A. FDIL (Marrakech)

CONVERGENCE ACCELERATION BY THE E_{+p}-ALGORITHM

Abstract. A new algorithm which generalizes the E-algorithm is presented. It is called the E_{+p}-algorithm. Some results on convergence acceleration for the E_{+p}-algorithm are proved. Some applications are given.

1. Introduction. Many convergent sequences $\left(s_{n}\right)$ of complex numbers are of the form

$$
\begin{equation*}
s_{n}=s+a_{1} g_{1}(n)+\ldots+a_{i} g_{i}(n)+r_{n}, \tag{1}
\end{equation*}
$$

where $\left(g_{i}(n)\right), i=1, \ldots, k$, are known sequences satisfying for each i, $g_{i+1}(n)=o\left(g_{i}(n)\right)$ (i.e. $g_{i+1}(n) / g_{i}(n) \rightarrow 0$ as $n \rightarrow \infty$), the limit s of $\left(s_{n}\right)$ and the coefficients $a_{i}, i=1, \ldots, k$, are unknown and $r_{n}=o\left(g_{k}(n)\right)$.

When the sequences $\left(g_{i}(n)\right), i=1, \ldots, k$, satisfy $g_{i}(n+1) / g_{i}(n)$ $\rightarrow b_{i}$ as $n \rightarrow \infty$, with some additional assumptions, the E-algorithm with $\left(g_{i}(n)\right), i=1, \ldots, k$, as auxiliary sequences is effective for accelerating (s_{n}) (see $[2,3,5]$). However, in general, the E-algorithm cannot accelerate (s_{n}) when the sequences $\left(g_{i}(n+1) / g_{i}(n)\right), i=1, \ldots, k$, are not convergent. This is, for example, the case of the sequence

$$
s_{n}=g_{1}(n)+r_{n},
$$

where

$$
g_{1}(2 n)=\frac{1}{3^{n}}, \quad g_{1}(2 n+1)=\frac{1}{3^{n}}+\frac{1}{5^{n}}, \quad r_{2 n}=\frac{1}{4^{n}}, \quad \begin{array}{r}
r_{2 n+1}=0 \\
\text { for } n=0,1, \ldots
\end{array}
$$

We have

$$
\frac{g_{1}(2 n+1)}{g_{1}(2 n)} \underset{n}{\longrightarrow} 1, \quad \frac{g_{1}(2 n+2)}{g_{1}(2 n+1)} \underset{n}{\longrightarrow} \frac{1}{3}, \quad \frac{g_{1}(n+2)}{g_{1}(n)} \underset{n}{\longrightarrow} \frac{1}{3} .
$$

[^0]The convergence of $\left(s_{n}\right)$ is linear periodic of period 2 . One can easily check that $\left(s_{n}\right)$ is not accelerated by the sequence transformation

$$
E_{1}:\left(s_{n}\right) \rightarrow\left(\frac{g_{1}(n+1) s_{n}-g_{1}(n) s_{n+1}}{g_{1}(n+1)-g_{1}(n)}\right)
$$

which is the first step of the E-algorithm. However, the sequence transformation

$$
E_{+2,1}:\left(s_{n}\right) \rightarrow\left(\frac{g_{1}(n+2) s_{n}-g_{1}(n) s_{n+2}}{g_{1}(n+2)-g_{1}(n)}\right)
$$

does accelerate $\left(s_{n}\right)$.
The sequence transformation $E_{+2,1}$ is a particular case of the sequence transformation

$$
E_{+p, 1}:\left(s_{n}\right) \rightarrow\left(\frac{g_{1}(n+p) s_{n}-g_{1}(n) s_{n+p}}{g_{1}(n+p)-g_{1}(n)}\right),
$$

where p is a positive integer, $p \geq 1$ and $\left(g_{1}(n)\right)$ is an auxiliary sequence. It includes the sequence transformation T_{+p} of Gray and Clark $\left(g_{1}(n)=\Delta s_{n}\right)$ [7] and the process $\left(\Delta_{p}^{2}\right)$ of Delahaye $\left(g_{1}(n)=s_{n+p}-s_{n}\right)$ [4].

