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MINIMAX PREDICTION FOR THE MULTINOMIAL AND
MULTIVARIATE HYPERGEOMETRIC DISTRIBUTIONS

Abstract. A problem of minimax prediction for the multinomial and
multivariate hypergeometric distribution is considered. A class of minimax
predictors is determined for estimating linear combinations of the unknown
parameter and the random variable having the multinomial or the multi-
variate hypergeometric distribution.

1. Introduction. The problem considered in the paper belongs to a
class of estimation problems for which the aim is to predict the value of
a random variable Y on the basis of the observation of a random variable
X, where X and Y have a distribution dependent on the same unknown
parameter. The paper deals with a special form of such problems—namely,
with the problem of finding a minimax predictor for the multinomial and
multivariate hypergeometric distributions. In the paper of Trybu la (1958)
a minimax estimator was found for estimating the parameters of the mul-
tivariate hypergeometric distribution and of the multinomial distribution
under a weighted quadratic loss function. Wilczyński (1985) obtained a
minimax predictor of a random variable distributed according to the multi-
nomial law when the loss function has a more general form than in Trybu la
(1958).

In this paper it is assumed that X and Y are random variables having the
multinomial or multivariate hypergeometric distribution with the unknown
parameter p = (p1, . . . , pr). Assuming the loss function to be of the form
(1) below, in both cases minimax predictors of linear combinations of the
form Z = ap + bY are determined. The results obtained generalize the
corresponding results of Trybu la (1958) and Wilczyński (1985).
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2. Minimax prediction for the multinomial distribution. Let
X = (X1, . . . , Xr) be a random variable having the multinomial distribution
with parameters (n,p), i.e.,

Pp{X = x = (x1, . . . , xr)}

=


n!

x1! . . . xr!
px1
1 . . . pxr

r if xi ∈ {0, 1, . . . , n} and x1 + . . . + xr = n,

0 otherwise,
where pi ≥ 0, i = 1, . . . , r, and p1+. . .+pr = 1. We observe the values of this
random variable and using an estimate d(X) = (d1(X), . . . , dr(X)) we want
to estimate the linear combination Z = ap + bY of the unknown parameter
p and the random variable Y = (Y1, . . . , Yr) which has the multinomial
distribution with parameters (m,p). We assume that a, b, n and m are
known, X and Y are independent and the loss connected with the estimator
d(X) is of the form

(1) L(d,Z) =
r∑

i,j=1

cij(di − Zi)(dj − Zj),

where the matrix C = (cij) is nonnegative definite and Zi = api + bYi.
We shall be interested in finding a minimax estimator of Z, that is, an

estimator d0(X) = (d0
1(X), . . . , d0

r(X)) for which

sup
Z∈Z

R(d0,Z) = inf
d

sup
Z∈Z

R(d,Z),

where R(d,Z) = Ep{L[d(X),Z]} is the risk function and Z = {Z =
(Z1, . . . , Zr) ∈ Rr : Z1 + . . . + Zr = a + bm}.

This problem was considered by Trybu la (1958) in the case when a = 1
and b = 0, and C is an arbitrary nonnegative definite diagonal matrix, and
also by Wilczyński (1985) in the case when a = 1 and b = 0 and when a = 0
and b = 1 and C is an arbitrary nonnegative definite matrix.

The following two theorems and the lemma will be used to prove the
main results of the paper established in Theorems 3 and 4.

Theorem 1 (Sion, see Aubin (1979)). Let g : P ×Q → R. Suppose that

(a) P and Q are convex , compact subsets of Euclidean spaces,
(b) p 7→ g(p, q) is convex and continuous for each q ∈ Q,
(c) q 7→ g(p, q) is concave and continuous for each p ∈ P.

Then there exists a saddle point (p, q) ∈ P ×Q, i.e., a point (p, q) for which

inf
p∈P

sup
q∈Q

g(p, q) = sup
q∈Q

g(p, q) = g(p, q) = inf
p∈P

g(p, q) = sup
q∈Q

inf
p∈P

g(p, q).

Theorem 2 (Karmanov (1986), Theorem 3.5.4). Let g : Q → R be a
convex function defined on a convex subset Q = {q = (q1, . . . , qn) ∈ Rn :
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aT
i q − bi ≥ 0, i = 1, . . . ,m} for some a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R.

