomims )
(b) limyorco L 8(x™, Fo e} = s(c*, C) in L, for all z* € X*.

We have an immediate analogue of Theorem 3.4 for r.s. with values in
'Palcc(X )

THEOREM 3.5. Let F' = (Fy ;) be a family of random sets satisfying the
assumptions of Theorem 3.2 and (i), (i), (iil) of Theorem 3.4. Then there
exists a set C' & Py (X) such that

(5:].) liInﬂ——mo [ (%Fﬂ,t‘: O) = 0:

(b) lix0gmree 8(2*, Fo,e) = 8(z*, ©) in L, for all z* € X~

THEOREM 3.6. Suppose both X and X* have the RNP. Let F = (Fs.t)
be a family of random sets satisfying the assumptions of Theorem 3.3 and
(i}, (ii), (ii) of Theorem 3.4. Then there ezists a set C € Pwke(X) such that
{a), (b) of Theorem 3.4 hold.
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REMARK 3.1. No analogue of Thecrem 3.6 exists for Py (X }-valued r.s.
The Radon—Nikodym theorem for multimeasures, which is used in the procf
of Theorem 3.6, provides only the existence of a derivative multifunction
with w-compact values,

‘We now present mean ergodic theorems.

ProprosiTiON 3.1. Let (F,) be a sequence of Pykc(X)-valued random
sets such that for almost all w € 2, | ), oy Fr(w) is a subset of some w-ball-
compact set dependent onw. Suppose that for somem € N, limy,_, ¢ 5(z*, F},)
ezists in L for all z* € H and that (|F,i|) converges in LT. Then there
exists an Fy, € ngkc( X) such that

Vls(z", Fn) — s(a*, Foo)[™ = 0 for oll z* € H.
n
THEOREM 3.7. Let F' = (Fs ;) be a family of random sets in Py (X)
satisfying the conditions of Theorem 3.1. Then there erists o random set
F, € L'.,}kac{ x) such that

lim |

t—r o0

1
5(5«“*, ‘{Fo,t) - (2", Foo)‘ =0 forall z* ¢ X*.

REMARK 3.2. Suppose that both X and X* have the RNP, It is possible
to derive analogues of Theorem 3.7 (and also Proposition 3.1, which is used
in the proof of Theorem 3.7). In that case the condition that Usen £ Fou(w)
is a.s. contained in a w-ball-compact set, which depends on w, is replaced
by the following one: clco| ),y § 4 $Fb,¢ is w-compact for all 4 € A.

Much more interesting results can be obtained for r.s. whose values are
in Peke(X). Let us first state a Peee(X)-valued version of Proposition 3.1.

PROPOSITION 3.2. Let (F,,) be a sequence of random sets in Pee(X) such
that for almost all w € 2, | J,cn Fu(w) is a subset of some, dependent on
w, s-ball-compact set. Suppose that for some m € N, lim s(z*, F,,) exists in
Ly for allz* € H and that {||Fn(w)]|) converges in L3t Then there ezists
F,e Ejlgakc( x) such that

S [8(z", B} = s(z*, B)|™ — 0 for all z* € H.
”
Now we have an analogue of Theorem 3.7.
THEOREM 3.8. Let F = (F,,) be a family of rondom sets in Pere (X))

satisfying the assumplions of Theorem 3.2. Then there exists an L,l, (x)"
bounded random set Fy, satisfying e

Lim S
t—+00
i

{1 .
3($ :EFO,t) - s{z ;Fcc)( =0 foralz*e X,

icm
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Under additional assumptions (namely, those that appear in Theo-

rem 3.4) it is possible to derive mean-square convergence results (see Theo-
rems 3.4(b) and 3.5(b)).

REMARK 3.3. Artstein and Hansen showed in [2] that the strong law of
large numbers for convex-valued random sets can be extended to the non-
convex case by applying the smart observation that given a sequence (K;) of
s-compact sets in a Banach space X and an s-compact convex set Ky such
that on (5 3-im; ¢0 Kiy Ko) — 0 asn — oo, also on (2 7, K;, Ko) — 0 as
n — oo. In the case when compact subsets of R? are considered, the well-
known result of Shapley-Folkmann-Starr can be applied. However, this ar-
gument does not apply in the case of subadditive, superstationary processes.
A counterexample (already in R?) is given in [14].

4. Applications. Recall that if a space X is reflexive then closed balls in
X are w-compact. Keeping in mind this remark it is easy to see that the con-
dition which appears in the results of Section 3, namely that [ J;2, 3 Fp ¢ () is
a subset of some element in R, is automatically satisfied in reflexive spaces.
(X itself is then w-ball-compact.) Thus Schiirger’s results for random sets
in R? with compact, convex values follow from the results presented in Sec-
tion 3. Notice also that the scalar convergence tapology is equivalent to the
topology generated by the Hausdorff distance in that case.

