A. FDIL (Marrakech)

CONVERGENCE ACCELERATION BY THE E_{+p} -ALGORITHM

Abstract. A new algorithm which generalizes the E-algorithm is presented. It is called the E_{+p} -algorithm. Some results on convergence acceleration for the E_{+p} -algorithm are proved. Some applications are given.

1. Introduction. Many convergent sequences (s_n) of complex numbers are of the form

(1)
$$s_n = s + a_1 g_1(n) + \ldots + a_i g_i(n) + r_n,$$

where $(g_i(n))$, $i=1,\ldots,k$, are known sequences satisfying for each i, $g_{i+1}(n)=o(g_i(n))$ (i.e. $g_{i+1}(n)/g_i(n)\to 0$ as $n\to\infty$), the limit s of (s_n) and the coefficients $a_i,\ i=1,\ldots,k$, are unknown and $r_n=o(g_k(n))$.

When the sequences $(g_i(n))$, $i=1,\ldots,k$, satisfy $g_i(n+1)/g_i(n) \to b_i$ as $n\to\infty$, with some additional assumptions, the *E*-algorithm with $(g_i(n))$, $i=1,\ldots,k$, as auxiliary sequences is effective for accelerating (s_n) (see [2,3,5]). However, in general, the *E*-algorithm cannot accelerate (s_n) when the sequences $(g_i(n+1)/g_i(n))$, $i=1,\ldots,k$, are not convergent. This is, for example, the case of the sequence

$$s_n = g_1(n) + r_n,$$

where

$$g_1(2n) = \frac{1}{3^n}, \quad g_1(2n+1) = \frac{1}{3^n} + \frac{1}{5^n}, \quad r_{2n} = \frac{1}{4^n}, \quad r_{2n+1} = 0$$
for $n = 0, 1, \dots$

We have

$$\frac{g_1(2n+1)}{g_1(2n)} \xrightarrow{n} 1, \quad \frac{g_1(2n+2)}{g_1(2n+1)} \xrightarrow{n} \frac{1}{3}, \quad \frac{g_1(n+2)}{g_1(n)} \xrightarrow{n} \frac{1}{3}.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 65B05.

 $Key\ words\ and\ phrases:$ convergence acceleration, E-algorithm, linear periodic convergence, numerical quadrature.

The convergence of (s_n) is linear periodic of period 2. One can easily check that (s_n) is not accelerated by the sequence transformation

$$E_1:(s_n)\to \left(\frac{g_1(n+1)s_n-g_1(n)s_{n+1}}{g_1(n+1)-g_1(n)}\right)$$

which is the first step of the E-algorithm. However, the sequence transformation

$$E_{+2,1}:(s_n)\to \left(\frac{g_1(n+2)s_n-g_1(n)s_{n+2}}{g_1(n+2)-g_1(n)}\right)$$

does accelerate (s_n) .

The sequence transformation $E_{+2,1}$ is a particular case of the sequence transformation

$$E_{+p,1}:(s_n)\to \left(\frac{g_1(n+p)s_n-g_1(n)s_{n+p}}{g_1(n+p)-g_1(n)}\right),$$

where p is a positive integer, $p \ge 1$ and $(g_1(n))$ is an auxiliary sequence. It includes the sequence transformation T_{+p} of Gray and Clark $(g_1(n) = \Delta s_n)$ [7] and the process (Δ_p^2) of Delahaye $(g_1(n) = s_{n+p} - s_n)$ [4].

In order to accelerate convergence of sequences (s_n) of complex numbers of the form (1), where the g_i are such that

$$\frac{g_i((n+1)p+j)}{g_i(np+j)} \xrightarrow{n} b_{j,i} \quad \text{for } j = 0, \dots, p-1$$

(p is a fixed positive integer), we present in Section 2 a new algorithm called the E_{+p} -algorithm. Its first step is the preceding sequence transformation $E_{+p,1}$. It is a generalization of the E-algorithm.

In Section 3 we establish some results on convergence acceleration for the E_{+p} -algorithm. Section 4 is devoted to some applications of the E_{+p} algorithm. Numerical examples are given for illustrating the theoretical results.

2. The E_{+p} -algorithm. Let us begin with the following notations:

- N: the set of positive integers.
- $\bullet \mathbb{N}^* = \mathbb{N} \{0\}.$
- \bullet \mathbb{C} : the set of complex numbers.
- Re z: real part of the complex number z.
- $Conv(\mathbb{C})$: the set of convergent sequences of complex numbers.
- If $(s_n) \in \text{Conv}(\mathbb{C})$, then s denotes its limit.
- $u_n = o(v_n)$ means that $u_n/v_n \to 0$ as $n \to \infty$.

