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LOCAL EXISTENCE OF SOLUTIONS OF
THE MIXED PROBLEM FOR THE
SYSTEM OF EQUATIONS OF IDEAL
RELATIVISTIC HYDRODYNAMICS

Abstract. Existence and uniqueness of local solutions for the initial-
boundary value problem for the equations of an ideal relativistic fluid are
proved. Both barotropic and nonbarotropic motions are considered. Exis-
tence for the linearized problem is shown by transforming the equations to
a symmetric system and showing the existence of weak solutions; next, the
appropriate regularity is obtained by applying Friedrich’s mollifiers tech-
nique. Finally, existence for the nonlinear problem is proved by the method
of successive approximations.

1. Introduction. In this paper we prove the local existence of solutions
to the equations of ideal relativistic hydrodynamics which are the following
system of conservation laws:

(1.1) T9, =0, 14,j=0,1,2,3,
and
(1.2) (6u') 4i =0,

where the summation convention over repeated indices is assumed and
(1.3) T = wu'u? + pg"

is the energy-momentum tensor, and ¢g* is the space-time metric tensor of
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the form
-1 0 0 O
> 0O 1 0 O
1 —
0O 0 0 1

Moreover, w = e+ p, where w is the density of enthalpy, e the density of the
internal energy and ¢ the density of the fluid particles in a suitable system
of coordinates in which the volume element does not move. We denote by
p the pressure and by u = {u'};—g 123 the four-velocity: u, = vo/(cB),
a=1,2,3, ug = —1/8, where 8 = /1 —v2/c?, ¢ is the speed of light,
v? = v§+v3+03, where v = (v, v9, v3) is the velocity vector, and u® = gijuj,
9" = 9i5, 9" gjk = 0.
In the above notation the energy-momentum tensor takes the form

VaU
Tory :wca 1 +p5a’ya a,v7=1,2,3,

2532
(1.5) i "
Ta(]:_w%, T(Jo:@—p-

We consider problem (1.1)—(1.2) for ¢ € [0,7] and x = (z1,x2,23) € 2 C
R3, with initial and boundary conditions

(16) (p’u’6)|t:0 = (pO,UO’(SO)’
(1.7) Mzloq = g(2',t),

where z = (p, u, ), and the matrix M is defined in Section 4.

To prove the existence of solutions to (1.1)—(1.2), we have to transform
our problem to a symmetric hyperbolic system (2.2). We present this sym-
metrization in Section 2. In Section 3 we introduce the necessary spaces and
norms; moreover, we rewrite the symmetric system (2.2) in the form (3.1)
(with the initial-boundary conditions (1.6)—(1.7) suitably transformed).

In Section 4 we consider the linearized problem (3.1); first in 4(a) we
prove the existence of solutions in a half-space, in 4(b) we obtain the regu-
larity of solutions and in the last part of the section, using a partition of unity
and a localized problem, we transform the results of 4(a) and 4(b) to the
case of a bounded domain. Using the properties of the solutions obtained,
we prove the existence and uniqueness of local solutions to the nonlinear
problem (3.1) by the method of successive approximations in Section 5.

Finally, in Section 6 we specify the results of Sections 4 and 5 for problem
(2.2). In Section 7 the barotropic case is considered.

To prove existence of solutions to problem (1.1), (1.2), (1.6), (1.7) we
need to know that the form (6.1) is uniformly positive definite. To show it
we choose a state equation (here p = ROT). This implies strong restrictions
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on the initial velocity (see Remark 6.1). In the barotropic case we do not
have such restrictions so we can also consider near light motions.

2. Symmetrization. To symmetrize equations (1.1)—(1.2) we use con-
siderations from [1], [2]. We have a system of conservation laws; now we
write a new conservation law, which is a consequence of the old ones. (1.1)
implies

I(wuF) kOui | Op

i = 0.
Yk P + 0z;
Multiplying by !, summing over ¢ and using
. O,
(2.0) uu, = -1, u' Bk 0
we get
O(wuk »
o) | i0p
oxk 0x;
which is equivalent to
0 (w 1 Op
— | =ouF ) - ===5u* =0.
Dk <5 " > 5 k"

From this and (1.2) we obtain

0 (w 1 Op
k | — —_ —— | =
ou [aﬁ(a) 5amk] 0

so using the thermodynamical identity, we can write

0 (s
k— — =
Tdou 9k <5> 0

where s is the entropy.

Finally, because u®s(— 1) % = s% from (1.2), we get T%(suk) =0,
SO
0
@(Suk) =0

is a new conservation law.

We have shown that equations (1.1)—(1.3) are linearly dependent, that
is, there exist functions A™ such that

iaTik 43(5uk) 58(3uk)
)\Bmk+)\ Ok + A 9k =0

for arbitrary functions 27 (p, ut,u?,u3,§), where A = u’, i =0,1,2,3; \* =
(w—sT)/5, \> =T and T = T(8,p), s = (3, p).
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Equations (1.1)—(1.3) can be written in the form

077
azquf/l(z)@:(), m:o,l"“,s’

and multiplying by 9,- A" we obtain

027 J

k k

0.~ A™0,:q" (2) Sk 0& A7, Sk 0
where the matrices A*(z) are symmetric (see [1], [2]).

The matrices 9,¢"(2) take the form

1— L L0 —2utw —2uw —2uw
32 32 Op
%ul + %ul g—; Bulw + % Buiuw Buiudw
1 1 1 2
9.4 gu2 + Bugg—; Pugu w  PBujw + % Bugudw
=4 Log + Loy e Busulw Busvlw  Pudw+ Y
B B2 op 3 B
0 Buls Bu?s Bu3s
f% g—; ﬁuls 6u2s ﬁu3s
1 1
7“7 — %g_; fﬁu%w - % —Butvdew  —Bulviw
2 2
1+ uf +uf g—; 2ujw 0 0
1 1 1
82(11 _ u ug +u u2§—; UW U w 0
U1U3 + U1U3%; u3w 0 uwlw
0 1
19s
u g, s
2 2
-5 - %a—; —Buguiw  —Budw — 5 —Bugugw
u2u1 +u2ulg—; wlw ulw 0
2 2 de
azq2 _ 1+ us +uj ap 0 2uaw 0
u2u3 + uQUg,g—; 0 uzw wZw
0 0 ) 0
u2g—; 0 s
_ud _wloe g 3 2, w
3 7 9p usuiw —puugw —Puzw — 3
u3u1 +u3ulg—; wiw 0 ulw
o q3 _ wdug + uguzg—; 0 wdw UW
.q° =
2 2 0
1 + us + U37; 0 0 2U3w
0 0 0 1)
w3 9s 0 s

Op

1=
‘QJ Q‘J|QJ @‘Q}
d Sld Sild

Sl WS
g

‘QJ Q=
@

Q=
Q|
(o2

QJ|® w QJ‘
Slw &
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The matrix 9, \™ has the form

9 (w—sT o
0 00 0 5(*5) 57T
Bu; 1 0 0 0 0
Bup 0 1 0 0 0
o) —sT o)
0 00 0 H(&t) &7
SO we get
Sopar  Pu Bus Bus 19:01
Buy —ﬁu%w + % —Buguw —Bujudw 0
A’ = Pug —Bugutw  —Budw + Y — BusuPw 0
Buz —Bugutw —BuzuPw  —Pudw + % 0
1 8s 9T 10T (0
B op a5 0 0 0 555 (5 — 5
190s 0T
W op op 1 0
1 —B2uiw + ulw —B2uduPw
Al = 0 —Brutugw  —pPutudw + ulw
0 — B2 uduzw —B2utuPusw
Js 0T
oT
0 a5 35
—B2uludw 0
_/82u1u2u3w O
—B2utudw + ulw 0
Jds s
0 U 9% — 3
0s 0T / /
AISO:Uka_Za_p’ Ag‘O:/BU’O“ A§0:5§’ a7k177:172737
0s 0T
(2.1) AZO = Uka_p%’ AZW = —B2uFu uw + ukwﬂ,
oT (0s s
Af, =0, A§4=uk%<%‘5>'

Now we consider the following symmetric system:

D zk

AF(2) | w2

k=0,1,2,3,

z = (p,ut,u? u?,9),

225
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or, because xg = ct,

3
(2.2) A(2)z + e A(2)z = 0.