An element q ∈ Q is a solution to the equation infq∈Q g(q) = g(q) iff there
exist real numbers u1, . . . , um, ui ≥ 0, i = 1, . . . ,m, for which

g′(q) =
m∑

i=1

uiai,

m∑
i=1

(aT
i q − bi)ui = 0,

where g′(q) stands for the gradient of g at q.

Lemma 1 (Ferguson (1967)). Let π be an a priori distribution of a pa-
rameter θ and let r(π, d) = EπR(d, θ) denote the Bayes risk of an estimator
d of θ. If d0 is a Bayes estimator of θ with respect to an a priori distribution
π0 and

sup
θ∈Θ

R(d0, θ) = r(d0, π0),

then d0 is minimax.

Define c = (c11, . . . , crr) and P = {p = (p1, . . . , pr) : pi ≥ 0, p1 + . . .
. . . + pr = 1}. Let πα,β stand for the a priori Dirichlet distribution
D(αβ1, . . . , αβr) of p with density

(2) h(p1, . . . , pr) =


Γ (α)∏

j∈A Γ (αβj)

∏
j∈A

p
αβj−1
j if

r∑
i=1

pi =
∑
i∈A

pi = 1,

pi ≥ 0, i = 1, . . . , r,

0 otherwise,

where α > 0, β = (β1, . . . , βr) ∈ P and A = {i ∈ {1, . . . , r} : βi > 0}. We
denote by πβ the a priori distribution of p defined by P (p = β) = 1. The
following lemma determines the Bayes predictors of Z with respect to the a
priori distributions πα,β and πβ of p.

Lemma 2. Under the loss function given by (1) with C nonnegative def-
inite, the predictors

dα,β
j (X) = (a + bm)

(
1

n + α
Xj +

α

n + α
βj

)
,(3)

dβ
j (X) = (a + bm)βj(4)

of the linear combination Z are Bayes w.r.t. the a priori distributions πα,β

and πβ , respectively , and their Bayes risks are

r(πα,β ,dα,β) = w1

[∑
i 6=j

cij
αβiβj

α + 1
+

∑
i

cii
βi(αβi + 1)

α + 1

]
(5)

− w2β
T Cβ + w3c

T β,

r(πβ ,dβ) = b2m(cT β − βT Cβ),(6)
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where

w1 = (a + bm)2
α2 − n

(n + α)2
− b2m = w2 − w3,(7)

w2 = (a + bm)2
α2

(n + α)2
,(8)

w3 = (a + bm)2
n

(n + α)2
+ b2m.(9)

P r o o f. For any predictor d(X), the loss function L(d,Z) can be rewrit-
ten in the form

L(d,Z) =
r∑

i,j=1

cij(di − Zi)(dj − Zj)

=
r∑

i,j=1

cij(a + bm)2
(

di

a + bm
− pi

)(
dj

a + bm
− pj

)

−
r∑

i,j=1

cijb(a + bm)
(

di

a + bm
− pi

)
(Yj −mpj)

−
r∑

i,j=1

cijb(a + bm)(Yi −mpi)
(

dj

a + bm
− pj

)

+
r∑

i,j=1

cijb
2(Yi −mpi)(Yj −mpj),

so

R(d,Z) = Ep

[ r∑
i,j=1

cij(a + bm)2
(

di

a + bm
− pi

)(
dj

a + bm
− pj

)]
(10)

+ Ep

[ r∑
i,j=1

cijb
2(Yi −mpi)(Yj −mpj)

]
.

If we want to find an estimator d0 such that r(π,d0) = infd∈D r(π,d)
(for any a priori distribution π), it is sufficient to find one for which the
expectation

Eπ

{
Ep

[ r∑
i,j=1

cij(a + bm)2
(

di

a + bm
− pi

)(
dj

a + bm
− pj

)]}
attains its minimum. Thus the predictor will be the product of a + bm
and the Bayes estimator of the parameter p, so that it is given by (3) if
π = πα,β , and by (4) if π = πβ . The risk function associated with the
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predictor dα,β(X) given by (3) is

(11) R(dα,β ,Z) = w1pT Cp + w2β
T Cβ + w3cT p− 2w2β

T Cp,

where w1, w2 and w3 are given by (7), (8) and (9), respectively. Using the
Liouville equation (Fichtenholz (1985), Vol. 3), we can show that

Eπα,β
(pi) = βi, Eπα,β

(p2
i ) =

βi(αβi + 1)
α + 1

, Eπα,β
(pipj) =

αβiβj

α + 1
,

so that r(πα,β ,dα,β) is of the form (5). The risk function associated with
the predictor dβ(X) given by (4) is

R(dβ(X),Z) = (a + bm)2βT Cβ − 2(a + bm)2βT Cp(12)
+ [(a + bm)2 − b2m]pT Cp + b2mcT p,

so that the Bayes risk r(πβ ,dβ) is given by (6).

