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ON OPTION PRICING
IN THE MULTIDIMENSIONAL

COX–ROSS–RUBINSTEIN MODEL

Abstract. Option pricing in the multidimensional case, i.e. when the
contingent claim paid at maturity depends on a number of risky assets, is
considered. It is assumed that the prices of the risky assets are in discrete
time subject to binomial disturbances. Two approaches to option pricing
are studied: geometric and analytic. A numerical example is also given.

1. Introduction. Assume we are given d risky assets (called stocks)
with prices Sik, i = 1, . . . , d, and a riskless bond with price Bk, at time
k = 1, . . . , T respectively. The price of the risky assets is subject to random
changes according to the rule

Sik+1 = (1 + %ik)S
i
k for i = 1, . . . , d

where %i := %ik stand for i.i.d. random variables defined on a given proba-
bility space (Ω,F , P ) and concentrated at two points −1 < ai < bi, i.e.

P (%ik = ai) > 0, P (%ik = bi) = 1− P (%ik = ai) > 0 for k = 1, . . . , T.

Furthermore, we assume that the bond price is deterministic and

Bk+1 = (1 + r)Bk
where the interest rate r is positive and ai < r < bi.

We study the problem of pricing a contingent claim called option that
guarantees the buyer a return equal to ϕ(S1

T , . . . , S
d
T ) at time T , where

ϕ : Rd → R is a given Borel measurable function. It is commonly considered
that the price of such a contingent claim should be equal to the minimal
value of the capital which invested in an optimal way in bonds and stocks
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will replicate the potential loss of the seller, i.e. at time T we obtain

XT ≥ ϕ(S1
T , . . . , S

d
T ) P -a.s.

where XT is the value of the seller’s portfolio at time T .
In what follows we assume that all assets are infinitely divisible, that is,

we allow possession of a part of an asset.
Let γik denote the number of shares of the ith stock and βk the num-

ber of bonds that the seller of the option owns at time k. Let Xk be the
corresponding value of the seller’s portfolio. We clearly have

(1) Xk = βkBk +
d∑
i=1

γikS
i
k.

We assume that the investor can change his portfolio at time k from (βk, γ1
k,

. . . , γdk) to (βk+1, γ
1
k+1, . . . , γ

d
k+1), but we only admit self-financing portfolio

strategies, i.e. neither consumption nor exogeneous income is allowed, so
that we have

(2) Xk = βk+1Bk +
d∑
i=1

γik+1S
i
k.

Since

Xk+1 = βk+1Bk+1 +
d∑
i=1

γik+1S
i
k+1

using (2) we obtain

Xk+1 = (1 + r)Xk + γ1
k+1(%1 − r)S1

k + . . .+ γdk+1(%d − r)Sdk .

Denote by Sk the column vector (S1
k, . . . , S

d
k)
′. Then

Sk+1 = Γ%Sk

where Γ% is a random d × d diagonal matrix with the (i, i) entry equal to
1 + %i. Consequently, the process Zk = (Xk, Sk) can be considered as a
controlled Markov chain on the state space E = {(x, s) : x ∈ R+, s ∈ Rd+}.
Denote by Pγ the transition probability of Zk under a portfolio strategy
γ = (γ1, . . . , γd). Let

K := {(x, s) : x ≥ ϕ(s)}, K−1 := {(x, s) : ∃γ Pγ((x, s);K) = 1}.
Denote by B the space of Borel measurable functions from Rd into R. Notice
that if there exists a transformation Q of B into itself such that

K−1 = {(x, s) : x ≥ Q(ϕ(s))}
then the price x0 of the contingent claim ϕ(S1

T , . . . , S
d
T ) is equal to

x0 = QT (ϕ(s))
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where QT stands for the T th iteration of the transformation Q. The problem
is to find the form of Q.

Given a strategy γ = (γ1, . . . , γd) the condition

Pγ((x, s);K) = 1

is equivalent to the system of 2d inequalities

(3)


(1 + r)x+ γ1(a1 − r)s1 + . . .+ γd(ad − r)sd ≥ ϕ(a1, . . . , ad, s),

...
...

(1 + r)x+ γ1(b1 − r)s1 + . . .+ γd(bd − r)sd ≥ ϕ(b1, . . . , bd, s),

where ϕ is defined as follows:

ϕ(i1, . . . , id, s) = ϕ((1 + i1)s1, . . . , (1 + id)sd)

with ij ∈ {aj , bj} for j = 1, . . . , d, and s = (s1, . . . , sd)′.
We determine the value of x0 and the form of Q using two independent

approaches: a geometric one that is based on the study of the location of d-
dimensional hyperplanes in Rd+1, and an analytic one in which inequalities
(3) are solved using direct methods.

Our results can be extended to the case of bounded disturbances assum-
ing additionally that the contingent claim function ϕ is convex. Using the
analytic approach in the particular case d = 2 we obtain an explicit formula
for the transformation Q.

The paper generalizes the results of the famous paper of Cox–Ross–
Rubinstein [1], as well as more recent approaches of Shiryaev, Kabanov,
Kramkov and Mel’nikov [3], and Tessitore and Zabczyk [4] where the case
of d = 1 was studied.