In order to accelerate convergence of sequences $\left(s_{n}\right)$ of complex numbers of the form (1), where the g_{i} are such that

$$
\frac{g_{i}((n+1) p+j)}{g_{i}(n p+j)} \underset{n}{\longrightarrow} b_{j, i} \quad \text { for } j=0, \ldots, p-1
$$

(p is a fixed positive integer), we present in Section 2 a new algorithm called the E_{+p}-algorithm. Its first step is the preceding sequence transformation $E_{+p, 1}$. It is a generalization of the E-algorithm.

In Section 3 we establish some results on convergence acceleration for the $E_{+p^{-}}$-algorithm. Section 4 is devoted to some applications of the $E_{+p^{-}}$ algorithm. Numerical examples are given for illustrating the theoretical results.
2. The E_{+p}-algorithm. Let us begin with the following notations:

- \mathbb{N} : the set of positive integers.
- $\mathbb{N}^{*}=\mathbb{N}-\{0\}$.
- \mathbb{C} : the set of complex numbers.
- $\operatorname{Re} z$: real part of the complex number z.
- $\operatorname{Conv}(\mathbb{C})$: the set of convergent sequences of complex numbers.
- If $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C})$, then s denotes its limit.
- $u_{n}=o\left(v_{n}\right)$ means that $u_{n} / v_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Let $p \in \mathbb{N}^{*}$. Let $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C})$ be such that for all $n \in \mathbb{N}$,

$$
\begin{equation*}
s_{n}=s+a_{1} g_{1}(n)+\ldots+a_{i} g_{i}(n)+\ldots, \tag{2}
\end{equation*}
$$

where the g_{i} are some known sequences. We have

$$
\begin{aligned}
s_{n} & =s+a_{1} g_{1}(n)+\ldots+a_{i} g_{i}(n)+\ldots \\
s_{n+p} & =s+a_{1} g_{1}(n+p)+\ldots+a_{i} g_{i}(n+p)+\ldots
\end{aligned}
$$

Thus

$$
\frac{g_{1}(n+p) s_{n}-g_{1}(n) s_{n+p}}{g_{1}(n+p)-g_{1}(n)}=s+\sum_{i=2}^{\infty} a_{i} \frac{g_{1}(n+p) g_{i}(n)-g_{1}(n) g_{i}(n+p)}{g_{1}(n+p)-g_{1}(n)}
$$

Set

$$
\begin{aligned}
E_{+p, 1}^{(n)} & =\frac{g_{1}(n+p) s_{n}-g_{1}(n) s_{n+p}}{g_{1}(n+p)-g_{1}(n)} \\
g_{1, i}^{(n)} & =\frac{g_{1}(n+p) g_{i}(n)-g_{1}(n) g_{i}(n+p)}{g_{1}(n+p)-g_{1}(n)}, \quad n \geq 0, i \geq 2
\end{aligned}
$$

Thus

$$
E_{+p, 1}^{(n)}=s+a_{2} g_{1,2}^{(n)}+\ldots+a_{i} g_{1, i}^{(n)}+\ldots
$$

The sequence $\left(E_{+p, 1}^{(n)}\right)$ is of the form (2). Consequently, the process can be repeated. Thus, we obtain the following $E_{+p^{-}}$algorithm:

$$
\begin{aligned}
E_{+p, 0}^{(n)} & =s_{n}, \quad g_{0, i}^{(n)}=g_{i}(n), & n \geq 0, i \geq 1 \\
E_{+p, k}^{(n)} & =\frac{g_{k-1, k}^{(n+p)} E_{+p, k-1}^{(n)}-g_{k-1, k}^{(n)} E_{+p, k-1}^{(n+p)}}{g_{k-1, k}^{(n+p)}-g_{k-1, k}^{(n)}}, & n \geq 0, k \geq 1, \\
g_{k, j}^{(n)} & =\frac{g_{k-1, k}^{(n+p)} g_{k-1, j}^{(n)}-g_{k-1, k}^{(n)} g_{k-1, j}^{(n+p)}}{g_{k-1, k}^{(n+p)}-g_{k-1, k}^{(n)}}, & n \geq 0, k \geq 1, j>k .
\end{aligned}
$$

The sequences $\left(g_{i}(n)\right), i \geq 1$, are called the auxiliary sequences of the $E_{+p^{-}}$ algorithm.