Let $p \in \mathbb{N}^*$. Let $(s_n) \in \text{Conv}(\mathbb{C})$ be such that for all $n \in \mathbb{N}$,

(2)
$$s_n = s + a_1 g_1(n) + \ldots + a_i g_i(n) + \ldots,$$

where the g_i are some known sequences. We have

$$s_n = s + a_1 g_1(n) + \ldots + a_i g_i(n) + \ldots,$$

 $s_{n+p} = s + a_1 g_1(n+p) + \ldots + a_i g_i(n+p) + \ldots$

Thus

$$\frac{g_1(n+p)s_n - g_1(n)s_{n+p}}{g_1(n+p) - g_1(n)} = s + \sum_{i=2}^{\infty} a_i \frac{g_1(n+p)g_i(n) - g_1(n)g_i(n+p)}{g_1(n+p) - g_1(n)}.$$

Set

$$E_{+p,1}^{(n)} = \frac{g_1(n+p)s_n - g_1(n)s_{n+p}}{g_1(n+p) - g_1(n)},$$

$$g_{1,i}^{(n)} = \frac{g_1(n+p)g_i(n) - g_1(n)g_i(n+p)}{g_1(n+p) - g_1(n)}, \quad n \ge 0, \ i \ge 2.$$

Thus

$$E_{+p,1}^{(n)} = s + a_2 g_{1,2}^{(n)} + \ldots + a_i g_{1,i}^{(n)} + \ldots$$

The sequence $(E_{+p,1}^{(n)})$ is of the form (2). Consequently, the process can be repeated. Thus, we obtain the following E_{+p} -algorithm:

$$E_{+p,0}^{(n)} = s_n, \quad g_{0,i}^{(n)} = g_i(n), \qquad n \ge 0, \ i \ge 1,$$

$$E_{+p,k}^{(n)} = \frac{g_{k-1,k}^{(n+p)} E_{+p,k-1}^{(n)} - g_{k-1,k}^{(n)} E_{+p,k-1}^{(n+p)}}{g_{k-1,k}^{(n+p)} - g_{k-1,k}^{(n)}}, \quad n \ge 0, \ k \ge 1,$$

$$g_{k,j}^{(n)} = \frac{g_{k-1,k}^{(n+p)} g_{k-1,j}^{(n)} - g_{k-1,k}^{(n)} g_{k-1,j}^{(n+p)}}{g_{k-1,k}^{(n+p)} - g_{k-1,k}^{(n)}}, \quad n \ge 0, \ k \ge 1, \ j > k.$$

The sequences $(g_i(n))$, $i \ge 1$, are called the auxiliary sequences of the E_{+p} -algorithm.

Remarks. 1. When p = 1, we obtain the E-algorithm.

- 2. For each j > k, the sequence $(g_{k,j}^{(n)})_n$ is obtained by applying the sequence transformation $E_{+p,k}: (s_n) \to (E_{+p,k}^{(n)})$ to the sequence $(g_j(n))$.
- 3. If the sequences $(g_1(n)), \ldots, (g_k(n))$ do not depend (respectively depend) on (s_n) , then the sequence transformation $E_{+p,k}$ is linear (respectively nonlinear).
- 4. The E_{+p} -algorithm can be generalized by replacing p by an integer p(n,k) (depending on n and k) in the rules of the E_{+p} -algorithm.

THEOREM 1. Let $j \in \{0, \ldots, p-1\}$ and $k \geq 0$. Let $E_{j,k}^{(n)}$, $k \geq 0$, $n \geq 0$, be the quantities obtained by applying the E-algorithm (i.e. the E_{+1} -algorithm) to $(s_{np+j})_n$ with $(h_{j,i}(n)) = (g_i(np+j))$, $i = 1, 2, \ldots$, as auxiliary sequences. Then $E_{j,k}^{(n)} = E_{+p,k}^{(np+j)}$ for all $n \geq 0$.

Proof. By induction on k with the help of Remarks 1 and 2.

DEFINITION. Let $m \in \mathbb{N}^*$. Let (s_n) be a sequence of complex numbers. We say that (s_n) is m-periodic if $s_{n+m} = s_n$ for n = 0, 1, ...

Definition. Let T be a sequence transformation. The set of sequences (s_n) such that the sequence $(T^{(n)})$ obtained by applying T to (s_n) is 1-periodic is called the kernel of T.