It is worth pointing out that in the one-dimensional case (d = 1) we
have perfect replication, i.e. we can find an initial capital x0 and a portfolio
strategy (γ1

1 , γ
1
2 , . . . , γ

1
T ) for which with probability one we have

XT = ϕ(S1
T ).

If d > 1 we do not have perfect replication, and therefore we can only
guarantee a so-called super-hedging , i.e. that

XT ≥ ϕ(S1
T , . . . , S

d
T ) P -a.s.

Finally, notice that, in the continuous time multidimensional lognormal
model, contrary to the discrete time case, we do have perfect replication
(see Karatzas–Schreve [2], Section 5.8.B), which extends the famous Black–
Scholes formula.

2. Geometric approach. In this section we consider a geometric
approach which is useful for two reasons: we obtain a formula for the trans-
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formation Q in a general d-dimensional case (Section 2.1) and we can extend
our model to the case of bounded disturbances with convex contingent claim
function ϕ (Section 2.2).

2.1. The case of binomial disturbances. Let

V = {v = (i1, . . . , id) : ∀1≤j≤d ij ∈ {aj , bj}}

be the set of vertices of a d-dimensional cube and

CV = {c = {v1, . . . , vd+1} : ∀1≤i≤d+1 vi ∈ V }

the set of (d+ 1)-combinations of elements of V .
The system (3) of inequalities may then be written equivalently as

(4) ∀v∈V h(v, s) ≥ ϕ(v, s)

where h : Rd×Rd+ → R is an affine function, defined for s ∈ Rd+ as follows:

h(x1, . . . , xd, s) = (1 + r)x+
d∑
i=1

γi(xi − r)si.

Let
D(s) := conv{(v, ϕ(v, s)) : v ∈ V }

and H(s) ⊂ Rd+1 be the hyperplane given for fixed s by the equation

xd+1 = h(x1, . . . , xd, s).

Geometrically, condition (4) means that the convex polyhedron D(s) lies
below the hyperplane H(s).

Remark 1. If h is given as above then

x =
1

1 + r
h(r, . . . , r, s),

γi =
∂h

∂xi
· 1
si

for i = 1, . . . , d.

Therefore γ ∈ Rd, x ∈ R are parameters of the hyperplane H(s); x is a
position parameter and γ1, . . . , γd are direction parameters. Moreover, for
fixed s, there is a one-to-one correspondence between the set of parameters
and the set of hyperplanes determined by affine functions. This means that
we can now reformulate the problem in geometrical terms looking for a
suitable hyperplane, instead of x and γ. Therefore the problem of finding
the smallest level x of capital for which there exist strategies γ1, . . . , γd

satisfying (3) is equivalent to determining the hyperplane that is tangent to
D(s) at the point (r, . . . , r, u) for some u and lies above D(s).
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Definition 1. We say that a combination c = {v1, . . . , vd+1} belongs
to the set of admissible combinations Ca

V ⊂ CV if there exists a unique
sequence λ1(c), . . . , λd+1(c) of nonnegative coordinates such that

d+1∑
i=1

λi(c) = 1 and
d+1∑
i=1

λi(c)vi = r

with r = [r, . . . , r]′.

The above conditions have the following geometrical interpretation: the
polyhedron spanned by the set c = {v1, . . . , vd+1} of vertices is precisely
d-dimensional and it contains the point (r, . . . , r).

Let f : Ca
V × Rd+ → R be defined as follows:

f(c, s) =
d+1∑
i=1

ϕ(vi, s)λi(c)

where c = {v1, . . . , vd+1}. We have

Theorem 1. The smallest x for which there exists a strategy (γ1, . . . , γd)
such that system (3) is satisfied is equal to Q(ϕ(s)) and is of the form

1
1 + r

max
c∈Ca

V

f(c, s).

P r o o f. Let Hu(s) be the family of d-dimensional hyperplanes H in
Rd+1 such that

(5) (r, . . . , r, u) ∈ H

and

(6) H = {(x1, . . . , xd+1) : xd+1 = h(x1, . . . , xd)} ⇒ ∀v∈V h(v) ≥ ϕ(v, s).

According to Remark 1,

Q(ϕ(s)) =
1

1 + r
min{u : Hu(s) 6= ∅}.

Therefore it is sufficient to show the following conditions:

Hu0(s)(s) 6= ∅ for u0(s) = max
c∈Ca

V

f(c, s),(7)

Hu(s) = ∅ for u < u0(s).(8)

We first show (7). Let c0(s) ∈ Ca
V be a combination for which the max-

imum is achieved, c0(s) = {v0
1(s), . . . , v0

d+1(s)}. Consider the hyperplane
Ĥ(s) determined by the points p0

1(s) = (v0
1(s), ϕ(v0

1(s), s)), . . . , p0
d+1(s) =
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(v0
d+1(s), ϕ(v0

d+1(s), s)). Since c0(s) ∈ Ca
V the points p0

1(s), . . . , p
0
d+1(s) de-

fine the d-dimensional hyperplane Ĥ(s) in a unique way. Then

Ĥ(s) =
{

(x1, . . . , xd+1) : ∃(k1, . . . , kd+1) ∈ Rd+1

d+1∑
i=1

ki = 1, (x1, . . . , xd+1) =
d+1∑
i=1

kip
0
i (s)

}
or equivalently

(x1, . . . , xd) =
d+1∑
i=1

kiv
0
i (s), xd+1 =

d+1∑
i=1

kiϕ(v0
i (s), s).