3. Notations. In the next sections we will use the following norms,
spaces and notations.
We will consider initial-boundary value problems in 27 = 2 x [0, 7]
where 2 CR3, x € 2, € [0,T]. We write
" o g o

D] = =
t,x Ito 8.%'?1 ax'Q)’Q 8.%'%3 ’ h/’ Yo +771 + Y2 + 3,

and we denote by H*(£27) the Sobolev space with the norm

T X 1/2
lullzsary = (D2 § § 107wl dzdt) ™ = flully,0r-
0

[v]<s

Similarly, we introduce H?®(£2) and H®(907T) with norms || |[/s2.o and
| ls.2.007. We will use L,(£27) and L,(£2) with norms || ||, oz and || ||,.0,
respectively.

For a € R we denote by HZ (£27) the weighted Sobolev space, the closure
of C*(27) in the norm

T 1/2
lulgcomy = uloor o = (3 § § 107, ulPe 2 dodt)
[v|<s 0 £2
so we obtain Ly o(27) = HY(27) with || ||, o7y =l o7 a-
Let
s i o*
u € L3,(0,T; H'(2)) < esssup || - u(?) < 0.
refo,7] || Ot i,2,02

Then we define
!

m(027) = () LH(0, T; H' (£2))
i=k
with [[ull 7t o7y = [llik 00,07 Finally, we introduce ri(02) by

1/2
lullrgey = uloge = (2 § 107 ul*dz) .
[vI<L 82

Furthermore, r L H 5 denote the sets of functions in the respective spaces
vanishing on the boundary 9(2; |u| is the Euclidean norm.
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To simplify the following considerations, in Sections 4 and 5 we will
consider the mixed problem
3
Lu=E(t,z,u)u; + Z Ai(t,z,u)u,, = F(t,x),
(3.1) =1
M(t, 2", u)uloo = g(t,2"), 2’ €09,
uli=o = uo(),

where u takes values in R™, z € 2 C R3, t € [0,T)], E, A; are real m x m
matrices, the values of u lie in an open domain G and the values of the initial
data uy belong to an open subset Gy such that Gy C G. Next, assuming
u:=2z € R’ 2z = (p,ul,u? u3 ) we will formulate results for problem (2.2)
with initial and boundary conditions (1.6), (1.7).

4(a) The existence of solutions for the linearized equations in a half-
space. In this part we shall consider the linearized problem (3.1) in the
half-space x; > 0:

3
Lu= E(t,x)u; + Z Ai(t,z)u,, = F(t,x),

(4.1) i=1
M(t, 2" )ulz,—0 = g(t,2"),

u|t:0 = Ug,

where x = (71,2’) and we assume that 2 = {x € R3 : 2; >0}, 92 = {z €
R3 : 21 = 0}. In part (c) we shall obtain results for a bounded domain 2,
using a partition of unity.

LEMMA 4.1. (1) Let E, A;, i =1,...,3, be symmetric matrices and
(4.2) Bu-u>agu®, >0,

Let @ be the unit outward vector normal to 02 and assume —Az; = Ay has
eigenvalues A, where )\:[, p=1...k and A\, p = k+1,...,m, are
respectively the positive and negative ones. Suppose that

4.3 inmin [A,| > ¢y >0
(4.3) minmin [Au[ = co

and

(4.4) max max \!(z/,t) < ¢y,

vell,.. .k} 00T

where cq,c1 are constants.

(2) Let 7:[, 7Y, be orthonormal eigenvectors of the matriz — Az, corre-

sponding to the eigenvalues )\j, A, - Assume that the matriz M(t,z") has
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the form
k
(4.5) M=) au(ta )yt ()
w,v=1
k m
Y D Bulta )yl (¢a)
p=1v=k+1
where

-1 -1
(a) glg%(’auu (tvw,)’ < 50 ’
(4.6) (b) max B (t,2')] < Bo,

(c) (co +e1)dy B3 < 3co,
and &g, Bo _are constants. N
(3) Let L = (E, Ay, Ay, A3), L, M € I13(27T) and suppose that o satisfies

(4.7) |Ll3,0,00,07 < Qg2

and

(4.8) sup |E| < ca,  where ¢y is a constant.
nT

Then, for every u € O (2T and t < T we have the estimate

(4.9)  age 2 S u? dr + % S we=2 g ds + 2 S u?e 2% dx’ ds
o o0
< (co+c1)dy? S |Mu|?e=2%% da'ds
o0
2 2 —2as 2
+ — S|Lu|e dxds—}—czxu daz‘ .
aag ), : t=0

Proof. Multiplying (4.1); by ue=2** and integrating by parts in §2, we
obtain

d
(4.10) —e 20t S Bu? dx 4 2ae 2 S Eu? dx 4 e S Anulds’
7

dt
Q o0
3
— 2ot S <Z Ai g + Et>u2 dx — 2e~ 2ot S Lu-udx =0.
Q2 i=1 Q
Integrating (4.10) from 0 to ¢, using (4.2) and (4.8) we get

(4.11)  age 2 S u? d + 200y S u?e™?* dx ds + S ApuPe™2 da’ ds
2 nt o8t
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3
< X (Z Aig + ES)UQe*QO‘S dx ds
Qt i=1

+ 2 X Lu - ue 2% dx ds + co Sugdaz o
: =

nt
From (4.7) we get

3
max (| B:| + > [Ai0,]) < 26lL]3 0,00 07 < atg
(2

so using the Young inequality (with € = 1/2/(aay)) in (4.11) we have

(4.12)  age 2 S u? dx + % S ute 2% dx ds + S Apu?e™2 da' ds

Q o Yol
2
< — S |Lu|?e 2% dx ds + ¢, S u? dw‘ .
aQq ot 0 t=0

We have to consider the boundary term. From (2),

k m
u = T+ ey, =u +vu'"  wherec, =u
= 1Yy WYy = w = UV,
pn=1 p=k+1
k k m
r_ + ne _ 2 e _ 2
u' = E cuYy, so |u']" = E U= E s
pn=1 p=1 p=k+1

and

k n
A2 + .2 -2
Anu _Z)‘MCM+ Z )‘ucu'
pn=1 pn=k+1

Using this and (4.3), (4.4) we get, from (4.12),

4.13 ape 2\ w2 dx + a% u?e 2% dx ds
2
Q ot
+ o S |ull|2€—2as dCC/ ds
0Nt
<c S [u'|2e2% da’ ds
ont
2 2 _—2as 2
+ — S |Lu|“e d:cds—l—cﬂu daz‘
aQgn o O

t=0
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k .
Now, to express |u/|? = dop=1 ¢z, by [Mu|?, we consider
k k. m k
_ + o+ o +
Mu = g QY € + E E Buv' Yy € = E IV
p,r=1 p=1v'=k+1 pn=1
SO

k m
_ + -
9u = o€y + 5#1/01/
v=1 v'=k+1
and this implies

k m k
+ -1 —1 -
c, —Zawgﬂ— Z Zawﬁmﬂcy,.
p=1 v'=k+1p=1

Adding ¢ §, . |u'|2e=2%% da’ ds, using (4.6) and the last expression, we ob-
tain