THEOREM 2 (see [2]). The kernel of the sequence transformation $E_{+1,k}$ is the set of sequences (s_n) such that

$$s_n = s + a_1 g_1(n) + \ldots + a_k g_k(n), \quad n = 0, 1, \ldots$$

Theorem 3. The kernel of the sequence transformation $E_{+p,k}$ is the set of sequences (s_n) of the form

$$s_n = s + a_1(n)g_1(n) + \ldots + a_k(n)g_k(n), \quad n \ge 0,$$

where the sequences $(a_i(n))$, i = 1, ..., k, are p-periodic.

Proof. This follows immediately from Theorems 1 and 2.

Remark. The kernel of $E_{+p,k}$ contains the kernel of $E_{+1,k}$.

Theorem 4 (see [2]). If for all n,

$$s_n = s + a_1 g_1(n) + \ldots + a_i g_i(n) + \ldots,$$

then for all k and n.

$$E_{+1,k}^{(n)} = s + a_{k+1}g_{k,k+1}^{(n)} + \dots + a_ig_{k,i}^{(n)} + \dots$$

An immediate consequence of Theorems 1 and 4 is

Theorem 5. If for all n,

$$s_n = s + a_1(n)q_1(n) + \ldots + a_i(n)q_i(n) + \ldots,$$

where the sequences $(a_i(n)), i \geq 1$, are p-periodic, then for all k and n,

$$E_{+p,k}^{(n)} = s + a_{k+1}(n)g_{k,k+1}^{(n)} + \ldots + a_i(n)g_{k,i}^{(n)} + \ldots$$

Let us now establish some results on convergence acceleration for the E_{+p} -algorithm.

3. Convergence acceleration. Let $(s_n) \in \text{Conv}(\mathbb{C})$. Let $k \in \mathbb{N}^*$.

THEOREM 6. Assume that:

- 1. $E_{+p,k-1}^{(n)} \to s \text{ as } n \to \infty$. 2. There are $\varepsilon > 0$ and n_0 such that for all $n \ge n_0$,

$$|g_{k-1,k}^{(n+p)}/g_{k-1,k}^{(n)}-1| \ge \varepsilon.$$

Then $E_{+n,k}^{(n)} \to s$ as $n \to \infty$.

Proof. We have

$$E_{+p,k}^{(n)} - s = (E_{+p,k-1}^{(n)} - s) + \frac{(E_{+p,k-1}^{(n)} - s) - (E_{+p,k-1}^{(n+p)} - s)}{g_{k-1,k}^{(n+p)}/g_{k-1,k}^{(n)} - 1}.$$

Thus

$$|E_{+p,k}^{(n)} - s| \le \left(1 + \frac{2}{|g_{k-1,k}^{(n+p)}/g_{k-1,k}^{(n)} - 1|}\right) \max(|E_{+p,k-1}^{(n)} - s|, |E_{+p,k-1}^{(n+p)} - s|),$$

and from assumptions 1 and 2 we get the assertion. \blacksquare

THEOREM 7. Assume that:

1.
$$E_{+n,k-1}^{(n)} \to s \text{ as } n \to \infty$$
.

1.
$$E_{+p,k-1}^{(n)} \to s \text{ as } n \to \infty.$$

2. For each $j \in \{0, \dots, p-1\}$, $g_{k-1,k}^{((n+1)p+j)}/g_{k-1,k}^{(np+j)} \to l_j \neq 1 \text{ as } n \to \infty.$

(i)
$$E_{+p,k}^{(n)} \to s \text{ as } n \to \infty$$
.

(i)
$$E_{+p,k}^{(n)} \to s \text{ as } n \to \infty.$$

(ii) $E_{+p,k}^{(n)} - s = o(E_{+p,k-1}^{(n)} - s) \text{ iff}$

$$\forall j \in \{0, \dots, p-1\}, \quad \frac{E_{+p,k-1}^{((n+1)p+j)} - s}{E_{+p,k-1}^{(np+j)} - s} \xrightarrow{n} l_j.$$

Proof. (i) follows from Theorem 6

(ii) We have

(3)
$$\frac{E_{+p,k}^{(n)} - s}{E_{+p,k-1}^{(n)} - s} = \frac{\frac{g_{k-1,k}^{(n+p)}}{g_{k-1,k}^{(n)}} - \frac{E_{+p,k-1}^{(n+p)} - s}{E_{+p,k-1}^{(n)} - s}}{\frac{g_{k-1,k}^{(n+p)}}{g_{k-1,k}^{(n)}} - 1},$$

(4)
$$E_{+p,k}^{(n)} - s = o(E_{+p,k-1}^{(n)} - s)$$
 iff
$$\forall j \in \{0, \dots, p-1\}, \quad E_{+p,k}^{(np+j)} - s = o(E_{+p,k-1}^{(np+j)} - s).$$

From (3)–(4) and assumption 2 we get the assertion.