Let Py(R%) denote the family of all convex compact subsets of R%. We
have an easy corollary from any of Theorems 3.1-3.3.

CoROLLARY 4.1 (Theorem (4.1) of [14]). Let F := (F,,) be a subad-
ditive superstationary family of Prc(R2)-valued random sets defined on a
common probability space (2, A, P). Assume that there erists o constant
K > 0 such that $o [l Fs sl < K fors € Ny. Then limg_, o0 2 Foy exists a.s.
in (Pkc(Rd)a QH)'

- Theorem 3.4 (or 3.5, 3.6) implies:

COROLLARY 4.2 (Theorem (4.16) of [14]). Let F':= (F, ;) be o subadditive
superstationary family of Pic(R*)-valued random sets satisfying the condi-
tions of Corollary 4.1 and conditions (1), (ii), (iii) of Theorem 3.4. Then there
exists a set C ¢ ’Pkc(Rd) such that limy_, o %Fa}t = C .5, Og = s2(z*,C)
and for oll z*, ity %s(m*,Fo,t) = s(z*,C) in L3.

Theorems 3.8 and 3.5(b) yield respectively:

COROLLARY 4.3 (Theorem (4.32) of [14]). Let F' = (Fs) be a subad-

ditive superstationary family of Pue(R?)-valued rondom sets satisfying the
assumptions of Corollary 4.1. Then there exists a Pi(R%)-valued random
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set G with {, ||G|| dP < oo and
1
lim | on (ﬁpo,t, G’) dP =0.
t—rooﬂ t

CORCLLARY 4.4 (Theorem (4.35) of [14]). Let F := (F,,} be a subad-
ditive superstationary family of Pu.(R?)-valued random sets satisfying the
assumptions of Corollary 4.1. Then there exists a Py(R)-valued random
set G such that lmy_o, §; 0 (2 F e, G) dP = 0.

5. Proofs of the results. The following result, due to Abid ([1]), plays
a key role in the proofs of the results of this paper. Let us recall, after [1], the
definition of a real-valued subadditive superstationary process. We consider
a family z = (z,,) C R? where T4, are real-valued random variables, R2
is equipped with the product topology. The shift T is defined analogously
to the case of Py (X)-valued families.

DEFINITION 5.1. We say that a real-valued process z := () is subad-
ditive and superstationary if

(i) Tat < Ton + Lug, for any triple s,u,t € Ny such that s < u < ¢,
(ii) the distribution of x is stochastically smaller than the distribution
of T'z,
(iil) §, zos < oo for any t € N,
(iv} there exists an M > 0 such that inf,>g $o Tseqt = ~ME, for any
telN.

LEMMA 5.1 ([1]). Por any subadditive superstationary Jamily = (z,4),
lim; .o 370+ exists a.s. in £h.

Another important tool is an analogue of the Blaschke type lemma, ([15])
for multivalued functions with values in Pwke(X) or Py (X).

LEMMa 3.2 (Lemma 3.2 of [3]). (a) For every K € Poic(X ) the subset
K:={C e Pue(X):CC K} of Poxee(X) is metrizable and compact for
the scalar convergence topology. .

(b) For every K € Paxc(X) the subset K := {C & Pare(X) : C € K} of
Pswc(X) is compact for the Hausdorff metric oy.

Consider the following lemma, which will be often nsed in the sequel.

LemmA 5.3. Let (Ch) C Pue(X). Suppose there exists an R € Ry
such that Cn C R for alln € N. Suppose also that (IC.]) is bounded and
that for all ©* € H the sequence s(z*,Cp) converges. Then there exists a

Coo € Puke(X)} such that C,, Teeme, 0

icm
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Proof. By the assumption, s(z*, Cp) converges for all z* € H. Define

2) Qe 1= nlingo s(z”, Ch),
(3) r:= sup||Cy|-
n

Notice that C, C K = RN B(0,r). Since R € Ry, K is compact and by
application of part {a) of Lemma 5.2 there exists a subsequence (Cr,) C (Cn)
which scalarly converges to some Coo € Pyie(X). Obviously, s{z*, Cos) =
@ for all 2 € H. By (2), (1) and the fact that H is dense in X*, Cuo
is the unique cluster point of the sequence (Cr) in the topology of scalar

convergence. Therefore O, Zesios (¢

Proof of Theorem 8.1. It will be shown that for any =* € H, s(z*, F):=
(8(z*, Fst)) and | F|| := (|| Fy4|) are subadditive superstationary real-valued
processes. By subadditivity of F', for any z* € H, s(z*, Fyt) < s(z*, Fo )+
s(z*, Fu,) for all s < uw < t. By superstationarity of F, for all z* € H,
u e R, (s,7) € A we have