Remarks. 1. When $p=1$, we obtain the E-algorithm.
2. For each $j>k$, the sequence $\left(g_{k, j}^{(n)}\right)_{n}$ is obtained by applying the sequence transformation $E_{+p, k}:\left(s_{n}\right) \rightarrow\left(E_{+p, k}^{(n)}\right)$ to the sequence $\left(g_{j}(n)\right)$.
3. If the sequences $\left(g_{1}(n)\right), \ldots,\left(g_{k}(n)\right)$ do not depend (respectively depend) on $\left(s_{n}\right)$, then the sequence transformation $E_{+p, k}$ is linear (respectively nonlinear).
4. The $E_{+p^{-}}$-algorithm can be generalized by replacing p by an integer $p(n, k)$ (depending on n and k) in the rules of the $E_{+p^{-}}$-algorithm.

Theorem 1. Let $j \in\{0, \ldots, p-1\}$ and $k \geq 0$. Let $E_{j, k}^{(n)}, k \geq 0, n \geq 0$, be the quantities obtained by applying the E-algorithm (i.e. the E_{+1}-algorithm) to $\left(s_{n p+j}\right)_{n}$ with $\left(h_{j, i}(n)\right)=\left(g_{i}(n p+j)\right), i=1,2, \ldots$, as auxiliary sequences. Then $E_{j, k}^{(n)}=E_{+p, k}^{(n p+j)}$ for all $n \geq 0$.

Proof. By induction on k with the help of Remarks 1 and 2.
Definition. Let $m \in \mathbb{N}^{*}$. Let $\left(s_{n}\right)$ be a sequence of complex numbers. We say that $\left(s_{n}\right)$ is m-periodic if $s_{n+m}=s_{n}$ for $n=0,1, \ldots$

Definition. Let T be a sequence transformation. The set of sequences $\left(s_{n}\right)$ such that the sequence $\left(T^{(n)}\right)$ obtained by applying T to $\left(s_{n}\right)$ is 1-periodic is called the kernel of T.

ThEOREM 2 (see [2]). The kernel of the sequence transformation $E_{+1, k}$ is the set of sequences $\left(s_{n}\right)$ such that

$$
s_{n}=s+a_{1} g_{1}(n)+\ldots+a_{k} g_{k}(n), \quad n=0,1, \ldots
$$

Theorem 3. The kernel of the sequence transformation $E_{+p, k}$ is the set of sequences $\left(s_{n}\right)$ of the form

$$
s_{n}=s+a_{1}(n) g_{1}(n)+\ldots+a_{k}(n) g_{k}(n), \quad n \geq 0
$$

where the sequences $\left(a_{i}(n)\right), i=1, \ldots, k$, are p-periodic.
Proof. This follows immediately from Theorems 1 and 2.
REmARK. The kernel of $E_{+p, k}$ contains the kernel of $E_{+1, k}$.
Theorem 4 (see [2]). If for all n,

$$
s_{n}=s+a_{1} g_{1}(n)+\ldots+a_{i} g_{i}(n)+\ldots,
$$

then for all k and n,

$$
E_{+1, k}^{(n)}=s+a_{k+1} g_{k, k+1}^{(n)}+\ldots+a_{i} g_{k, i}^{(n)}+\ldots
$$

An immediate consequence of Theorems 1 and 4 is
Theorem 5. If for all n,

$$
s_{n}=s+a_{1}(n) g_{1}(n)+\ldots+a_{i}(n) g_{i}(n)+\ldots,
$$

where the sequences $\left(a_{i}(n)\right), i \geq 1$, are p-periodic, then for all k and n,

$$
E_{+p, k}^{(n)}=s+a_{k+1}(n) g_{k, k+1}^{(n)}+\ldots+a_{i}(n) g_{k, i}^{(n)}+\ldots
$$

Let us now establish some results on convergence acceleration for the E_{+p}-algorithm.
3. Convergence acceleration. Let $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C})$. Let $k \in \mathbb{N}^{*}$.

Theorem 6. Assume that:

1. $E_{+p, k-1}^{(n)} \rightarrow s$ as $n \rightarrow \infty$.
2. There are $\varepsilon>0$ and n_{0} such that for all $n \geq n_{0}$,

$$
\left|g_{k-1, k}^{(n+p)} / g_{k-1, k}^{(n)}-1\right| \geq \varepsilon
$$

Then $E_{+p, k}^{(n)} \rightarrow s$ as $n \rightarrow \infty$.