REMARK. If $\prod_{j=0}^{p-1} l_j \neq 0$, then

$$E_{+p,k}^{(n)} - s = o(E_{+p,k-1}^{(n+p)} - s) \quad \text{iff} \quad E_{+p,k}^{(n)} - s = o(E_{+p,k-1}^{(n)} - s).$$

Let L_p be the set of sequences $(s_n) \in \text{Conv}(\mathbb{C})$ such that for every $j \in \{0, \dots, p-1\},\$

$$\frac{s_{(n+1)p+j}-s}{s_{np+j}-s} \xrightarrow[n]{} a_j \in [-1,1[.$$

Then L_p contains the set P_p of sequences $(s_n) \in \text{Conv}(\mathbb{C})$ such that for all $j \in \{0, \ldots, p-1\}$,

$$\frac{s_{np+j+1}-s}{s_{np+j}-s} \xrightarrow{n} a_j \neq 1 \quad \text{with } 0 < \left| \prod_{j=0}^{p-1} a_j \right| < 1$$

(i.e. the convergence of (s_n) is linear periodic of period p). The sequence transformation (Δ_p^2) accelerates P_p (i.e. (Δ_p^2) accelerates the convergence of each sequence $(s_n) \in P_p$; see [4]).

THEOREM 8. The sequence transformation (Δ_p^2) accelerates L_p . The sequence transformation T_{+p} accelerates the set of sequences $(s_n) \in L_p$ such that for all $j \in \{0, \ldots, p-1\}$,

$$\lim_{n \to \infty} \frac{s_{(n+1)p+j+1} - s_{(n+1)p+j}}{s_{np+j+1} - s_{np+j}} = \lim_{n \to \infty} \frac{s_{(n+1)p+j} - s}{s_{np+j} - s}.$$

In particular, T_{+p} accelerates P_p .

Proof. This follows from Theorem 7.

DEFINITION. We say that the auxiliary sequences $(g_i(n))$, $i \geq 1$, of the E_{+p} -algorithm satisfy the *condition* (b_{+p}) if for all $i \geq 1$ and $j \in \{0, \ldots, p-1\}$,

$$\frac{g_i((n+1)p+j)}{g_i(np+j)} \xrightarrow{n} b_{j,i} \neq 1 \quad \text{with } b_{j,i} \neq b_{j,k} \text{ for } k \neq i.$$

REMARKS. 1. The condition (b_{+1}) is a condition due to Brezinski, under which some results on convergence acceleration for the E-algorithm are proved in [2].

- 2. If the g_i satisfy the condition (b_{+1}) , then the condition (b_{+p}) is satisfied in the following cases:
 - (i) $|b_{0,i}| \neq |b_{0,j}|$ for all $i \neq j$;
 - (ii) the numbers b_i are real and $b_{0,i}b_{0,j} > 0$ for all $i \neq j$;
 - (iii) the numbers $b_{0,i}$ are real and p is odd.

We assume in the sequel that the condition (b_{+p}) is satisfied.

LEMMA. Let $j \in \{0, \dots, p-1\}$. For each $k \ge 0$ and i > k,

$$\frac{g_{k,i}^{((n+1)p+j)}}{g_{k,i}^{(np+j)}} \xrightarrow[n]{} b_{j,i}.$$

Proof. By induction on k.

With the help of Theorem 7 and the Lemma, we can easily prove

THEOREM 9. Let $(s_n) \in \text{Conv}(\mathbb{C}), k \geq 1$. Then:

1.
$$E_{+p,k}^{(n)} \to s \text{ as } n \to \infty.$$

2.
$$E_{+p,k}^{(n)} - s = o(E_{+p,k-1}^{(n)} - s)$$
 iff for all $j \in \{0, \dots, p-1\}$,
$$\frac{E_{+p,k-1}^{((n+1)p+j)} - s}{E_{+p,k-1}^{(np+j)} - s} \xrightarrow{n} b_{j,k}.$$

Definition. Let $(f_i(n)), i = 1, 2, \ldots$, be some sequences of complex numbers. Then $(f_1, \ldots, f_i, \ldots)$ is called an asymptotic sequence if for each i, $f_{i+1}(n) = o(f_i(n)).$