PES(&Z‘*, Fs,t) > 'u,] > P[S(Cf}*, F5+1,t+1) > u}

Assumption (i) and subadditivity yield

(i) § o 8(z*, Fop) < oo, forall z* € H,t €N,

(i") infezo §; 5(z™, Fyee) > —kt|z*|., for all z* ¢ H, t € K.
Indeed,

o
o
—

~1

Jo(a®, Fou) <3 Y s(e”, Funnn) < la*lle D § 1 Fuall < 7)1t < oo
0 2

02 u=0 u=0
and
1 te1 _
||m*||,, S 3(5'5*: Fs,S-I-t) 2~ S ”FE.EHH > Z S |EFu,u+1“ 2 —kt,
2 2 u=0 2

forall s € Np, £ € N, z* € X*. Assertion (i) follows by taking the infimum
over all s € Ny. Now, for all 2* € H, s(z*, F) is a real-valued subadditive
superstationary process in the sense of [1] (see Definition 5.1). Analogously
it can be shown that (]| F,||) is also a subadditive superstationary process.
Abid’s peointwise ergodic theorem implies that for all #* € H there exist null
sets Ny» and M and functions pg«~,4 : 2 — R such that

1 c
(4) Jim Es(m*,Fo,t(w)) = g {w) for all w € N&.,
1
(5) Jm LRl = e () for alw € M°

Define the null set N = ).z Nor U M. Fix any w € N®. Lemma 5.3,
applied to Cy = 1Fp:(w), yvields the existence of a set CZ such that
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%Fg,t(w) Facatar, C¥.. Define
Coor wE N°,
Foo(w) = {{O}, otherwise.
Obviously, %ngt(w) Jeostas Foo{w) for all w € N°. Since for all z € X,

4@, Foolw)) = sup [(2,27) ~ 5(a", Foo(w))]

x*

is measurable in w (for s{z*, Feo (")) is a limit of measurable functions), Fj,
is measurable (see [5], Theorem II1.8). Moreover, F, € E%;wkc( x)- Indeed,

1
§ Pl < [ tmint |
t—oo ||
02 7]

< liminfx HEFM
t—00 P t !

L1 1 =~
= liminf = | | Fosll < 5 -tk < oo
t—o00 tQ ! t

The proof of part (b) is an adaptation of that of part {(b) of Theorem 2.1
of [3]. m

Proof of Theorem 3.2. Denote by R : 2 — R, a function such that
UiZs $Foe(w) C R(w) as. As in the proof of Theorem 3.1 one can show
that there exists a function I € L1 (x) such that

1
i
Also, again as in the proof of Theorem 3.1, ”%F‘]’t“ converges to some i €
L. Thus for sufficiently large #,

(6)

T;cala.r W
Fg‘t _— Foc .

1

EFU,t(W) C K(w) = R(w) N B(0,%(w) + 1),

where K{w) € Pae(X) (by the s-ball-compactness of R(w)). Part (b) of
Lemma 5.2 implies that there is a subsequence (t) € () and Fye € Paie(X)
such that

. :
(7) &n (;Fo,thOO) — 0 a.58,

; :
No.W (6) and (7) imply that F,,(w) = Fe(w) (as.) is a unique pg-cluster
point of the sequence (3 Fy4(w)}. Thus (a) is proved. To prove part (b) one
can adapt the proof Theorem 2.1(b) in [3]. w

Proof of Theorem 8.8. As in the proof of Theorem 3.1, it can be shown
that (s(z*, F,:)) and (| Fs,e]l) are subadditive, superstationary families in

Ergodic theorems 209
Abid’s sense. Thus there exist @,-,9 € £} such that for all z* € H,

.1
Per (W) = tlin;lo ?s(:c*, Fyi(w)),

$(w) = Jim 2 1Fo )]

The sets Gy(w) := 3 Fo(w) are uniformly bounded by Y(w) + 1 (for suffi-
ciently large ). Hence (%s(m*,ngt(w))) is equicontinuous on X*, thus (8)
holds for all z* € X*. Put Ry :=cleo|J;2; 1§, Fo,. Define i, : X* — R
by a(s*} = { , @u+. The function ¢4 (z*) is subadditive on X* and

(9) Ya(z*) < s(@*,Ra), for all z* € X*,

therefore ¢4 is 7-continuous on X* and is also w*-lower semicontinuous.
Theorem I1.16 of [5] implies that there exists a nonempty closed convex
subset M(A) C X such that P4() = s{-, M(A)). Obviously, s(z*, M(A4)) =
§ 40z <1, 9, thus

IB()] = sup s(z", M(4)) < | < o0,
e A

(8)