We claim that Ĥ(s) ∈ Hu0(s)(s).
Since c0(s) ∈ Ca

V there exist coordinates (λi(c0(s)))i=1,...,d+1 that sum
to 1 and

r =
d+1∑
i=1

λi(c0(s))v0
i (s).

Therefore due to the definition of c0(s) we have

u0(s) = f(c0(s)) =
d+1∑
i=1

λi(c0(s))ϕ(v0
i (s), s).

Consequently, (r, . . . , r, u0(s)) ∈ Ĥ(s) and (5) is satisfied.
We now show that Ĥ(s) satisfies (6). Let J(s) be the interval in Rd+1

defined as follows:

J(s) = {(x1, . . . , xd+1) ∈ D(s) : xi = r for i = 1, . . . , d}.
Moreover, let

u(s) = max
p∈J(s)

πd+1(p)

where πd+1 is the natural projection onto the (d + 1)st coordinate. Since
the point (r, . . . , r,u0(s)) belongs to J(s) we clearly have u0(s) ≤ u(s).
On the other hand, the point p(s) = (r, . . . , r, u(s)) is on Fr(D(s)) and
therefore it belongs to a d-dimensional polyhedron P (s) ⊂ Fr(D(s)). If
P (s) is determined by the vertices p1(s) = (v1(s), ϕ(v1(s), s)), . . . , pd+1(s) =
(vd+1(s), ϕ(vd+1(s), s)) then it is easy to see that the combination c(s) =
{v1(s), . . . , vd+1(s)} is admissible. Consequently,

u(s) =
d+1∑
i=1

λi(c(s))ϕ(vi(s)) = f(c(s), s)

and by the definition of u0(s) we obtain u0(s) ≥ u(s). This means that
u0(s) = u(s) and the d-dimensional polyhedron with vertices p0

1(s), . . .
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. . . , p0
d+1(s) is contained in Fr(D(s)). Therefore the hyperplane Ĥ(s), span-

ned by the same points, is tangent to D(s). Consequently, Ĥ(s) satisfies
condition (6) and Ĥ(s) ∈ Hu0(s)(s).

To complete the proof of the theorem it remains to show (8). When
u < u0(s) we have (r, . . . , r, u) ∈ int(D(s)), and every hyperplane containing
(r, . . . , r, u) crosses D(s) and hence (6) is not satisfied. Thus we have (8)
and the proof is complete.

Remark 2. The vector γ of optimal controls may not be unique, which
means that it is possible that the seller has several alternative ways to invest
his money to super-hedge the option.

2.2. The case of bounded noises. In this section we relax the assumption
on the distribution of disturbances of the stock prices. Namely, we only
assume that the support of the distribution is bounded, i.e.

P (ai ≤ Sik ≤ bi) = 1

where
ai = inf supp %ik > −1, bi = sup supp %ik <∞,

for all k = 1, . . . , T and i = 1, . . . , d.
Moreover, we additionally assume that the contingent claim function ϕ

is convex. Many popular options (e.g. European call and put) have convex
contingent claim functions. One can see that in this new model, due to the
convexity of ϕ, the construction of the set K−1 is also equivalent to solving
the system (3), and we obtain the same formula for the transformation Q.
However, to iterate this algorithm we have to verify that Q(ϕ) is a convex
function of s.

Corollary 1. The function Q(ϕ) is of the form

Q(ϕ(s)) =
1

1 + r
max
c∈Ca

V

d+1∑
i=1

ϕ(vi, s)λi(c)

where c = {v1, . . . , vd+1}, and is a convex function of s.

P r o o f. The above form of Q(ϕ) is clearly a straightforward conclusion
from Theorem 1.

Since ϕ is a convex function of s, for any s, s′ ∈ Rd and any combination
c = {v1, . . . , vd+1} ∈ Ca

V we have
d+1∑
i=1

ϕ(vi, αs+ (1− α)s′)λi(c) ≤
d+1∑
i=1

(αϕ(vi, s) + (1− α)ϕ(vi, s′))λi(c).

The set Ca
V does not depend on s so taking the maximum over the set of

admissible combinations on both sides of the above inequality we obtain the
convexity of the function Q(ϕ).
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Remark 3. Notice that the bounds ai, bi, i = 1, . . . , d, of the distur-
bances may also depend on time k = 1, . . . , T . More precisely, the con-
struction of Q and all arguments above are still valid when we assume that
(ai,k)k=1,...,T and (bi,k)k=1,...,T are predictable processes on (Ω,F , P ) for
i = 1, . . . , d.

3. Analytic approach. It turns out that to get an explicit formula for
the option price in the multidimensional case is difficult. We managed to
find it only in the two-dimensional case. In the case when d ≥ 3 the pricing
of an option can be reduced to a certain optimization problem which can be
solved numerically.

3.1. Two-dimensional case. The two-dimensional case has an interesting
interpretation in the market of derivatives of foreign securities. Namely,
options on foreign securities depend both on the value of the asset as well as
on the current exchange rate, which are random. This corresponds exactly
to the two-dimensional case which we solve below.