The following theorem determines a minimax predictor of Z.

Theorem 3. Under the loss function given by (1) with C nonnegative
definite, the predictor of Z defined by

d0(X) =

 (a + bm)
(

1
n + α0

X +
α0

n + α0
β0

)
if (a + bm)2 − b2m > 0,

(a + bm)β0 otherwise,
where

(13) α0 =


nb2m + |a + bm|

√
(a + bm)2n + b2mn(n− 1)

(a + bm)2 − b2m
if n > 1,

(a + bm)2 + b2m

(a + bm)2 − b2m
if n = 1,

and β0 is a point (β0
1 , . . . , β0

r ) for which

(14) cT β0 − βT
0 Cβ0 = max

β∈P
(cT β − βT Cβ),

is minimax.

P r o o f. Consider the Bayes predictors dα,β(X) of the linear combination
Z with respect to the a priori distribution πα,β of the parameter p, which are
of the form defined by (3). The risk function associated with the predictor
(3) is of the form (11). If (a + bm)2 − b2m > 0, then there exists α0 > 0
for which w1 = 0. It is easy to check that α0 is of the form (13). Set
R1(β,p) = R(dα0,β ,Z). Taking α = α0 yields w1 = 0 and w2 = w3, and,
consequently,

(15) R1(β,p) = w2(βT Cβ + cT p− 2βT Cp).

Notice that the function R1(·, ·) : P ×P → R is convex w.r.t. β, concave
w.r.t. p, continuous w.r.t. (β,p), and P is a convex, compact subset of Rr.
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From Theorem 1 it follows that there exists a point (β0,p0) ∈ P × P such
that

inf
β∈P

sup
p∈P

R1(β,p) = sup
p∈P

R1(β0,p) = R1(β0,p0)(16)

= inf
β∈P

R1(β,p0) = sup
p∈P

inf
β∈P

R1(β,p).

It is well known that for the components of the saddle point, one can choose
p0 and β0—independently—at which the outer extrema are attained in the
following minimaxes:

(17)
max
p∈P

inf
β∈P

R1(β,p) = inf
β∈P

R1(β,p0),

min
β∈P

sup
p∈P

R1(β,p) = sup
p∈P

R1(β0,p).

Temporarily assuming that the matrix C is positive definite we see that
the point p0 = (p0

1, . . . , p
0
r) for which

(18) cT p0 − pT
0 Cp0 = max

p∈P
(cT p− pT Cp)

is a unique solution to (17). On the other hand, the strictly convex function
R1(β,p0) of the variable β (because we assume that C is positive definite)
attains its unique minimum at β0 = p0. Hence, (p0,p0) is the only saddle
point.

In order to find p0 for which (18) holds, also in the case when C is
nonnegative definite, we use Theorem 2. In our case:

a1 = (1, 0, . . . , 0), a2 = (0, 1, . . . , 0), . . . , ar = (0, 0, . . . , 1),
ar+1 = a1 + . . . + ar, ar+2 = −ar+1,

bi = 0, i = 1, . . . , r, br+1 = −br+2 = 1.

Thus p0 = (p0
1, . . . , p

0
r) is a solution to (18) iff there exists a constant z0

such that for all i ∈ {1, . . . , r},

if p0
i > 0, then 2

r∑
j=1

cijp
0
j − cii = z0,

and

if p0
i = 0, then 2

r∑
j=1

cijp
0
j − cii ≥ z0.

The predictor dα0,p0(X) is Bayes w.r.t. the a priori distribution πα0,p0 .
The Bayes risk associated with the a priori distribution πα0,p0 and the pre-
dictor dα0,p0(X) is

r(πα0,p0 ,d
α0,p0) = Eπα0,p0

[R(dα0,p0 ,Z)] = R1(p0,p0).
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Making use of (16) with β0 = p0 yields

sup
Z∈Z

R(dα0,p0 ,Z) = sup
p∈P

R1(p0,p) = R1(p0,p0) = r(πα0,p0 ,d
α0,p0).