(4.14) e 2 S u? dr + % S u?e™ 2 dx ds + g S u?e 2% dx' ds
17 0 o0
< (co +c1)8; 2 S |Mul?e™2 dz’ ds

leXoid

2
+ — X |Lul?e™2% dx ds
aQ ot

+ (co + ¢1)8; 23 S [u"|?e™2%% da’ ds + ¢y S u? dx
Yol Q
Finally, from (4.14) and (4.6)(c) we have (4.9). m

t=0

To prove the existence of solutions to (4.1) we have to split it into a
Cauchy problem and a boundary value problem. Let x € C§°(—4,9); we
assume that a solution of (4.1) has the form u = yu; + us, where

(4.15) Luy =0,  uie=0 = uo,
and
0
(4.16) Luy = F — Fuy ETRE Muzloo =g, uzli=o =0.

Further, introducing w; = u; — up (where ug denotes an extension of ug to
the half-space t > 0) we get, from (4.15),

(417) Lw1 = —Lao, w1]t20 =0.
We define the formally adjoint operator L(*) by

3 3
(4.18) L(*) = _Eat - ZAzaxl - Et - ZAZ}%
1=1

=1
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so we have the identity
(419) (Lwl,vl)QT = (wl, L(*)Ul)QT
for all wy,v; € C§°(27T) with wy|i=¢ = 0 and v1 |i=7 = 0.

Next, for such wy, v; we obtain by (4.9) the following estimates:

(4.20)  age 2 S w? dg + 220 S wie 2 dr ds

2
nt
2 2 _—2as
< — S |Lw;|7e dx ds
[67e7)) ot
and (with time travelling backward)
2
(4.21) age*™ S vidr + 2% S vie?*s drds < —— S |L ™ |2e22 da ds.
5 2 o aag o,

Now we use the following (see [3]).

THEOREM 4.1. Let L denote the space of square integrable functions on
2T Dy the domain of L consisting of u € C*(27 U dNT) which satisfy
the boundary (initial) condition, and Dy the domain of L) of those
v € C®(NT UINT) which satisfy the adjoint boundary (initial) condition.
If there exists a constant ¢ such that

clull < | Zull,  elloll < [Z%)v],
for uw € Dy and v € Dy, then L and L) map their domains one-to-one
onto L.
From this theorem and inequalities (4.20), (4.21) we get:

LE&\/IMA 4.2. There exists a unique weak solution uy of (4.15) such that
wy € Lo o(027).

Now we are looking for solutions of problem (4.16). For the adjoint L*)
we obtain the identity
(4.22) (Lu,v) = (u, L*v) + (Azu,v) = (u, Lv) — (Ayu, v)

where u,v € C3(£2 x R).

We can find the boundary matrix M™* for the adjoint problem from
(Aju,v) = 0 for u € ker M and v € ker M* (see [10], [11]). Let F,g =0
for t < 0 and ¢t > T'. Then we consider (4.16) in {2 x R and we can prove,
similarly to (4.9),

(4.23) % S uze 2 d ds + %0 S uze 2 d' ds
2xR ON2xR

2
< (o4 ¢1)d 2 S | Mug|?*e™2%% da’ ds + —— S | Lug |22 da ds.
QxR @0 oLk
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We have to obtain an estimate for the adjoint problem. If we take L*), M*
instead of L, M and we assume that the time is travelling backward, then
we can prove (in the same way as Lemma 4.1):

LEMMA 4.3. Assume that (1) and (3) of Lemma 4.1 hold. Let

m

M* = Z o, (t, 2" )y, (t, @)y, (t,2")
pn,v=k+1

m k
+ >0 Bt )y () (),
p=k+1v=1
with
(4.24) max gt < ég max 1851 <0, (co+ca)dy a5 < co/2.

Moreover, let

4.25 A (2, 1)] < ey
(4.25) Ve{mlf‘.’fm}g?%‘ s (@ )] < e

Then for vy € C§° (2 x R) N La _o(£2 x R) we obtain

(4.26) % S v3e*®* dx ds + %0 S v3e*** da’ ds
QxR xR

2
< (co +ca)dg? S | M*vy|?e?% da’ ds + - S |L*vs |22 da ds.
DR O oxr

Now, by (4.23), (4.26) and Theorem 4.1 we have

LEMMA 4.4. Let g € Lo o(02 x R) with glt<o = glts7 = 0 and F €
Ly o(£2 x R) with F|i<o = Fli>7 = 0. Let the assumptions of Lemmas 4.1
and 4.3 be satisfied. Then there exists a unique solution us € Lo (2 X R)
of (4.16) such that uslpn € L2 (002 x R).

In Lemmas 4.2 and 4.4 we can obtain strong solutions, using the tech-
nique of mollifiers (see [6], [12]) with respect to (2/,t) where z = (z1,2').
Then we have the sequence u. = J.u = j.*u (the operator J; is the mollifier)
and from the properties of J. we have the convergences

U = U in Ly(027),

Lu. = Lu=F  in L?(N7),

Mu, — Mu=g in L*(007),
and u, is continuous up to the boundary.

Now for u = yu1 + us we formulate

THEOREM 4.2. Let ug € HY(2), ugloo = 0, L € H-E(QT) and F €
Lo o(27), g € Lo.o(0027T). Let the assumptions of Lemmas 4.1 and 4.3 be
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satisfied. Then there exists a unique strong solution u of problem (4.1) in
the half-space 2 such that u € Lo o(27)N Lo o (0027)N Lo (0, T; TE(£2)) and
(4.9) holds.

4(b) Regularity of solutions. To prove the existence of solutions of (3.1)
we have to use the method of successive approximations; so we need more
regular solutions of (4.1) such that u € H3(2T). Since u € Lq o(27) we
have to use mollifiers to derive the regularity of u. Let us = js x u = Jsu,
where j(t,z) € CR x R"), j > 0, {jt,z)dedt = 1 and js(t,z) =
57" 1j(t/5,2/5). We consider the problems

LDtS,x/u5 = sz/Lu(g + (LDtSVx/u(S —_ vax/Lu(g),
(427) MDtsvx/u6|x1:0 = DZQC/MU(; + (MDtSw’uts - Dts,x/Mu(S),

s s
Dt,az/u5 |t:0 - Dt,x’u5|t:0a

for s = 1,2, 3, where

oo 972 93

D} u= ——
b ot 9xg? Oz

Ivl=s
Lus = (Lu)s — [(Lu)s — Lus]
= (Lu)s — Csu  (Csu is called the commutator).