Let $(f_1, \ldots, f_i, \ldots)$ be an asymptotic sequence. Let (t_n) be a sequence of complex numbers. The notation

$$t_n \approx a_1(n)f_1(n) + \ldots + a_k(n)f_k(n) + \ldots,$$

where for each i, $(a_i(n))$ is a p-periodic sequence, means that for all $k \geq 1$,

$$t_n = a_1(n)f_1(n) + \ldots + a_k(n)f_k(n) + o(f_k(n))$$
 as $n \to \infty$

(i.e. for each $j \in \{0, \dots, p-1\}$, (t_{np+j}) has an asymptotic expansion with respect to $(h_1, ..., h_i, ...)$ where $(h_i(n)) = (f_i(np+j)), i = 1, 2, ...)$.

By using the previous Lemma, we can easily prove

Theorem 10. If $(g_1, \ldots, g_i, \ldots)$ is an asymptotic sequence, then so is $(g_{k,k+1},\ldots,g_{k,i},\ldots)$ for each $k\geq 1$.

THEOREM 11. Let $(s_n) \in \text{Conv}(\mathbb{C})$. Assume that:

- 1. $(g_1, \ldots, g_i, \ldots)$ is an asymptotic sequence.
- 2. $s_n s \approx a_1(n)g_1(n) + \ldots + a_i(n)g_i(n) + \ldots$ where $(a_i(n))$ is p-periodic for each i.

For each $k \geq 1$, we have:

- (i) $E_{+p,k}^{(n)} s \approx a_{k+1}(n)g_{k,k+1}^{(n)} + \dots + a_i(n)g_{k,i}^{(n)} + \dots$
- (ii) If $a_i(n) = 0$ for all i > k and n, then $E_{+p,k}^{(n)} = s$ for all n.
- (iii) Let $j \in \{0, ..., p-1\}$. If $a_i(j) = 0$ for all i > k, then $E_{+p,k}^{(np+j)} = s$ for all n. If the coefficients $a_i(j)$, $i \geq k$, are not all zero, then

$$\frac{E_{+p,k}^{(np+j)} - s}{E_{+p,k-1}^{(np+j)} - s} \xrightarrow{n} \frac{b_{j,k} - b_{j,i_j}}{b_{j,k} - 1},$$

where
$$i_j$$
 is the smallest index such that $i_j \ge k$ and $a_{i_j}(j) \ne 0$.
(iv) If $\prod_{j=0}^{p-1} a_k(j) \ne 0$ then $E_{+p,k}^{(n)} - s = o(E_{+p,k-1}^{(n+p)} - s)$.

Proof. (i) By induction on k.

(ii), (iii) and (iv) follow from (i). ■

REMARK. If $\prod_{j=0}^{p-1} a_k(j) \neq 0$ for each $k \geq 1$, then $E_{+p,k}^{(n)} - s =$ $o(E_{+p,k-1}^{(n+p)} - s)$ for all $k \ge 1$.

An immediate consequence of Theorem 11 is

COROLLARY. Let $(s_n) \in \text{Conv}(\mathbb{C})$. Assume that $(g_1, \ldots, g_i, \ldots)$ is an asymptotic sequence. If

$$s_n - s \approx a_1 g_1(n) + \ldots + a_i g_i(n) + \ldots,$$

where $a_i \neq 0$ for all $i \geq 1$, then $E_{+p,k}^{(n)} - s = o(E_{+p,k-1}^{(n+p)} - s)$ for all $k \geq 1$.

THEOREM 12. Let $(s_n) \in \text{Conv}(\mathbb{C})$. Assume that:

1. For each $j \in \{0, \dots, p-1\}$,

(5)
$$s_{np+j} - s \approx \lambda_j^n n^{\alpha_j} \left(a_{j,0} + \frac{a_{j,1}}{n^{\alpha_{j,1}}} + \ldots + \frac{a_{j,i}}{n^{\alpha_{j,i}}} + \ldots \right),$$

where $0 < |\lambda_j| < 1$, $a_{j,0} \neq 0$, $0 < \operatorname{Re} \alpha_{j,1} < \operatorname{Re} \alpha_{j,2} < \ldots < \operatorname{Re} \alpha_{j,i} < \ldots$

2. The auxiliary sequences $(g_i(n))$ of the E_{+p} -algorithm are such that for all $i \ge 1$ and $j \in \{0, ..., p-1\},\$

$$g_i(np+j) \approx \lambda_j^n n^{\theta_{j,i}} \left(a_{j,i,0} + \frac{a_{j,i,1}}{n^{\alpha_{j,i,1}}} + \dots + \frac{a_{j,i,k}}{n^{\alpha_{j,i,k}}} + \dots \right),$$

with $a_{j,i,0} \neq 0$, $0 < \operatorname{Re} \alpha_{j,i,1} < \operatorname{Re} \alpha_{j,i,2} < \ldots < \operatorname{Re} \alpha_{j,i,k} < \ldots$