Then d0(X) := dα0,p0(X) is minimax by Lemma 1.
In the case when (a + bm)2 − b2m ≤ 0 consider the Bayes predictors

dβ(X) = (a + bm)β w.r.t. the a priori distributions πβ of the parameter p.
The risk function of dβ(X) is given by (12). Temporarily assume a+bm 6= 0;
then it turns out that this function is convex w.r.t. β, concave w.r.t. p, and
continuous w.r.t. (β,p). In the same way as in the case (a+bm)2−b2m > 0
we can show that (β0, β0), where β0 is a solution to equation (14), is a saddle
point of R(dβ ,Z). Moreover,

sup
p∈P

R(dβ0 ,Z) = b2m(cT β0 − βT
0 Cβ0) = r(πβ0 ,d

β0).

Now it follows from Lemma 1 that dβ0(X) is minimax. In the case when
a + bm = 0,

R(dβ(X),Z) = b2m(cT p− pT Cp)

and

sup
p∈P

R(dβ(X),Z) = sup
p∈P

R(dβ0(X),Z) = b2m(cT β0−βT
0 Cβ0) = r(πβ0 ,d

β0).

Thus by Lemma 1, in the case (a + bm)2 − b2m ≤ 0 the predictor d0(X) :=
dβ0(X) is minimax.

3. Minimax prediction for the multivariate hypergeometric
distribution. Let X = (X1, . . . , Xr) be a random variable having the
multivariate hypergeometric distribution with parameters (W,W, n), i.e.,

Pp{X = x = (x1, . . . , xr)}

=



(
W1

x1

)
. . .

(
Wr

xr

)
(

W

n

) if xi ∈ {0, 1, . . . ,Wi}, i = 1, . . . , r,
x1 + . . . + xr = n,

0 otherwise,

where W1 + . . . + Wr = W , r ≥ 2, 0 < n ≤ W , W > 2 and p =
(W1/W, . . . , Wr/W ). Suppose that n and W are known and we want to
find a minimax estimator d(X) = (d1(X), . . . , dr(X)) of the linear combi-
nation Z = ap + bY of the unknown parameter p and the random variable
Y = (Y1, . . . , Yr) which has the multivariate hypergeometric distribution
with parameters (W,W,m), where 0 < m ≤ W . We assume that X and
Y are independent, and that a, b and m are known and satisfy one of the
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following conditions:

(a + bm)2(W − n)(W − n− 1)− b2m(W −m)W ≥ 0,

(a + bm)2 − b2m
(W −m)
W − 1

≤ 0.

Suppose that the loss connected with the estimator d(X) is given by
(1), where the matrix C = (cij) is nonnegative definite. This problem was
considered by Trybu la (1958) in the case when a = 1 and b = 0, and C is
an arbitrary nonnegative definite diagonal matrix, and also by Wilczyński
(1985) in the case when a = 1 and b = 0 and C is an arbitrary nonneg-
ative definite matrix. Set c = (c11, . . . , crr) and P = {p = (p1, . . . , pr) :
pi ≥ 0, p1 + . . . + pr = 1}. The following lemma determines the Bayes
predictors of Z w.r.t. the following a priori distributions of p:

1) the Pólya–Eggenberger distribution πα,β with parameters α, β (α > 0,
β = (β1, . . . , βr) ∈ P) given by

P{p = (W1/W, . . . , Wr/W )}

=


W !Γ (α)

Γ (W + α)

∏
j∈A

Γ (Wj + αβj)
WjΓ (αβj)

if Wi ∈ {0, . . . ,W}, i = 1, . . . , r,
r∑

i=1

Wi =
∑
j∈A

Wj = W,

0 otherwise;

2) the multinomial distribution π∞,β (with β = (β1 . . . , βr) ∈ P) given by

P{p = (W1/W, . . . , Wr/W )}

=


W !

∏
j∈A

β
Wj

j

Wj !
if Wi ∈ {0, . . . ,W}, i = 1, . . . , r,

r∑
i=1

Wi =
∑
j∈A

Wj = W,

0 otherwise;

3) πβ defined by P (p = β) = 1, where β = (β1, . . . , βr) ∈ P.

Above, A = {i ∈ {1, . . . , r} : βi > 0}.