For d = 2 the system (3) is of the form

(9)



(1 + r)x+ γ1(a1 − r)s1 + γ2(a2 − r)s2 ≥ ϕ(a1, a2, s),

(1 + r)x+ γ1(b1 − r)s1 + γ2(a2 − r)s2 ≥ ϕ(b1, a2, s),

(1 + r)x+ γ1(a1 − r)s1 + γ2(b2 − r)s2 ≥ ϕ(a1, b2, s),

(1 + r)x+ γ1(b1 − r)s1 + γ2(b2 − r)s2 ≥ ϕ(b1, b2, s).

Multiplying the first and third inequalities by b1− r and the second and
fourth by r− a1 and adding the first inequality to the second and the third
to the fourth we get two inequalities without the component γ1 from which
we obtain a lower and an upper bound for γ2. Analogously we can eliminate
the component γ2 and obtain bounds for γ1. We have

γ1 ≥
(
b2−r
b2−a2

ϕ(b1, a2, s) + r−a2
b2−a2

ϕ(b1, b2, s)
)
− (1 + r)x

(b1 − r)s1
,

γ1 ≤
(1 + r)x−

(
b2−r
b2−a2

ϕ(a1, a2, s) + r−a2
b2−a2

ϕ(a1, b2, s)
)

(r − a1)s1
,

and

γ2 ≥
(
b1−r
b1−a1

ϕ(a1, b2, s) + r−a1
b1−a1

ϕ(b1, b2, s)
)
− (1 + r)x

(b2 − r)s2
,

γ2 ≤
(1 + r)x−

(
b1−r
b1−a1

ϕ(a1, a2, s) + r−a1
b1−a1

ϕ(b1, a2, s)
)

(r − a2)s2
.

From the bounds on γ1 or γ2 we can obtain the same formula (in both cases)
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for the lower bound of x, namely

x ≥ 1
1 + r

[
(b1 − r)(b2 − r)

(b1 − a1)(b2 − a2)
ϕ(a1, a2, s) +

(b1 − r)(r − a2)
(b1 − a1)(b2 − a2)

ϕ(a1, b2, s)

+
(r − a1)(b2 − r)

(b1 − a1)(b2 − a2)
ϕ(b1, a2, s) +

(r − a1)(r − a2)
(b1 − a1)(b2 − a2)

ϕ(b1, b2, s)
]
.

Let Gϕ(s1, s2) be the expression in brackets on the right side of the above
inequality and let Lϕ(s) be a nonnegative number such that: if

x =
1

1 + r
(Gϕ(s1, s2) + Lϕ(s1, s2))

then there exist strategies γ1, γ2 satisfying system (9).
Denote by L∗ϕ(s) the infimum of the set {Lϕ(s)}. Clearly,

Q(ϕ(s1, s2)) =
1

1 + r
(Gϕ(s1, s2) + L∗ϕ(s1, s2)).

Furthermore, we have

Theorem 2. If

∆(s) := ϕ(b1, b2, s)− ϕ(a1, b2, s)− ϕ(b1, a2, s) + ϕ(a1, a2, s) = 0

then L∗ϕ(s) = 0 and we have perfect replication.

P r o o f. Let γ1 be a linear combination of its lower and upper bound
with coefficients α and 1−α respectively, for α ∈ [0, 1], and similarly for γ2

with coefficients β and 1 − β for β ∈ [0, 1]. Substituting γ1 and γ2 in the
left hand sides of (9) and using the formula for x with Lϕ(s) = 0, we obtain

(1 + r)x+ γ1(a1 − r)s1 + γ2(a2 − r)s2 = ϕ(a1, a2, s)

− (r − a1)(r − a2)
(b1 − a1)(b2 − a2)

∆(s),

(1 + r)x+ γ1(b1 − r)s1 + γ2(a2 − r)s2 = ϕ(b1, a2, s)

+
(b1 − r)(r − a2)

(b1 − a1)(b2 − a2)
∆(s),

(1 + r)x+ γ1(a1 − r)s1 + γ2(b2 − r)s2 = ϕ(a1, b2, s)

+
(r − a1)(b2 − r)

(b1 − a1)(b2 − a2)
∆(s),

(1 + r)x+ γ1(b1 − r)s1 + γ2(b2 − r)s2 = ϕ(b1, b2, s)

− (b1 − r)(b2 − r)
(b1 − a1)(b2 − a2)

∆(s).

Since ∆(s) = 0 by assumption, we have equalities in (9), which means
perfect replication. Consequently, L∗ϕ(s) = 0.
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Theorem 3. The smallest Lϕ for which there exist strategies (γ1, γ2)
such that (9) holds is

L∗ϕ(s) =


(r − a1)(b2 − r)

(b1 − a1)(b2 − a2)
∆(s) if

r − a1

b1 − a1
≤ r − a2

b2 − a2
,

(b1 − r)(r − a2)
(b1 − a1)(b2 − a2)

∆(s) if
r − a1

b1 − a1
≥ r − a2

b2 − a2
,

when ∆(s) > 0, and

L∗ϕ(s) =


(b1 − r)(b2 − r)