Then for each $k \ge 1$ and each $j \in \{0, ..., p-1\}$, either there exists n_0 such that $E_{+p,k}^{(np+j)} = s$ for all $n \ge n_0$, or $E_{+p,k}^{(np+j)} - s = o(E_{+p,k-1}^{((n+1)p+j)} - s)$ and

$$E_{+p,k}^{(np+j)} - s \approx \lambda_j^n n^{\beta_{j,k}} \left(b_{j,k,0} + \frac{b_{j,i,1}}{n^{\beta_{j,i,1}}} + \dots + \frac{b_{j,i,k}}{n^{\beta_{j,i,k}}} + \dots \right),$$

with $b_{j,k,0} \neq 0$, $\operatorname{Re} \beta_{j,k} \leq \operatorname{Re} \alpha_j - k$, $0 < \operatorname{Re} \beta_{j,i,1} < \operatorname{Re} \beta_{j,i,2} < \dots$ $\ldots < \operatorname{Re} \beta_{j,i,k} < \ldots$

Proof. By induction on k.

Theorem 12 generalizes a result for the E-algorithm (i.e. p=1) given in [5].

DEFINITION. The E_{+p} -algorithm is called *effective* on (s_n) if for all $k \geq 1$, either $E_{+p,k}$ is exact on (s_n) (i.e. there exists n_0 such that $E_{+p,k}^{(n)} = s$ for all $n \ge n_0$) or $E_{+p,k}^{(n)} - s = o(E_{+p,k-1}^{(n+p)} - s)$

Theorem 13. Assume that (s_n) satisfies (5). The E_{+p} -algorithm with the following particular auxiliary sequences is effective on (s_n) :

I.
$$g_i(n) = s_{n+ip} - s_{n+(i-1)p}, i \ge 1;$$

II. $g_1(np+j) = \lambda_j^{np+j} n^{\beta_j}, \ \beta_j \in \mathbb{C}, \ j=0,\ldots,p-1 \ and \ g_i(n) =$ $s_{n+(i-1)p} - s_{n+(i-2)p}$ for $i \ge 2$;

III.
$$g_i(n) = (s_n - s_{n-p})/n^{i-1}, i \ge 1;$$

IV. $g_i(n) = (s_n - s_{n-p})/n^{i-2}, i \ge 1;$

IV.
$$g_i(n) = (s_n - s_{n-p})/n^{i-2}, i \ge 1;$$

V.
$$g_i(n) = \frac{(s_{n+p} - s_n)(s_n - s_{n-p})^2}{(s_{n+p} - 2s_n + s_{n-p})n^{i-1}}, i \ge 1;$$

VI. $g_i(np+j) = \lambda_j^{np+j}(n+i)^{\beta_j}, \ \beta_j \in \mathbb{C}, \ i \ge 1, \ j = 0, \dots, p-1.$

 ${\bf P}\,{\bf r}\,{\bf o}\,{\bf o}\,{\bf f}.$ This follows immediately from Theorem 12.

Let us mention that in the cases considered in Theorem 13 the E_{+p} -algorithm is a generalization of the ε -algorithm (case I), the process p (case II), the transformation T of Levin (case III), the transformation U of Levin (case IV), the transformation V of Levin (case V), and the G-transformation (case VI).

4. Applications. Let (s_n) be a convergent sequence such that the error $s_n - s$ has an asymptotic expansion of the form

$$s_n - s \approx a_1 g_1(n) + \ldots + a_i g_i(n) + \ldots,$$

where for all $i \geq 1$ and $j \in \{0, \ldots, p-1\}$,

$$\frac{g_i(np+j)}{g_i(np+j-1)} \xrightarrow{n} b_{j,i}$$

with

$$\prod_{m=0}^{p-1} b_{m,i} \neq 0, 1 \quad \text{and} \quad \prod_{m=0}^{p-1} b_{m,i} \neq \prod_{m=0}^{p-1} b_{m,k} \quad \text{for } i \neq k.$$

The auxiliary sequences $(g_i(n)), i \geq 1$, satisfy the condition (b_{+p}) . Consequently, we can use the E_{+p} -algorithm for accelerating (s_n) .