Lemma 3. Under the loss function given by (1) with C nonnegative def-
inite, the predictors

dα,β
j (X) = (a + bm)

[
W + α

W (n + α)
Xj +

α(W − n)
W (n + α)

βj

]
,(19)

d∞,β
j (X) =

a + bm

W
[Xj + (W − n)βj ],(20)

dβ
j (X) = (a + bm)βj(21)
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of the linear combination Z are Bayes w.r.t. the a priori distributions πα,β ,
π∞,β and πβ , respectively , and their Bayes risks are

r(πα,β ,dα,β) = z1Eπ(pT Cp)− z2β
T Cβ + z3cT β,(22)

r(π∞,β ,d∞,β) =
[

(a + bm)2(W − n)
W 2

+
b2m(W −m)

W

]
(23)

× [cT β − βT Cβ],

r(πβ ,dβ) = b2 W −m

W − 1
(cT β − βT Cβ),(24)

where

z1 = (a + bm)2
[
α2(W − n)2

W 2(n + α)2
− n(W − n)(W + α)2

W 2(W − 1)(n + α)2

]
(25)

− b2m
W −m

W − 1
,

z2 = (a + bm)2
[
α(W − n)
W (n + α)

]2

,(26)

z3 = (a + bm)2
n(W − n)(W + α)2

W 2(W − 1)(n + α)2
+ b2m

W −m

W − 1
.(27)

P r o o f. Under the loss function given by (1), the risk function associated
with any predictor d(X) of Z is given by (10). Hence (analogously to the
case of the multinomial distribution) the Bayes predictor will be the product
of a + bm and the Bayes estimator of p. Now it is easy to show that the
Bayes predictors w.r.t. πα,β , π∞,β and πβ are given by (19), (20) and (21),
respectively. The associated risk functions are

R(dα,β ,Z) = z1pT Cp + z2β
T Cβ + z3cT p− 2z2β

T Cp,(28)

R(d∞,β ,Z) =
[
(a + bm)2

(W − n)(W − n− 1)
W (W − 1)

− b2m
W −m

W − 1

]
pT Cp(29)

+
(a + bm)2(W − n)2

W 2
βT Cβ

− 2
(a + bm)2(W − n)2

W 2
βT Cp

+
[

(a + bm)2(W − n)n
W 2(W − 1)

+
b2m(W −m)

W − 1

]
cT p,

R(dβ ,Z) =
[
(a + bm)2 − b2m

W −m

W − 1

]
pT Cp− 2(a + bm)2βT Cp(30)

+ (a + bm)2βT Cβ + b2m
W −m

W − 1
cT p,

respectively, where z1, z2 and z3 are given by (25), (26) and (27). It is easy
to show that the Bayes risks associated with the a priori distributions πα,β ,
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π∞,β and πβ and the predictors dα,β(X), d∞,β(X) and dβ(X) are of the
form (22), (23) and (24), respectively.

The following theorem generalizes results of Trybu la (1958) and Wil-
czyński (1985).

Theorem 4. Under the loss function given by (1) with C nonnegative
definite, the following predictor of Z is minimax :

d0(X) = (a + bm)
[

W + α0

W (n + α0)
X +

α0(W − n)
W (n + α0)

β0

]
,(31)

if
(a + bm)2(W − n)(W − n− 1)− b2m(W −m)W > 0;(32)

d0(X) =
a + bm

W
[X + (W − n)β0],(33)

if
(a + bm)2(W − n)(W − n− 1)− b2m(W −m)W = 0;(34)

d0(X) = (a + bm)β0,(35)
if

(a + bm)2 − b2m
W −m

W − 1
≤ 0,(36)

where

α0 =
n[(W − n)(a + bm)2 + b2mW (W −m)] + |a + bm|(W − n)

√
∆

(a + bm)2(W − n)(W − n− 1)− b2mW (W −m)
,(37)

∆ = (a + bm)2(W − n)(W − 1)n + b2m(W −m)(n− 1)Wn

and β0 is a point (β0
1 , . . . , β0

r ) for which

cT β0 − βT
0 Cβ0 = max

β∈P
(cT β − βT Cβ).

P r o o f. Consider the Bayes predictors dα,β(X) of Z w.r.t. the Pólya–
Eggenberger a priori distribution πα,β of the parameter p, which are of the
form (19). The associated risk function is of the form (28). If the condition
(32) is satisfied, then there exists α0 > 0 for which z1 = 0. It is easy to check
that α0 is of the form (37). Set R1(β,p) = R(dα0,β ,Z). Putting α = α0,
we obtain z1 = 0 and z2 = z3, and, consequently,

R1(β,p) = z2(βT Cβ + cT p− 2βT Cp).