By (9), M(A) C Rg4, thus it is w-compact. Now, as was done in the proof of
Theorem 2.5 in [3], it can be shown that M : A — Py (X) is additive, abso-
lutely continuous with respect to P, has bounded variation and s{z*, M (-))
is g-additive for all z* ¢ X*. Thus the multivalued Radon-Nikedym the-
orem (see B, Théoréme 3] or [7, Théoréme 8, p. II1.31]) can be applied. It
implies the existence of a multifunction F,, € E%,wlm( x) such that

(10) M{A)=|FodP, forall Ac A

A
The multifunction Fy, is defined uniquely up to a null set. Recalling ([11])
that for multivalued functions with s(z*,{, F) = {, s(z*, F) for all A € A
part (a) follows. The proof of part (b) is the same as of Theorem 2.5(b)
in (3]. w

Proof of Theorem 3.4. By Theorem 3.1, %s(m*, Fy 1) converges in £3 (for
all * € X™*), therefore there exists the limit

(11) lim E S s(z", Foy) =: Qg < 00, for all ¥ & X*

t—oa f pa
(Note tha.f &+ does not depend on w.) Following the proof in [9], p. 675,
assumptions (i)-(iii) and (11) imply that

(12}  lim ~2—1— (z*, Fponm(w)) = &z as. forallz™ e H, meN

S
n—co 2%
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and
1 —~ .
(13) Jim Es(w*,Fo,t) =@, in Lp forallz*€H.
— 80

As in the proof of Theorem 3.1 it can be shown that (}{Fos(w)|} is as.
bounded. Thus by (12) and Lemma 5.3 there exists a set C' € Py (X) such
that
1

ﬁFﬂ,Z“m
(for any m as n — o). In view of Theorem 3.1, 1 £ s (w) Zeesles (7 5.5, in f2.
Recalling that s(z*, C) = &,- for all z* € X* and taking into account (13)
we get (b). m

‘-Técalnr C

Proof of Theorem 3.5. Part (b) holds by the argument used in the proof
of Theorem 3.4. Let us prove (a). Theorem 3.4 implies that there exists
C™ € Pyro(X) such that

1
Jim Zs(w*,Fg,t(w)) =s(z",C%) as. forallz* e X*.
By Theorem 3.2, there exists a Poy (X )-valued random set F., satisfying

) 1
tlirgo oH (%—Fo,t(w),Foo(w)) =0 as.

Thus also limg 0 L8(z*, Fp s (w)) = s(z*, Foo(w)) a.s. forall z* € X*. There-
fore (a) holds.

Proof of Theorem 3.6. The proof of Theorem 3.4 can be adapted. It is
enough to use Theorem 3.3 where Theorem 3.1 is used.

Proof of Proposition 8.1. The sequence (|| F,|) is £™-convergent, thus it
has an a.s. convergent subsequence (|| F,, ||}. Let, for each 2* € H, w,+ be the
L7-limit of (s(z*, F,)). Take an arbitrary subsequence of (ny) and denote it
still by (ny). Each sequence (s(z*, Fy,, )) has an a.s. convergent subsequence.
By the diagonal method we extract a subsequence of (reg) (still denoted by
(n&)) and find a negligible set N ¢ {2 such that for all w € N °,

Yo (w) 1= klir& 8(z", Fp,(w)) forall z* € H,
9o) = Jim B, ().

By (14), for eachw € N°thereis k, € N such that for all & > k,, ([ Fry (@)}
is bounded. Lemma 5.3 yields the existence of a Py (X J-valued multifunc-
tion F,, such that

(15) Frp(w) B, () as.

(14)
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Recall that s(z*, Fi,, (w)) — g« (w) a.s. for each z* € H. Thus s{z*, Foo(w))
= g+ (w) a.6. for all z* € H. Now we conclude that, for each z* € H ,

[ Is(a", Fu(w) = 5(a*, Foo ()™ dP(w) — 0.
2

To show that Foo € LB,y Tecall that if Cp Tt O then [|Coof| <
liminfy, ||Cyl|. Therefore |Fo | < liminf [|[F, |7 < co. w

Proof of Theorem 8.7. Theorem 3.1 implies that there exists F., €
L',%,wkc(x) such that %s(m*,FO,F) converges to s(z*, Fi) for any z* € X*.
Also, as follows from the proof of Theorem 3.1, there exists 3 € L} such
that £1-limg, e [ Foe(w)| = ¥{w). Now the result follows from Proposi-
tion 3.1, =

Proof of Proposition 3.2. Analogous to the proof of Proposition 3.1. m

Proof of Theorem 3.8. By Theorem 3.2 there exists an Fi € ’C‘%’m( x)

such that a.s. (3 Fo:+(w), Foo(w)) — 0, thus (3s(z*, Foy)), (3IFo.ll) con-
verge in Cj. The result now follows from Proposition 3.2. m
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