Yl =Y + 72 + 73,

LEMMA 4.5. Assume that (1)-(3) of Lemma 4.1 hold, M € H3(007),
g€ H3(00T), up € H3(2) and F € H3(NT). Set

a=|Llzoc0t  b=|Ml30000r + |M|3000q

fort < T. Then there exist polynomials po(a,b), ps(a,b), gs(a,b), 1 < s <3,
such that the solution of problem (4.1) satisfies the following estimate:

aQn Cp
S Nl e+ 012 0,00

< ps(a, b)HLuE,Qt,a + ’Lu‘gfl,o,n‘tzo]

(4.28)  aplul? g oe > +
+ s (@, 0) | Mull? 5o o + colul? o oli=o

where

(4.29) « satisfies po(a,b) < aag.

Moreover, there exist polynomials r such that

(4.30) [ul? 0,li=0 < 7(|Lls-1,0,0li=0, [Luls—1,0.2]i=0; [o]ls2,2)-

Proof. For |s| =1 and problem (4.27) we have by (4.9),
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(4.31) e 2 S 1D} us|? da + % S 1D} us|*e™ > dz ds
02 0t
+2 S |D} usle™** da’ ds

2
o0t

2
< — S |D} o Lus|?e™2*% dx ds
(676 7s} Ot ’

2 -
+ — S |LD} ,jus — D}, Lus|*e™** dx ds
aao k) k)
nt
+c3 S |D} . g5|%e > da' ds
lekoid
+c3 S |MDt171,,u(; - Dt{r,Mu(;Pe_zas dx' ds
o8t
+ e S 1D} ,ous|? da

t=0
2

where
C3 = (Co—i—Cl)(SO_Q, g:; :MU,5.

We have to estimate the second and fourth terms on the right-hand side of
(4.31). We can write

S (LDy yous — Dy o Lus)?e™ > dz ds < S ]Dtlvx,ZP]D},xug\ze_zas dx ds

fox Qt

< ca® S |D} jus|?e™ 2 dx ds.
0t

Because

3
(4.32) Dilu(g = Afl[Lu(; — Fug; — A'u(;I/], Alusy = Z A,;u(;m
i=2
and det A; > ¢, A7 < ccg™a™ ™! we get
(433) | 1D}, usPe deds < ca®™ (| Lug 3 g + 0 sl o)
nt
the prime denotes that the derivative D,, does not appear), so finally
1
(4.34)  \ |LD} us — D}, Lus|*e™2** dz ds
Qt
< ca®™|| Lus[5 ot o + ca® (@™ + 1)lus [ £ e o

For the boundary term we have
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(4.35) S |MD} ,yus — Dy .o Mugle™>** dz’ ds

Byl
< S |D} o M[Puge™>** da' ds
Byl
t
< cb? S lus|?e™2* d ds < cb? S e 208 S |Drus|? da ds
Gyl 0 Q
t
< cb®\e72* \(ID}, us|* + | D} us|? + | Dius|?) da ds
0 Q
< b [lus|Por o+ 1Dz, usll5 00 o]
< || Lusll§ o0 0+ b (@™ + Dlus|Por o
Assuming
2
% > c[a_aoa2(a2m 4 1) 4 b2c3(a2m 4 1)
we obtain from (4.9), (4.31), (4.34) and (4.35),

_ aQg Co
(4.36)  aolusly oe ™2 + T2 us | o + Sl o

< cpi(a, b)”LuéHim,a + cq1(a, b)HMu5||%,6.Qt,a + C2|u6|’12,0,9|t:0

where p1, ¢ are polynomials.
Using (4.32) we have

(4.37) ltse, 13 2,00 < ca®™ V(|1 Lus|If 2,2 + a®[lus ]| B0 )

so finally from (4.33), (4.37) and (4.36),

_ aQg Co
(438)  0ofusl 0,002 + 2 sl o1 o+ sl g

< pula, D)1 Lus ¥ oo o + 1 Lus ]G 2,2)

+q1(a, )| Muslff o0 o + c2lus? o oli=o

where p;, g1 are polynomials.
Using the convergence us — u in H', and Lus = F5 — Csu — F = Lu
in H' (because Csu — 0 in L? and H' for sufficiently regular L) we obtain
_ aQg Co
(439)  aolul} 0.7 + S22 ull? g o+ Ll o
< pi(a, b) (| Lullf or o + 1Lull§ 2,0)

+aq1(a, b)[Mullf o o + c2luli o oli=o

so we have (4.28) for s = 1.
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Let us consider the case s = 2. We have, using (4.9) to (4.27),

(4.40)  age 2 S D7 us|? do + % S D7 us|*e ™2 dz ds
Q o
+ %O S |D} us|?e™ 2 da’ ds
o0t

2
< — S |D? . Lus|*e™2* dx ds
(676 y) Ot ’

2
+ — S |LD? . us — D? ., Lug|*e™2* dx ds
(676 7s} ot ’ ’

+c3 S |D37I,gf;|2e_2o‘s dz' ds

o8t

+es | [MD},us — D}, Mus|*e™>** da’ ds
oNt

+ e S 1D} us)? daz‘

t=0
Q

As before, we estimate
S |LD} ,ous — D7 . Lus|*e>** da ds
0t
< S (‘DtQ,x’Z‘Q‘Dg,m’uis‘Q + ’Dtl,az’zlg’Dtl,az’Dfimutslg)eiQas dx ds

nt

S Ca2(Hu5H%,.Qt,Oc+ S |Dtl71,/_Dtl7x/u5|2e_2as dxds),
Qt

(4.41) S |D;,1Dt171,,u(;|2e_20‘S dx ds
nt

< ca®™ V|| Lus||? e o + a®(lus ]| P o + D7 wrusllf or,0));

(4.42) S |D} Dy us|’e™?** dz ds
nt

< ca®™ V| Lus1F e o + P (us]F e o + 1D2, Diar s or.0)]

< (@™ 4 ') Lug |7 g,

«

+ (0™ + a"™)||ug|lf or o + @™ [ DF 2 uslIf o0 o]

where (4.41), (4.42) are obtained by differentiating (4.32) with respect to
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(t,z’) and x1, respectively. Hence
(4.43) | |LD?, us — D}, Lus|?e™>** da ds
Qt
< ca®[(1+ @) ([lus|F ot o + 1 DF 0ruslld 00 ) + @V Lus|T g o]-
For the boundary term we have

S |M D} us — D . Mug|*e™2* da' ds

a0t
< | (D}, Mus|* +|D} ., M| D} , us|*)e2** da’ ds
o0t
< cb? S (lus|* + | Dy prus|*)e™?* da’ ds.
ot
From the Sobolev embedding
n n-—1\1
- — = <1=WH2) = Ly (012
(5 "5 )5 < 1= WHD) = Ly (0

forn =3, u=1, ¢g=1 we have
1D} pusllz.on < I1D;pusllize,  lusllzo0 < llusllhz.o-
Using this and (4.41) we get
(444) | |MD},us — D}, Mus|*e™** da' ds
ot
< ?[(@®" + 1)(|us|IF o1 0 + 1D7 0 us|1F e o) + >V | Lus|? g o).
If we take o such that