Notice that the function R1(·, ·) : P ×P → R is convex w.r.t. β, concave
w.r.t. p, continuous w.r.t. (β,p), and P is a convex, compact subset of Rr.
In the same way as in the case of the multinomial distribution we can show
that (β0, β0) is a saddle point of R1(β,p). Moreover,

R1(β0, β0) = r(πα0,β0 ,d
α0,β0),

so that d0(X) := dα0,β0(X) given by (31) is minimax.
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When condition (34) holds, consider the Bayes predictors d∞,β(X) w.r.t.
the a priori distribution π∞,β of p. In this case,

R(d∞,β ,Z) =
(a + bm)2(W − n)2

W 2
βT Cβ − 2

(a + bm)2(W − n)2

W 2
βT Cp

+
[

(a + bm)2(W − n)n
W 2(W − 1)

+
b2m(W −m)

W − 1

]
cT p.

Using the same arguments as above we can show that the predictor (33) is
minimax.

Analogously, under condition (36), the risk function (30) associated with
the Bayes predictor dβ(X) w.r.t. the a priori distribution πβ is convex w.r.t.
β, concave w.r.t. p, continuous w.r.t. (β,p), and (β0, β0) is its saddle point.
Moreover,

sup
p∈P

R(dβ ,Z) = r(πβ0 ,d
β0),

so that d0(X) := dβ0(X) given by (35) is minimax.

Let us consider some examples.

Example 1 (multinomial distribution). Suppose that each of n observed
independently working devices undergoes failure due to one of r possible
reasons. Then the observed values Xi, i = 1, . . . , r, represent the number
of devices which have been damaged for the ith reason. The purpose is
to estimate the value of Z = (Z1, . . . , Zr), Zi = Yi − api, where Yi is the
unknown number of devices in the group of m devices which we should
expect to be destroyed for the ith reason, and api is the mean value of the
number of failures due to the ith reason in a group consisting of a devices.
By Theorem 3, under the loss function given by (1) with C = I, a minimax
predictor of Z will be of the form

(m− a)
(

1
n + α0

X +
α0

n + α0
β0

)
,

where

α0 =
nm + |m− a|

√
(m− a)2n + mn(n− 1)

(m− a)2 −m

and β0 = (1/r, . . . , 1/r).

Example 2 (multivariate hypergeometric distribution). A group con-
sisting of W elements undergoes statistical quality inspection. The values
Wi, i = 1, . . . , r, representing the number of elements of the ith quality cat-
egory are assumed to be unknown. On the basis of the observations from
randomly chosen n elements we want to predict the number of elements of
each quality category which should appear among anew randomly chosen
m elements, or we want to estimate the increments (decrements) of these
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numbers in comparison to the mean values of the inspection for a elements.
In the first case we want to find the value of the predictor Z = Y (a = 0,
b = 1; we recall that even this special case of Theorem 4 has not been treated
before), and in the second the value of the predictor Z = Y − ap.

One can give an analogous example related to a voting model. In this
case the values Wi, i = 1, . . . , r, represent the number of persons who are
inclined to vote for the ith candidate. We want to predict the numbers
Yi, i = 1, . . . , r, of persons, among m voters, who would vote for the ith
candidate.

By Theorem 4, under the loss function given by (1) with C = I, the
minimax predictor of Z = Y − ap will be of the form:

(i) d0(X) = (m− a)
[

W + α0

W (n + α0)
X +

α0(W − n)
W (n + α0)

β0

]
if

(m− a)2(W − n)(W − n− 1)−m(W −m)W > 0,

(ii) d0(X) =
m− a

W
[X + (W − n)β0] if

(m− a)2(W − n)(W − n− 1)−m(W −m)W = 0,

(iii) d0(X) = (m− a)β0 if

(m− a)2 −m
W −m

W − 1
≤ 0,

where

α0 =
n[(W − n)(m− a)2 + mW (W −m)] + |m− a|(W − n)

√
∆

(m− a)2(W − n)(W − n− 1)−mW (W −m)
,

∆ = (m− a)2(W − n)(W − 1)n + m(W −m)(n− 1)Wn

and β0 = (1/r, . . . , 1/r).

Remark 1. It follows from Theorem 2 that A = {i1} iff cij = c0 for all
i, j. This case is not interesting, because every predictor d = (d1, . . . , dr)
for which d1 + . . . + dr = a + bm is then a minimax predictor, and we may
assume that k ≥ 2.

Remark 2. The minimax predictor of Z established in Theorems 3
and 4 is a linear combination of the minimax estimator of p and a minimax
predictor of the random variable Y with coefficients depending on a, b, m
and n.
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