If there exist $i_0 \geq 1$ and $r, s \in \{0, \ldots, p-1\}$ such that $b_{r,i_0} \neq b_{s,i_0}$ then $(g_{i_0(n+1)}/g_{i_0(n)})$ is not convergent. Hence, we cannot use Brezinski's result [2] and Fdil's result [5] for the *E*-algorithm.

Assume that the auxiliary sequences $(g_i(n))$, $i \ge 1$, of the *E*-algorithm are such that for all $k \ge 0$ and i > k,

$$\frac{g_{k,i}^{(n+1)}}{g_{k,i}^{(n)}} \xrightarrow[n]{} b_i \quad \text{with } 1 > b_1 \ge \dots \ge b_i \ge \dots$$

If some numbers b_i are close to 1, the E-algorithm is numerically unstable. Choose a positive integer p^* (odd if there exists i such that $b_i = -1$) such that $b_1^{p^*}$ is not close to 1 (for example, $b_1^{p^*} \leq 0.8$). Then the condition (b_{+p^*}) is satisfied and the E_{+p^*} -algorithm with $(g_i(n))$, $i \geq 1$, as auxiliary sequences is numerically stable. Consequently, we can use the E_{+p^*} -algorithm instead of the E-algorithm for accelerating the convergence. For illustration, consider the sequence

$$s_n = \sum_{k=0}^{n} (k+1)(k+2)(.9)^k, \quad n = 0, 1, \dots$$

It is convergent to s = 2000. From a result due to Wimp [14, p. 19], we get

$$s_n - s \approx a_1 g_1(n) + \ldots + a_i g_i(n) + \ldots$$

with
$$g_i(n) = (.9)^n (n+1)^{2-i+1}, i \ge 1, n \ge 0.$$

Applying the E-algorithm and the E_{+4} -algorithm to (s_n) , with $g_i(n)$, $i \geq 1$, as auxiliary sequences, we obtain

n	$E_n^{(0)}$	$E_{+4,n/4}^{(0)}$
4	2000.00000000115	2.934258724233079
8	2000.000000001432	28.04921739106413
12	2000.000000010298	1999.99999999997
16	2000.000000096219	2000.0000000000004
20	2000.000060098672	2000.0000000000002
24	1999.999887612695	1999.99999999999

Let us now give another application of the E_{+p} -algorithm.

The use of some quadrature formulas for computing the integral $s = \int_0^1 \dots \int_0^1 f(x_1, \dots, x_k) dx_1 \dots dx_k$, where f does not have a logarithmic singularity, often leads to an asymptotic expansion of the form

(6)
$$T(h) - s \approx a_1 h^{\gamma_1} + \ldots + a_k h^{\gamma_k} + \ldots,$$

where T(h) is an approximate value of s, associated with the step length h ([0,1] is divided into 1/h subintervals of length h), $0 < \gamma_1 < \ldots < \gamma_i < \ldots$ (see, for example, [6, 8–12]).

Let (h_n) be a sequence of step lengths. Set $s_n = T(h_n), n \geq 0$, and $g_i(n) = h_n^{\gamma_i}$ for $i \geq 1, n \geq 0$. Thus

$$s_n - s \approx a_1 g_1(n) + \ldots + a_i g_i(n) + \ldots$$

For the choice $h_n = 1/2^n$, $n \ge 0$ (geometric sequence), the auxiliary sequences $(g_i(n))$, $i \ge 1$, satisfy the condition (b_{+1}) $(b_i = 1/2^{\gamma_i})$ and the E-algorithm is numerically stable. Consequently, we can compute s with high accuracy. The disadvantage of this choice is that the number of function evaluations is doubled from one step to the next.

The choice $h_n = 1/(n+1)$, $n \ge 0$ (harmonic sequence), is the most economic in terms of the number of function evaluations. However, the E-algorithm with $(g_i(n))$, $i \ge 1$, as auxiliary sequences is numerically unstable

Håvie [9] proposed the following general choice:

$$h_{2n} = \frac{1}{\sigma_0 M^n}, \quad h_{2n+1} = \frac{1}{\sigma_1 M^n}, \quad n \ge 0,$$

where $\sigma_0, \sigma_1, M \in \mathbb{N}^*$ with $1 \le \sigma_0 < \sigma_1, \ 2 \le M$.