2
(4.45) c[—aQ(cﬂm 1) 4 220
(6767}

2
and use the inequality (following from (4.32))
(4.46) D4 0 Dy uslg 2, + 102, usll5 2,0

< c(@™ Y 4+ 262 | Lus | o

aQy

(a4m+a2m)+63b2(a2m+1) S 1

+ (207 + '™ |Jus| 0,0 + (@*™ + ™™D} 4 uslff 2,0

we conclude (combining (4.38), (4.40)—(4.42), (4.46) and using (4.43)—(4.45))
that

(4.47)  aolus|?ope 2 + 220

4
< pa(a, b) (1 Lus |3 o o + 1 Lusllf o, 06 ™*")

Co
usll3 00 + 5llua\|§,am,a

+q2(a, b) | Musll3 0 o + 2lus3 0 oli=0

where ps, g2 are polynomials.
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Moreover, using
(4.48) 120,067 < ZIF2s 0r 0+ FI 0 limo
for v = 1 and taking § — 0, for u = lims_,o us we obtain estimate (4.28) for

s =2.
Finally, we consider s = 3; like before, by (4.9) we get

(4.49) e 2 S |Df’,x/u(;|2 dx + % S |Df’,x/u(5|2672°‘8 dx ds
Q ot
+ %O S |D} us|?e™ 2 da’ ds
ot

2
< — S D} . Lus — LD}, us|*e™>** dx ds
aQgn ot

2
+ — S |D3 . Lus|?e™2** dx ds
(676 7s} ot ’

+c3 S |D} oo Mus — MD} us|*e™?* da' ds
ont

tes | D} Mus|?e™? da' ds
oNt

+ co S |Df’7x/u(;|2 daz‘

t=
O 0

Because by (4.32),
(4.50) S ]Dt%x,DilugFe_zas dxr ds
Qt
< ca®™ V[|Lusll3 o o + @®(lusl|F e o + 1 D2 ptis 1§ 0 o))
we can estimate

(4.51) S |LD§’7x/u(; - Dix/Lu(ﬂze_zas dx ds
nt

< S ‘D?,r’z : Dtl,xu5
0t

+ Dix,i . Dtl,x,D;xu(s + Dtl,x,z . Dix,D;xu(ﬂQe*Qo‘s dxr ds
< Ca2(||u5||%,(2t,a + HD?,QU/Dtl,Iu(SH(Q),Qt,a)

< ca®™||Lusll3 g o + a*(a®™ + D([[us ]300 0 + [1DF 2usll§ o0 o)-
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Let us estimate
(452) | |D}, D2 usle™** dz ds
Qt
< eI Lug 1 0 + 82 (sl 1+ 107 Db, 013 0]
< (@D + 0" )| Lus 13 o1
+ (a2’m + a4m)‘|u5”§,ﬂt,a + a4mHD?’m/u5H(2],_Qt7a]a
(4_53) S ’Dilu(ﬂ?e*?as dx ds
Qt

< ca®™ V|| Lus |13, gr o + a®(lus 13 o o + 1D10 D2, usllf 00 )]

< (@Y ' 4 a2 | Luglf3 o

+ (@™ + 0™ 4+ ) us |13, 0 o + " 1DF wus 1§ 00 o)
We have to consider
S |M D} us — D} ., Mug|*e™?* da’ ds
ant
= | 1D}, Myus + D} .M - D} ,jus + D} . M - D} ,us|*e2* da’ ds
ant
t
< cb® S (lusl3 00 + Dt wusls o0 + D7 rusl3 po)e > ds.
0

Using again the Sobolev embeddings

llusll2,00 < cllusll1,2,q,
1Dy 0 usll200 < el Df puslh 2,0,
1D 2 usllz00 < el DF pruslh 2,0,
we obtain
(454) | |MD},us — D}, Mus|>e™** da’ ds
a0t
< b (|[us|3, 00 + 1 D0 uslls oo + 1 D, DEwrtis|§ or o)
< b?a® V| Lus 3 gr o + 020" + D(|[us3. 06 0 + 1DF 251500 0)-
Let us assume that
aQ

2
(4‘55) c _a2(a2m+1)+_(a2m+a4m+a6m)+63b2(a2m+1) S—
Qo 2 4

(6767}
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Then, adding to (4.49) inequalities (4.50), (4.52)—(4.53) and
(4.56) D 4 Dy, usll3 o + 1Dy o D2, usll3 o + D3, usll3 o
< e[(38a*™ 7Y 4 24" 4+ 0% 72) | Lus|[3 0.
+(3a”™ + 20" + a®")[us|5.0,0
+ (@ + 0™+ a") | D] s, 0]

and using estimates (4.51), (4.52), by inequality (4.47), and the energy in-
equality (4.48) for v = 2, we finally obtain

(6767}
4
< p3(a, b)([| Lus |13 or o + [ Lus]13 0,0 le=0)

_ Co
(4.57)  aolusl3 o pe > + \|Ué‘|§,m,a+5||u6”§,am,a

+ealluslf3 o, 0le=0 + a3(a, D) [Mus 5 e

where p3, g3 are polynomials.
Moreover, by convergence in suitable spaces, after passing with J to zero,
we obtain estimate (4.28) for s = 3. This concludes the proof. m

Theorem 4.2 and Lemma 4.5 imply:

THEOREM 4.3. Suppose the following assumptions are satisfied:

(1) 2 is a half-space, L € I3(0T), M € I3(QT) N H3(0NY), F €
HE(QT)a g e Hg)z(a‘QT)’ up € H?’(Q) and u0|8(l =0.

(2) We have
minmin [A,| > ¢co >0 so |det Az| > cg', and
pooQT
maxor |det Az | 1~
m%X|)‘u| < po— — <c m—1 |L|g?0,oo,QT'
Q o o

(3) Bu-u > agu?.

Then there exists a unique solution of problem (4.1) such that u € II3(27)N
H2(2T)YNH3(00T) and estimate (4.28) holds under assumption (4.29).

4(c) Existence of solutions for the linearized equations in a bounded do-
main. Now we want to prove Theorem 4.3 for a bounded domain {2. Since
(4.9) holds in {2, we have the existence of solutions to the linearized problem
(4.1) in Lo (£27) (by Lemma 4.1 and Theorem 4.1). For higher regularity
we introduce a suitable partition of unity.