(b1 − a1)(b2 − a2)
|∆(s)| if

r − a1

b1 − a1
≥ b2 − r

b2 − a2
,

(r − a1)(r − a2)
(b1 − a1)(b2 − a2)

|∆(s)| if
r − a1

b1 − a1
≤ b2 − r

b2 − a2
,

when ∆(s) < 0. The replicating strategies γ1, γ2 are

γ1 =
(1 + r)x−

(
b2−r
b2−a2

ϕ(a1, a2, s) + r−a2
b2−a2

ϕ(a1, b2, s)
)

(r − a1)s1
if

r − a1

b1 − a1
≤ r − a2

b2 − a2
,(

b2−r
b2−a2

ϕ(b1, a2, s) + r−a2
b2−a2

ϕ(b1, b2, s)
)
− (1 + r)x

(b1 − r)s1
if

r − a1

b1 − a1
≥ r − a2

b2 − a2
,

γ2 =
(
b1−r
b1−a1

ϕ(a1, b2, s) + r−a1
b1−a1

ϕ(b1, b2, s)
)
− (1 + r)x

(b2 − r)s2
if

r − a1

b1 − a1
≤ r − a2

b2 − a2
,

(1 + r)x−
(
b1−r
b1−a1

ϕ(a1, a2, s) + r−a1
b1−a1

ϕ(b1, a2, s)
)

(r − a2)s2
if

r − a1

b1 − a1
≥ r − a2

b2 − a2
,

when ∆(s) > 0, and

γ1 =
(
b2−r
b2−a2

ϕ(b1, a2, s) + r−a2
b2−a2

ϕ(b1, b2, s)
)
− (1 + r)x

(b1 − r)s1
if

r − a1

b1 − a1
≥ b2 − r

b2 − a2
,

(1 + r)x−
(
b2−r
b2−a2

ϕ(a1, a2, s) + r−a2
b2−a2

ϕ(a1, b2, s)
)

(r − a1)s1
if

r − a1

b1 − a1
≤ b2 − r

b2 − a2
,

γ2 =
(
b1−r
b1−a1

ϕ(a1, b2, s) + r−a1
b1−a1

ϕ(b1, b2, s)
)
− (1 + r)x

(b2 − r)s2
if

r − a1

b1 − a1
≥ b2 − r

b2 − a2
,

(1 + r)x−
(
b1−r
b1−a1

ϕ(a1, a2, s) + r−a1
b1−a1

ϕ(b1, a2, s)
)

(r − a2)s2
if

r − a1

b1 − a1
≤ b2 − r

b2 − a2
.
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when ∆(s) < 0. Furthermore, for ∆(s) 6= 0 we do not have perfect replica-
tion.

P r o o f. We prove the case ∆(s) > 0 only, since the proof in the case
∆(s) < 0 is based on similar considerations. Substituting, in the left hand
sides of (9), γ1, γ2 as convex combinations of their bounds with coefficients
α, 1 − α and β, 1 − β respectively, and letting (1 + r)x = Gϕ(s1, s2) +
Lϕ(s1, s2) we obtain the expressions

ϕ(a1, a2, s)−
(r − a1)(r − a2)

(b1 − a1)(b2 − a2)
∆(s)

+ Lϕ(s)
(
α
b1 − a1

b1 − r
+ β

b2 − a2

b2 − r
− 1

)
,

ϕ(b1, a2, s) +
(b1 − r)(r − a2)

(b1 − a1)(b2 − a2)
∆(s)

+ Lϕ(s)
(
b1 − r

r − a1
− α

b1 − a1

r − a1
+ β

b2 − a2

b2 − r

)
,

ϕ(a1, b2, s) +
(r − a1)(b2 − r)

(b1 − a1)(b2 − a2)
∆(s)

+ Lϕ(s)
(
α
b1 − a1

b1 − r
+
b2 − r

r − a2
− β

b2 − a2

r − a2

)
,

ϕ(b1, b2, s)−
(b1 − r)(b2 − r)

(b1 − a1)(b2 − a2)
∆(s)

+ Lϕ(s)
(

(1− α)
b1 − a1

r − a1
+
b2 − r

r − a2
− β

b2 − a2

r − a2

)
.

Comparing the first and fourth lines to the corresponding right hand
sides of (9) we see that we should have

(10)



Lϕ(s)
(
α
b1 − a1

b1 − r
+ β

b2 − a2

b2 − r
− 1

)
≥ (r − a1)(r − a2)

(b1 − a1)(b2 − a2)
∆(s),

Lϕ(s)
(

(1− α)
b1 − a1

r − a1
+
b2 − r

r − a2
− β

b2 − a2

r − a2

)
≥ (b1 − r)(b2 − r)

(b1 − a1)(b2 − a2)
∆(s).

Let

A1 =
{

(x1, x2) ∈ [0, 1]2 : x1
b1 − a1

b1 − r
+ x2

b2 − a2

b2 − r
− 1 > 0

}
,

A2 =
{

(x1, x2) ∈ [0, 1]2 : (1− x1)
b1 − a1

r − a1
+
b2 − r

r − a2
− x2

b2 − a2

r − a2
> 0

}
,

A = A1 ∩A2.
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The set A is nonempty since it contains the pairs (0, 1) and (1, 0). Moreover,
A is a convex and open subset of R2 as the intersection of convex and open
sets A1, A2. Therefore the diagonal {(α, β) ∈ [0, 1]2 : α+β = 1} is contained
in A together with its open neighbourhood.