σ_0	σ_1	M	(h_n)
1	2	4	$\left(\frac{1}{2}\right)^n$
1	2	3	Bauer
2	3	2	Bulirsch

For this general choice, we have, for all $i \geq 1$ and $n \geq 0$,

$$\frac{g_i(2n+1)}{g_i(2n)} = \left(\frac{\sigma_0}{\sigma_1}\right)^{\gamma_i}, \quad \frac{g_i(2n+2)}{g_i(2n+1)} = \left(\frac{\sigma_1}{\sigma_0 M}\right)^{\gamma_i}.$$

The sequences $(g_i(n))$, $i \ge 1$, satisfy the condition (b_{+2}) . Consequently, the E_{+2} -algorithm can be used for accelerating (s_n) .

Let p be a positive integer, $p \geq 2$. Put

$$h_j = \frac{1}{2^j}, \quad h_{p(n+1)+j} = \frac{1}{2^{n+p}+j}, \quad j = 0, \dots, p-1, \ n = 0, 1, \dots$$

This choice is more economical than Håvie's choice. We have, for all $i \geq 1$,

$$\frac{g_i(np)}{g_i(np-1)} \xrightarrow{n} \left(\frac{1}{2}\right)^{\gamma_i}, \quad \frac{g_i(np+j)}{g_i(np+j-1)} \xrightarrow{n} 1 \quad \text{for } j = 1, \dots, p-1,$$

$$\frac{g_i(n+p)}{g_i(n)} \xrightarrow{n} b_i = \left(\frac{1}{2}\right)^{\gamma_i}.$$

The condition (b_{+p}) is satisfied and the E_{+p} -algorithm is numerically stable. Thus, we can use the E_{+p} -algorithm for computing s with high accuracy. Note that the E-algorithm with $g_i(n) = h_n^{\gamma_i}$, $i \geq 1$, as auxiliary sequences is numerically unstable because for all $i \geq 1$, the sequence $(g_i(n+1)/g_i(n))$ has 1 as an accumulation point.

EXAMPLE:
$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx = 2.$$

Let T(h) be the approximate value of $s = \int_0^1 (1/\sqrt{x}) dx$ computed by the rectangular method:

$$T(h) = h \sum_{k=0}^{1/h-1} ((k+1/2)h)^{-1/2}.$$

The function T(h) has an asymptotic expansion of the form (6), with $\gamma_i = (2i-1)/2$ for i=1,2,...

Let (h_n) be the preceding sequence of step lengths with p=4. Applying the E-algorithm and the E_{+4} -algorithm to the sequence $s_n=T(h_n)$, we obtain

n	$E_n^{(0)}$	$E_{+4,n/4}^{(0)}$
8	2.000005028488225	2.000267155507016
16	2.000000047703804	2.000001670788114
24	2.000002619190568	2.000000068392044
32	1.99977686651984	2.000000003881382
40	2.203733445234798	2.00000000023691
48	0.5596855849893074	2.000000000014719

We see that the E_{+4} -algorithm is more effective than the E-algorithm for accelerating (s_n) .

References

- [1] C. Brezinski, Algorithmes d'Accélération de la Convergence en Analyse Numérique. Etude numérique, Technip, Paris, 1978.
- [2] —, A general extrapolation algorithm, Numer. Math. 35 (1980), 175–187.
- [3] C. Brezinski and M. Redivo Zaglia, Extrapolation Methods, Theory and Practice, North-Holland, Amsterdam, 1991.
- [4] J. P. Delahaye, Sequence Transformations, Springer, Berlin, 1988.
- [5] A. Fdil, Some results on convergence acceleration for the E-algorithm, Appl. Math. (Warsaw) 24 (1997), 393–413.
- [6] L. Fox, Romberg integration for a class of singular integrands, Comput. J. 10 (1967), 87–93.
- [7] H. L. Gray and W. D. Clark, On a class of nonlinear transformations and their applications to the evaluation of infinite series, J. Res. Nat. Bur. Standards Sect. B 73 (1969), 251–274.
- [8] T. Håvie, Error derivation in Romberg integration, BIT 12 (1972), 516–527.
- [9] —, Generalized Neville type extrapolation schemes, ibid. 19 (1979), 204–213.
- [10] D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Rev. 13 (1971), 435–490.
- [11] J. N. Lyness, Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity, J. Comput. Phys. 20 (1976), 346–364.
- [12] J. N. Lyness and B. W. Ninham, Numerical quadrature and asymptotic expansions, Math. Comp. 21 (1967), 162–177.
- [13] C. Schneider, Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialfallen, Numer. Math. 24 (1975), 177–184.
- [14] J. Wimp, Sequence Transformations and their Applications, Academic Press, New York, 1984.

A. Fdil Département de Mathématiques E.N.S. de Marrakech B.P. S 41 40000 Marrakech, Morocco

Received on 28.5.1997