Take a system of §;(z) € C(£2), & € [0,1], i € MUN, 2; = supp&;(z)
N2, w; ={z:&(x) =1},

iteEMe2,N02=0, ieN& 2NN+,
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U2 = Jw; = 2, diam 2; < A, only finitely many (2;’s are nonempty.
Next, let n;(x) = &(z)/ Y. 2(z) (so Y_ni(z)&i(x) = 1). We define f;(x,t) =
f(x,t)n;(x); from (4.1) we get
3
Lu; = L(un;) = E(un;): + Z Ay (un;)a,

v=1

) 3 B )
=Eu-m+ Y Aym—ue g+ Ayu
ot "ZJF,Y:l( Tog, b A am,ym>

3
= (Lu)ni + Z A'yu *Miyzy
y=1
SO
Lu; = F; 4+ [L,n;Ju  in $2;,

3
U;lt=0 = wo;, where [L,n;lu= Z Apuni ., -
a=1

We consider two cases. For ¢ € M we have only the Cauchy problem
(4.58)1.3, so we obtain an estimate of type (4.28), but without the boundary
term and expressions with M; denote it by (4.28)". In the case i € N, we
take a local coordinate system centred in the middle of 92 N 2; such that
x1 > 0 belong to (2; and 1 is a coordinate along the axis generated by
n(z;) and o' = (29, x3) are directions perpendicular to . Then, if 92N (2;
is described by 1 —p(2’) = 0, by the transformation vy’ = 2/, y; = 1 —p(a’)
we get the half-space y; > 0. We can write our problem in the form

Eaz‘ = ﬁz + [E,ﬁi]%
(4.59) Moo = G
Uily=0 = Uoi, where f(y) = f(2)|o=a(y)

and 71 = (=10 ) (1 +¢2) 712 = — (G2, §2, F2) (-1 91 ,,) ~'/? implies

1’ Oxo’ Ox3

3 3
~ -1/ ~
() () A

s=1 i=

so we have new matrices 4] = —A -7, A, = Ay, Al = A (symmetric).

We can apply the considerations of part (b) to obtain an estimate for
system (4.59) of type (4.28). Notice that in both cases i € M and i € N we
must additionally consider the second term on the right-hand side of (4.58);
and (4.59);, respectively. We can write
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3
(460 Lmlull oo = | o Avumal|
k=1 e

w28

|3 Avis s 0
k=1

3
SCH E Apu;
3,02t
k=1

because & < 1, n; € C(12).
We obtain, for (4.59) and i € N,

< callu;||3,0t

_ 04040 ~ _
(461)  aofiif? , g e + 0 2 5, e
O[Oég —~ ~
SN2 5y o+ SN g
<pAa®WFMQ%ﬂ4Fbloghd
+q,u(a? b)HngQ an +T,U(a’ b)|ul| 0 _Q | =0-

where

(4.62) P,.(a,b) + ca® < aag,

-~

Pus Tu» 4, Po are polynomials, 2; = T'(2;, F = (Lu);, gi = (Mu) and T is
the transformation defined by y = y(z).

By summing inequalities (4.61) over ¢ € N and (4.28)" over i € M,
using u = Y, v wi(2)&i (), we obtain an estimate of the form (4.28) for
a bounded domain (2. Assuming

(4.63) aag > pola,b) + ca®
for a bounded domain, we formulate:

THEOREM 4.4. Let 2 be a bounded domain with 02 € C3. Let the
assumptions of Theorem 4.3 and (4.63) be satisfied for 2. Then there exists

a unique solution w of the linearized problem (3.1), where u € II3(£2Y) N
H2(2H) N H2(2Y) N H2(002) and (4.28) holds.

5. The existence and uniqueness of solution of problem (3.1).
We will consider the following iteration scheme:
3

L(um)um+1 = E(t7 x, um)um+1,t + Z Az (1'7 t7 um)um+1,xi = 07
(5.1) i=1

M(t, 2, U )Um i1 = g(t,z) on O,

Um1li=0 = ug(x) in £,
form=0,1,2,...
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Define Q(Go,d) = {u : 2! — R™ : supy: |u(z,s) — ug(z)| < ¢ for some
ug with values in Go}. Recall that we assume that G C G. If the values of
all functions in Q(Gy,0) lie in G (where ¢ depends on ¢ and the system of
equations), we assume for u € Q(Gy,d):

(a) The matrices F, A; are symmetric, E is uniformly positive definite,
and the matrix —A; = —A -7, where 7 is the unit outward vector nor-
mal to the boundary 0f2, has eigenvalues separated from zero and positive
eigenvalues bounded in a neighbourhood of the boundary.

(b) The matrix M has the following form:

k
M = Z a/u/(t’ x/’ u),y;r (t, x/’ u),y;r (t’ ,I,, u)
w,v=1

k m
+ Z Z By (t, 2" w)y, (E, 2" u)y, (t 27, u)
p=1lv=k+1
and
max|ag, | < o7, max|Bu| < B Vp,v.

(c) det Ay (t, z,u(z,t)) # 0 in a neighbourhood of the boundary.

(d) The matrices E(x,t,u(x,t)), A;(z,t,u(x,t)) are 3-times differentiable
functions with respect to t,z,u, and belong to Ly ({2) for each ¢.

We can guarantee that conditions (a)—(d) are satisfied for u € Q(Go, J) in
the following way. By Theorem 4.4 every solution of system (5.1) belongs to
CP(02Y), B € (0,1). Using continuity of u with respect to ¢, condition (d) and
the assumption that conditions (a)—(d) are satisfied for ug(x) = ul=g € Gp
we have these properties for u € Q(Gp,d) for sufficiently small ¢; so let t*
be a time such that for ¢ < t* we can use Theorem 4.4 for each w,.

Let us assume ug g, = 0 and consider, for v, = u,;, — ug, the following
system:

3
Loy, y1 = E(t, 2, U )Umt1,t + Z Ai(t, x, U )Vt 1,2,
i=1
3

(52) = _ZAi(taxaum)uo,zia

i=1
Mvyiilon = 9,
Um+1lt=0 = 0.
We get, by Theorem 4.4,

(5:3)  Momsrlll3 < @, lumllls)ll Auos I3 e o + [Ato,e]3 0,22 lt=0]
+ (@, lumll) 9113 0.0

+P0(Q: lumlll3)[vm+115 0, 0lt=0
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where [[[olll3 = [v]50 000 + 1013000 Po(@:llumlllz) > Bz, um)l,
p(@Q,|l|ullls) > p(a,b), @(Q,||ullls) > q(a,b) and a, b are defined as before.

By the definition of v, we have
(5-4) [ullls < llvllls + lluolls,2,e-

To prove convergence of {u,,} we have to know that if |||v,,]||s < d then
[[vma1llls < d?; using (5.4) in (5.3) we have

(5.5)  Momlllz < 2@, d+ [[Juollls,2,2)[| Aro,2 113,00 o + [Ar0,213.0.0lt=0]
+q(Q,d + l|luollz,2.0) 93 50t 0
+ Do(Q, d + |luolls,2,2)[vm+13.0,0li=o-

REMARK. We have used p(Q, |||ull|s) and ¢(@, |||u]||3) by Lemma 6.1
of [10].

We see that [||vy,41]||3 < d? for sufficiently small norms of ug , and g,
where ||g||3,00t.o depends on the time t*. This guarantees the convergence
of the sequence {u,,}. Introducing U,, = ty, — Upm—1 = Uy — Uym—1 We have
the problem

L(um)Um+1 = _[L(um) - L(umfl)]vm
3
- Z[Az(um) - Az (umfl)]uﬂ,aziy

M(um)Um+1 - _[M(um) - M(umfl)]vwm
Un+ili=o =0, m >0, Uy=ug(x).