It is easy to check that for (α, β) ∈ A, (10) can be rewritten equivalently
as

Lϕ(s) ≥ (r − a2)(b2 − r)(r − a1)(b1 − r)
(b2 − a2)(b1 − a1)

∆(s) ·max {k1(α, β), k2(α, β)}

where k1(α, β), k2(α, β) are fractions of the form

k1(α, β) =
1

α(b1 − a1)(b2 − r) + β(b2 − a2)(b1 − r)− (b1 − r)(b2 − r)
,

k2(α, β) =
1

(1− α)(b1 − a1)(r − a2) + (b2 − r)(r − a1)− β(b2 − a2)(r − a1)
.

Let

(11) M = inf
(α,β)∈A

max{k1(α, β), k2(α, β)}.

Comparing the denominators of k1 and k2, after algebraic transformations
we obtain

α(b1 − a1)(b2 − r) + β(b2 − a2)(b1 − r)− (b1 − r)(b2 − r)
≥ (1− α)(b1 − a1)(r − a2) + (b2 − r)(r − a1)− β(b2 − a2)(r − a1)

for
α+ β ≥ 1.

Therefore, when the infimum in (11) is achieved for α + β ≥ 1 we have
M = M1 with

M1 = inf
(α,β)∈A
α+β≥1

k2(α, β)

and the form of k2 implies that the infimum is attained for α + β = 1.
Consequently,

M1 = inf
α∈[0,1]

1
(b1 − r)(r − a2)− α[(b1 − a1)(r − a2)− (b2 − a2)(r − a1)]

=


1

(b1 − r)(r − a2)
if

r − a1

b1 − a1
≤ r − a2

b2 − a2
,

1
(r − a1)(b2 − r)

if
r − a1

b1 − a1
≥ r − a2

b2 − a2
.

If the infimum in (11) is achieved for α+ β ≤ 1 we have M = M2 with

M2 = inf
(α,β)∈A
α+β≤1

1
α(b1 − a1)(b2 − r) + β(b2 − a2)(b1 − r)− (b1 − r)(b2 − r)
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and the infimum is also attained when α + β = 1, which means that M =
M1 = M2.

Let Lϕ(s) be the lower level for which there exist strategies γ1, γ2 such
that the first and fourth inequalities of (9) are satisfied. Then

Lϕ(s) =


(r − a1)(b2 − r)

(b1 − a1)(b2 − a2)
∆(s) if

r − a1

b1 − a1
≤ r − a2

b2 − a2
,

(b1 − r)(r − a2)
(b1 − a1)(b2 − a2)

∆(s) if
r − a1

b1 − a1
≥ r − a2

b2 − a2
,

and the corresponding strategies are linear combinations of their bounds
with coefficients:

α =


0 if

r − a1

b1 − a1
≤ r − a2

b2 − a2
,

1 if
r − a1

b1 − a1
≥ r − a2

b2 − a2
,

for γ1, and

β =


1 if

r − a1

b1 − a1
≤ r − a2

b2 − a2
,

0 if
r − a1

b1 − a1
≥ r − a2

b2 − a2
,

for γ2.
Furthermore, notice that for α = 0, β = 1 we have a strict inequality in

the second line and equality in the third line of (9), while for α = 1, β = 0
we have equality in the second line and strict inequality in the third line of
(9). Hence, L∗ϕ(s) = Lϕ(s). The proof for ∆(s) > 0 is thus complete.

3.2. Multidimensional case. In this section we present some analytical
results obtained for the general case d ≥ 1.

We now leave the geometric language and denote the vertices (i1, . . . , id)
by ξ. Let

Ξ = {ξ = (ξ1, . . . , ξd) : ξj ∈ {aj , bj} for j ∈ I}
where I = {1, . . . , d}.

Definition 2. For a given sequence (i∗j1 , . . . , i
∗
jn

), i∗jl ∈ {ajl , bjl} for
l = 1, . . . , n, n ≤ d, the projection set Ξ(i∗j1 , . . . , i

∗
jn

) is the subset of Ξ
defined as follows:

Ξ(i∗j1 , . . . , i
∗
jn) = {ξ : ξjl = i∗jl for l = 1, . . . , n}.

Let {F ϕ̄j1,...,jk : {j1, . . . , jk} ⊂ I} be the family of functions defined by the
formula

F ϕ̄j1,...,jk(ξ, s) =
d−k∏
l=1

(
1− |ξkl

− r|
bkl

− akl

)
ϕ(ξ, s)

where kl ∈ I \ {j1, . . . , jk} for l = 1, . . . , d− k. Denote F ϕ̄∅ by F ϕ̄.
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Remark 4. Notice that for any set {j1, . . . , jk−1} of indices and jk ∈
I \ {j1, . . . , jk−1} the following identity holds:∑

ξ∈Ξ(ij1 ,...,ijk−1 )

F ϕ̄j1,...,jk−1
(ξ, s)

=
bjk − r

bjk − ajk

∑
ξ∈Ξ(ij1 ,...,ijk−1 ,ajk

)

F ϕ̄j1,...,jk(ξ, s)

+
r − ajk
bjk − ajk

∑
ξ∈Ξ(ij1 ,...,ijk−1 ,bjk

)

F ϕ̄j1,...,jk(ξ, s).