By (d) we can write

(5.6)

(5.7) L (tum) = L(um—1)|lls < ’L‘?),O,oo,QT’Hum — Um—1]ll3,
WM () — M (tm—1)|l]3 < ’M‘?),O,oo,QT’Hum — Um—1]ll3,

therefore by Theorem 4.4 for problem (5.6) we have
(5:8) 1Um+1llI3 < h(Q, lwmllls, ll[um—1llls) (Nvmll3 + 1o,z 13T lI3-

By the smallness of |||v,,[||s, adding the assumption that ||ug ;|32 0 is
sufficiently small, we have the convergence of {u,,} to u in Ly (0,; La(£2))
N Lo o(2Y) N Ly o (002%) and by (5.4), (5.5),

w € II5 (Y N H2(2Y) N H2(062"Y).
Moreover, u is a unique solution. Assume, on the contrary, that uy, us
are two solutions of the problem and U = uy; — us. Then
L(u2)U = —[L(u1) — L(uz)]us,
M (u)U = —[M(u1) — M (uz)]us,
Uli—o = 0.
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Lemma 4.1 implies

_ aQg Co
aollU13 072 + ZL2 U3 g1 N 000
2
< = |[L(uy) — L 2
< o) — L) [ o0

+ (o + ¢1)6 2(|[M (ur) — M (ug)]uz 0,001 ,a-

We can estimate
(I[L(u1) — L(uz)luillo,2t o < Sup sup L' (w)| S})lp(lull + D! ,ur DU lo, 2t a5
[[M (u1) — M (uz)luillo,00t,o < supsup|M'(@)|sup ui] - [|Ullo,00¢ q-
G ont ot

It is enough to assume that

(5.9) sup sup | L' (@)| sup(|u1 | + D} ;ua]) < () /8,
G o o
(5.10) (co + ¢1)0; 2 supsup | M’ ()| sup |u1 | < co/4
G o0t o
to obtain
aQ

_ Co
ao||U|3,0e™ % + —= U5 0t 0 + ZHUH%,W,Q <0

4
and this implies uniqueness.
Thus, we have proved:

THEOREM 5.1. Suppose the following assumptions are satisfied:

(1) g € H2(002Y), uglag =0, ug € H(02).

(2) 9002 € C3.

(3) The assumptions (a)-(d) are satisfied, and ||ug z|3,2,0 s sufficiently
small.

(4) t < t*.

(5) a satisfies aag > Po(Q, d+|[uol|3,2,2), Po(Q; d+|uol[3.2,2) > po(a,b)
+ ca?, where po, Dy are polynomials.

(6) (5.9), (5.10) are satisfied for some solution u; € C1(£2%).

Then there exists a unique solution u of (3.1) such that u € II§(£2') N
H3(2Y) N H2(002) and we have uniqueness in C1(£2").

6. Equations of relativistic hydrodynamics—existence and uni-
queness of solutions for the mixed problem. We have proved existence
and uniqueness of solutions for the initial-boundary problem (3.1) using
assumptions (a)—(d) (see Section 5). To apply these results to problem (2.2)
(that is, the symmetric system of relativistic hydrodynamics), we have to
check the assumptions of Theorem 5.1.
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We have
ETpsp + Bui + Buj + Bui + %spT5 r
pBuy — Pudw + Fu1— Bujudw — Buyuiw 51
A% .z = | pBuy — Pudusw — Pudw + %ug — Buguiw u2
pBus — Busudw — Buzuw — fudw + Buy f
Fspls + %Tg(Sg —s/0)
_ Spgp + 2p5SpBT§ + 52%(55 — s/5)
+ (ut + v + u3) (2p8 + w/B)
= (ui + 3 + u3)Bw
so from uf +u3 +u3 = 1/8% — 1 we get
(6.1) A% 2= pQ% + 2p<5sf’ﬁT‘S + 52 T5(S5ﬂ_ 5/9)

+ (uf + uj + u3)(2pB + wh).
LEMMA 6.1. Assume that there exists a constant o € (0,1) such that for

the initial data zg = (po, U1, W02, U03,00), Ua = Va/(cB) (Vo is the velocity)
we have

(6.2) va < (1—0%)c?,  po>0, & >0,

and, for some e > 0,

do > c1(po +¢) +¢,

o < ¢ H(po —€) (’y —i—log{%(éo + 5)7}> —€

where c; = 2/0®> — 1+ 62 and v is the adiabatic exzponent. Then for z €

Q(Gy,¢) there exists ag > 0 such that Ez - z > apz? where E = A°.

Proof. By definition of Q(Gy,¢), |2(t)—z20| < e,s0p > pg—e, § > dp—e¢,
U < Uge + €. (6.2) implies

Bli=o = /1 —vi/c? > 0
3

3 3
(6.4) /B2 =1=> u2 < (ua+)?><2> uj, + 6
a=1

a=1
= 2(1/B%[4=0 — 1) + 6% < 2/0” — 2+ 6¢”

(6.3)

so we have

a=1

hence

(6.5) B>(2/0* —1+6e%)7 1.
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From the state equation p/d = RT we calculate

. 1 1 1 »p
(i) Tp:§'57 T&Z—E-é—Q.

Taking entropy in the form s — sg = ¢, log{p/((y — 1)67)} where ¢, is the
specific heat at constant volume, we get

(ii) Sp=Cy/p, S5 = —7Cy /0.

Assuming ¢ < min{pg, do} and using (i), (ii) and (6.4), by the inequality
2pd < p? + 62, we can estimate

Ez-z>p?s, T, — (p* + 6%)s,|Ts|c1 + 6%(s5 — 5/6)Ts
+ 3(po — €)(2/0* — 1+ 6c%) " 1u?
= p*sp(Tp — c1|Ts]) + 6%|T5((|ss] + /0 — c1sy)
+ 3(po — )(2/0° — 1+ 6%) ",
Assumptions (6.3) guarantee that for z € Q(Go,¢), T, — c1|T5| > 0 and
|ss| +s/8 — c15, > 0, so we can estimate Ez - z > az?, where
a0 = min{3e;” (po — 2), 5,(Ty — er o), T3] (5] + /0 — exs,)},
which concludes the proof. =
REMARK 6.1. To satisfy (6.3) we need
1+02/c2\° e"RT,
T 2/a log ————"—7,
1—uvg/c (v —1)dg
where we used the fact that ¢ > 0 and is small. To have vy close to ¢ we
have to assume either Ty large, or §p small or « close to 1.

Let us consider Aj = CZ?:1 A¥(2)n;, where c is the speed of light, and
7 the unit outward normal vector to 9f2. The matrix A; has the form

UnSpTy n1 ng
nq upw(l — f2u?)  —pAuwugug
Az =c N9y —Brupwuius  uyw(l — B2u3)
ns —ﬁQUnwuﬂm —Bzunwuw?,
UpSpTs 0 0
ng UpSpTs
—B%u, wugus 0
—B%u, wusus 0
upw(l — B2u3) 0
0 unTs(ss — s/9)

From (6.5) we have
(6.6) det(—An — \I)
= —c5(unw + M) {(unTs(ss —s/8) + N )[(unsp Ty +N) (upw+ )\')(uanQ + )
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— (upwB?(u +1) + \)] — (unspTg)z(unw + N (upwB? + N)}

where X' = A\/c so \; = —cu,w.
By local straightening of the boundary (given by the transformation
T:y =y(zx), see 4(c)), we can assume

W = (wrmy - uamy + uyng)® = 4 +ud = 1/8% 1
Therefore we get

det(—Az — M) = (cupw + A\)2(A? + ebA? — cfa) + ¢*d)

where
a = (u,s,T5)* — uTs(ss — 5/0)s,T)
—u2Ts5(ss — s/8)wpB? — uZs,T,wB? + 1,
(6.7) b=u,Ts(s5 — 5/6) + unspTp + upwh?,

d= — (un<<5][,T5)2unwﬂ2 —upTs(ss — s/9)
+ubTs(ss — 5/6)sp,Tpywf>.
We examine the polynomial
FA) = A3 4+ ebX\? — Za + 3d
with derivative
f'(\) = 3)\% + 2¢b\ — ca.