Lemma 1. If x and (γ1, . . . , γd) satisfy the system (3) of 2d inequalities
then

(12)


(1 + r)x+ γj(aj − r)sj ≥

∑
ξ∈Ξ(aj)

F ϕ̄j (ξ, s),

(1 + r)x+ γj(bj − r)sj ≥
∑

ξ∈Ξ(bj)

F ϕ̄j (ξ, s),

for all j = 1, . . . , d.

P r o o f. The proof is by induction on d. For d = 1, (12) holds because
then the systems (3) and (12) are identical. Assume that the induction
hypothesis is true for d− 1. We show that (12) is true for any k, 1 ≤ k ≤ d.
Let j be an integer, 1 ≤ j ≤ d, different from k. Assume x and (γ1, . . . , γd)
satisfy (3). Multiply each inequality in (3) corresponding to the sequence
(i1, . . . , aj , . . . , id) by bj − r > 0, and each inequality corresponding to the
sequence (i1, . . . , bj , . . . , id) by r− aj > 0. Adding the inequalities obtained
for every (i1, . . . , ij−1, ij+1 . . . , id) we find that the coefficient of γjsj is equal
to (bj−r)(aj−r)−(r−aj)(bj−r) = 0. Consequently, we obtain a system of
2d−1 inequalities with variables x and γ1, . . . , γj−1, γj+1, . . . , γd. Dividing
each inequality by bj − aj we can write the inequality corresponding to the
sequence (i1, . . . , ij−1, ij+1 . . . , id) in the form

(13) (1 + r)x+
j−1∑
l=1

γl(il − r)sl +
d∑

l=j+1

γl(il − r)sl

≥ ψ(i1, . . . , ij−1, ij+1 . . . , id, s)

where

ψ(i1, . . . , ij−1, ij+1 . . . , id, s) :=
bj − r

bj − aj
ϕ(i1, . . . , aj , . . . , id, s)

+
r − aj
bj − aj

ϕ(i1, . . . , bj , . . . , id, s).
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Consider now (13) as a new system of 2d−1 inequalities with the right
side function ψ. Since k 6= j we can apply the induction hypothesis for k in
the (d− 1)st case. Therefore we have

(1 + r)x+ γk(ak − r)sk ≥
∑

ξ̄∈Ξ̄(ak)

Fψk (ξ, s),

(1 + r)x+ γk(bk − r)sk ≥
∑

ξ̄∈Ξ̄(bk)

Fψk (ξ, s),

where ξ and Ξ(·) in the system above are from Rd−1 because the jth coor-
dinate was omitted. Note that, by the definition of ψ and Remark 4,∑
ξ̄∈Ξ̄(ik)

Fψk (ξ, s) =
bj − r

bj − aj

∑
ξ∈Ξ(aj ,ik)

F ϕ̄j,k(ξ, s) +
r − aj
bj − aj

∑
ξ∈Ξ(bj ,ik)

F ϕ̄j,k(ξ, s)

=
∑

ξ∈Ξ(ik)

F ϕ̄k (ξ, s)

where ik ∈ {ak, bk} and ξ ∈ Rd, so that the induction hypothesis is also true
for d, which completes the proof.

Using Lemma 1 we formulate necessary conditions for solutions of (3) in
terms of the bounds on x and γ1, . . . , γd.

Proposition 1. If x and (γ1, . . . , γd) satisfy the system (3) of 2d in-
equalities for given s ∈ Rd then

x ≥ 1
1 + r

∑
ξ∈Ξ

F ϕ̄(ξ, s),

and , for j = 1, . . . , d,∑
ξ∈Ξ(bj)

F ϕ̄j (ξ, s)− (1 + r)x

(bj − r)sj
≤ γj ≤

(1 + r)x−
∑
ξ∈Ξ(aj)

F ϕ̄j (ξ, s)

(r − aj)sj
.

P r o o f. The form of the bounds on γj is a straightforward consequence
of (12). In fact, dividing the first inequality of (12) by (aj − r)sj < 0 and
changing the sign we obtain the upper bound. Similarly from the second
inequality we obtain the lower bound.

In order to get the lower bound on x, we multiply the first inequality of
(12) by bj − r > 0, and the second by r − aj > 0. Adding them together,
dividing the result by bj − aj and using Remark 4 we obtain

(1 + r)x ≥ bj − r

bj − aj

∑
ξ∈Ξ(aj)

F ϕ̄j (ξ, s) +
r − aj
bj − aj

∑
ξ∈Ξ(bj)

F ϕ̄j (ξ, s)

=
∑
ξ∈Ξ

F ϕ̄(ξ, s)

and the proof is complete.
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The bounds on x and γ1, . . . , γd may not be sharp. Analogously to the
two-dimensional case we shall try to determine a sharp bound for x, i.e. to
find the smallest Lϕ(s) ≥ 0 such that for

(14) (1 + r)x =
∑
ξ∈Ξ

F ϕ̄(ξ, s) + Lϕ(s)

there exist strategies γ1, . . . , γd satisfying (3). Let γi be linear combinations
of their lower and upper bounds for i = 1, . . . , d and let x be of the form
(14). Consider now the left hand side of the inequality in (3) for fixed
ξ∗ = (ξ∗1 , . . . , ξ

∗
d). We have

γj(ξ∗j − r)sj

=
[
αj ·

∑
ξ∈Ξ(bj)

F ϕ̄j (ξ, s)−
∑
ξ∈Ξ F

ϕ̄(ξ, s)− Lϕ(s)

(bj − r)sj

+ (1− αj) ·
∑
ξ∈Ξ F

ϕ̄(ξ, s) + Lϕ(s)−
∑
ξ∈Ξ(aj)

F ϕ̄j (ξ, s)

(r − aj)sj

]
(ξ∗j − r)sj

=
[
Lϕ(s)

(
− αj
bj − r

+
1− αj
r − aj

)
+

αj
bj − r

∑
ξ∈Ξ(bj)

F ϕ̄j (ξ, s)

−
(

αj
bj − r

− 1− αj
r − aj

) ∑
ξ∈Ξ

F ϕ̄(ξ, s)− 1− αj
r − aj

∑
ξ∈Ξ(aj)

F ϕ̄j (ξ, s)
]
(ξ∗j − r).

Let kj(αj) be the affine coefficient of Lϕ. According to Remark 4 we can
rewrite the expression above in the form

γj(ξ∗j − r)sj

=
[
Lϕ(s)kj(αj) +

(
αj

bj − r
+

1− αj
bj − aj

− αj
bj − r

· r − aj
bj − aj

) ∑
ξ∈Ξ(bj)

F ϕ̄j (ξ, s)

+
(

αj
bj − aj

− 1− αj
r − aj

· bj − r

bj − aj
+

1− αj
r − aj

) ∑
ξ∈Ξ(aj)

F ϕ̄j (ξ, s)
]
(ξ∗j − r).

Since
αj

bj − r
+

1− αj
bj − aj

− αj
bj − r

· r − aj
bj − aj

=
1

bj − aj
and

αj
bj − aj

− 1− αj
r − aj

· bj − r

bj − aj
+

1− αj
r − aj

=
1

bj − aj
letting

∆(j, s) :=
∑

ξ∈Ξ(bj)

F ϕ̄j (ξ, s)−
∑

ξ∈Ξ(aj)

F ϕ̄j (ξ, s)
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we obtain

γj(ξ∗j − r)sj =
[
Lϕ(s)kj(αj) +

∆(j, s)
bj − aj

]
(ξ∗j − r).

Consequently, the inequality in (3) corresponding to the noise ξ= (ξ1, . . ., ξd)
is satisfied when

(15) Lϕ(s)
(
1 +

d∑
j=1

kj(αj)(ξj − r)
)

≥ ϕ(ξ, s)−
d∑
j=1

ξj − r

bj − aj
∆(j, s)−

∑
ξ∈Ξ

F ϕ̄(ξ, s).

The problem to determine the transformation Q is then reduced to an op-
timization problem consisting in finding the smallest Lϕ(s) for which there
exist (α1, . . . , αd) satisfying the system of inequalities described by (15) for
each ξ ∈ Ξ.

It seems to be difficult to obtain an explicit formula for Q. However, it
can be performed using numerical methods.

4. Numerical examples. We present some numerical results for the
case d = 2 basing on an explicit formula for the transformation Q obtained
in Section 3.1.

Example 1. Consider an asset on a foreign stock exchange market with
price at time 0 equal to S0 = 60 in foreign currency. Let Y be a current
exchange rate with initial value Y0 = 3. The form of the contingent claim
is ϕ(ST , YT ) = (ST · YT −K)+. In the table below we present the prices of
options expressed in domestic currency units for various strike prices K and
maturities T .

K = 170 K = 180 K = 190 K = 200
T = 20 50.36 44.48 39.8 35.3
T = 30 63.1 57.26 52.45 48.71
T = 40 74.81 69.04 64.97 61.13
T = 50 86.11 81.07 76.93 72.82

The volatility of the asset is equal to 10% (i.e. a = −0.1, b = 0.1 for S) and
that of the currency exchange rate is 1%. The effective overnight interest
rate is taken to be 0.03%. One can see that the option prices (i.e. the prices
of the super-hedging position) are in the range of 20% to 45% of the initial
value of the stock in domestic currency.

Example 2. We now present numerical results of computation of an
option for a branch index. Let us assume that on Warsaw Stock Exchange
market there exists an option for the brewery index. Let S1 denote an asset
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of Okocim Co. and S2 an asset of Żywiec Co. Initial prices of the assets
are S1

0 = 16.9 and S2
0 = 149.5 respectively (quotation of 27.11.96). Let the

contingent claim for such an option be ϕ(S1
T , S

2
T ) = (α1S

1
T + α2S

2
T −K)+

where α1 = 346, α2 = 50.

K = 12800 K = 13322 K = 13600 K = 14000
T = 20 2728 2443 2327 2161
T = 30 3247 2967 2847 2674
T = 40 3666 3388 3299 3170
T = 50 4032 3812 3718 3582

The option prices are given in index points (10 pts = 0.12 PLN). In this
case the volatility of disturbances is equal to 10% so the price of the option
is relatively higher than in the previous example. The effective overnight
interest rate r is 0.048%.
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