Using the solutions of f/(\) = 0:
VP4 3a b+ VB +3a

3 ’ 3 ’

we can calculate the local maximum f(z;) and minimum f(z3) of f(A);
next, solving f(z) — f(z1) = 0 and f(x) — f(z2) = 0 we find z, and z,
respectively, such that

(68) Ty < A3 <z1 <A <129 < A5 < 21

r1 = To =

where Az, A4, As are the roots of the second term of the characteristic
polynomial (6.6).
Moreover, for A\ = Ay = —cu,w we have
(6.9) up <3(2/0* —1+6%), w<wy+e.
Hence we formulate

LEMMA 6.2. Let the assumptions of Lemma 6.1 be satisfied and addition-
ally suppose that

(a) sp, Tp, Ts, ss — 5/ are bounded,
(b) d = —(unspTs)*unwB2—up,Ts(ss—s/8)+ud Tps,T5(ss—s/8)wB? # 0.



Equations of relativistic hydrodynamics 249

Then the eigenvalues \; of the matrix —An = —c Z?zl Al(2)n; and the ma-
triz E = A%(2) satisfy conditions (a) and (c) of Section 5 and Theorem 5.1.

Now we are finally prepared to formulate the result:

THEOREM 6.1. Suppose the following assumptions are satisfied:
(1) g € H2(0021), z9 € H*(R2), 20]a0 = 0.
(2) 00 € C3.
(3) For zp = (po, uo1, woz2, o3, dp) we have

( ) 0 >0, dg > 0,

(b) UO = 03) + 3y + V33 < (1 — 0?)c?, where g € (0,1).
(4) sp, Tp, T5, ss — s/ are bounded and of the same sign.
(5) d 7é 0 (see (6.7) or Lemma 6.2).
(6) The matriz M (z,t,z) has the form described in 5.1(b),

(7) The matrices E(t,z, z(x,t)), A;(t,z,2(z,t)) = cA'(t,x,2(z,t)) are
3-times differentiable functions with respect to t, x, z.

(8) llglls,00t.a and ||zo|l3,2,0 are sufficiently small, and t < t* (see
Section 5).

(9) a satisfies acg > Po(Q,d + ||z0ll3.2.2) > pola,b) + ca® for some
polynomials po, po and Q = Q(Go,¢) is defined in Section 5.

Then there exists a solution of (2.2) such that

z € II3(2Y) N H3 (Y N H2(00Y).
Moreover, under the assumptions
(6.10) supsup |Z'(z)| sup(|z1] + | D} ,z1]) < (aag)?/8
Q ot ot

(6.11) (co + ¢1)0; 2 supsup | M’ (2)|sup |21| < ¢o/4
Q oot ot

for some solutions z; € C1(02%) we have uniqueness.

REMARK. Introducing the quantity z — zg in the method of successive
approximations, we have avoided the assumption that zg is small. We need,
in fact, the smallness of zg, in H3 and of g(¢,z) in H3(9$2"). That is very
important in the relativistic case, where the condition |z9| < 1 means that
vg < ¢?/2, which is very restrictive.

7. Barotropic case. We additionally consider the problem (1.1)—(1.2)
in the barotropic case (that means, the pressure p is an explicit function
of the density ). As before, p and ¢ denote variables as measured in the
reference frame moving with the fluid.

We assume that

(7.1) w = 0c® + dey + p,
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860
7.2 =62,
(7.2) p 55
where eq is the specific internal energy eg = eo(0).
We can write equations (1.1)—(1.2) in the form

0 2 ok 2 ok —
(73) 5w I8+ eo) + pluan +[5( 4 e0) +pl g (wi) + 5 =0,
9 1Y __
(7.4) 5 (0u') = 0.

Notice that we now have 5 equations and 4 unknowns (because p is given
by (7.2)). Moreover, it is easier to find \*(z), where z = (u!,u?,u3, ), such
that A" are the coefficients of linear dependence for equations (7.3)—(7.4).
By multiplying (7.3) by «* and summing over i we get

ok op .
_axk [5(02 + 60) +p]uk - [(5(02 + 60) +p]W + afz ut = 0.
This implies
_ (2 Yk 2 _ 0 k _ _
(c —|—eo)amku (¢ +60)5—8mk prilil 0.
Using (7.2) we get
0 Oeg [ 06 ouF
(2 Yok sYC0 k _
(75) (€ e0) g 07) = 055 (axk“ * 5axk> 0

so adding the equation of continuity (7.4) with multiplier A\* = ¢® + ¢y +
§0eq /06 = c* + ey +p/d = w/§ to (7.5) we obtain zero.

In this way we have found \™ = (u°, u',u? u3 w/§) for system (7.3)—
(7.4). We calculate

Buy 1 0 0 O

m_ [ Bua 0 1 0 0
agTA_ﬁug,o010
10

0 00 0 12

because

0 (w) Oeg 0 (.Oey\ 0Oeo 9%eg _1dp
%(3)‘%*%(5%)—2%”@52 =50

Rewriting (7.3)—(7.4) in the form

0z’
Duth(D)g g =0, m=0,...4
we obtain
BT],% =0 where BT = 0,-A"0,iq,,(2), i,k,j=0,...,3,

and B*(z) are symmetric.
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Let us consider Bo(g) and the condition B%z - z > agpz?. We calculate

—2wuy —2wus —2wus s — é%
W+ fwui  Pwuiug Pwuiug 53w
Oz I (2) = Pwugug %w + Bwu3 Bwugus %%UQ
Bwuqus Bwuous %w + Bwu3 %%u;),
Bouy Bous Bous %
and multiplying by 0,- \™ gives
—Bwuyuf + 5 —Bwurug —Bwujus  Bpsua
BY(z) = —fwuruy  —Pwui + —nggu?,w Bpsus
—Bwuiug —Bwuguz  —Pwui + % Bpsus
Bpsur Bpsusz Bpsus %%6
so we find
Bwuy (/3—12 ul — u2 — u3) + Bpsduq "
B0y . »— IBUJUQ(% u1 — u2 — u3) + Bpsdus Uz
£z ,BUJU:J,(% u1 - u2 - u3) + Bpsdus 133

Bps(uf +u3 + uf + @)
= /Bw(ul + u2 + UB) + 25?65(“1 + u2 + u3) + 2?5
Using (see Lemma 6.1) 8 > (2/0* — 1+ 6&2)7!, w > py — ¢ and 9p/dJ > 0,

6 > 0 we have

B%%-z>(2/0® —1+46¢*) " (po — &)(uf +u3 +uj) + Po g2

)
Because dp/dd > 0 we can find some constant ¢ such that dp/9d > ¢ > 0;
as d < dg + € we hence obtain

Bz-2>(2/0® —1+6£%) " (po — &) (uf + u3 + u3)

where
ap = min{(2/0* — 1 +6e%) " (po — €),¢/(0p +¢)}.
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