Proof. We have

$$
E_{+p, k}^{(n)}-s=\left(E_{+p, k-1}^{(n)}-s\right)+\frac{\left(E_{+p, k-1}^{(n)}-s\right)-\left(E_{+p, k-1}^{(n+p)}-s\right)}{g_{k-1, k}^{(n+p)} / g_{k-1, k}^{(n)}-1} .
$$

Thus

$$
\left|E_{+p, k}^{(n)}-s\right| \leq\left(1+\frac{2}{\left|g_{k-1, k}^{(n+p)} / g_{k-1, k}^{(n)}-1\right|}\right) \max \left(\left|E_{+p, k-1}^{(n)}-s\right|,\left|E_{+p, k-1}^{(n+p)}-s\right|\right),
$$

and from assumptions 1 and 2 we get the assertion.
Theorem 7. Assume that:

1. $E_{+p, k-1}^{(n)} \rightarrow s$ as $n \rightarrow \infty$.
2. For each $j \in\{0, \ldots, p-1\}, g_{k-1, k}^{((n+1) p+j)} / g_{k-1, k}^{(n p+j)} \rightarrow l_{j} \neq 1$ as $n \rightarrow \infty$.

Then:
(i) $E_{+p, k}^{(n)} \rightarrow s$ as $n \rightarrow \infty$.
(ii) $E_{+p, k}^{(n)}-s=o\left(E_{+p, k-1}^{(n)}-s\right) i f f$

$$
\forall j \in\{0, \ldots, p-1\}, \quad \frac{E_{+p, k-1}^{((n+1) p+j)}-s}{E_{+p, k-1}^{(n p+j)}-s} \underset{n}{\longrightarrow} l_{j} .
$$

Proof. (i) follows from Theorem 6.
(ii) We have

$$
\begin{equation*}
\frac{E_{+p, k}^{(n)}-s}{E_{+p, k-1}^{(n)}-s}=\frac{\frac{g_{k-1, k}^{(n+p)}}{g_{k-1, k}^{(n)}}-\frac{E_{+p, k-1}^{(n+p)}-s}{E_{+p, k-1}^{(n)}-s}}{\frac{g_{k-1, k}^{(n+p)}}{g_{k-1, k}^{(n)}}-1}, \tag{3}
\end{equation*}
$$

(4) $\quad E_{+p, k}^{(n)}-s=o\left(E_{+p, k-1}^{(n)}-s\right) \quad$ iff

$$
\forall j \in\{0, \ldots, p-1\}, \quad E_{+p, k}^{(n p+j)}-s=o\left(E_{+p, k-1}^{(n p+j)}-s\right) .
$$

From (3)-(4) and assumption 2 we get the assertion.
Remark. If $\prod_{j=0}^{p-1} l_{j} \neq 0$, then

$$
E_{+p, k}^{(n)}-s=o\left(E_{+p, k-1}^{(n+p)}-s\right) \quad \text { iff } \quad E_{+p, k}^{(n)}-s=o\left(E_{+p, k-1}^{(n)}-s\right) .
$$

Let L_{p} be the set of sequences $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C})$ such that for every $j \in\{0, \ldots, p-1\}$,

$$
\frac{s_{(n+1) p+j}-s}{s_{n p+j}-s} \underset{n}{\longrightarrow} a_{j} \in[-1,1[.
$$

Then L_{p} contains the set P_{p} of sequences $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C})$ such that for all $j \in\{0, \ldots, p-1\}$,

$$
\frac{s_{n p+j+1}-s}{s_{n p+j}-s} \underset{n}{\longrightarrow} a_{j} \neq 1 \quad \text { with } 0<\left|\prod_{j=0}^{p-1} a_{j}\right|<1
$$

(i.e. the convergence of $\left(s_{n}\right)$ is linear periodic of period p). The sequence transformation $\left(\Delta_{p}^{2}\right)$ accelerates P_{p} (i.e. $\left(\Delta_{p}^{2}\right)$ accelerates the convergence of each sequence $\left(s_{n}\right) \in P_{p}$; see [4]).

ThEOREM 8. The sequence transformation $\left(\Delta_{p}^{2}\right)$ accelerates L_{p}. The sequence transformation T_{+p} accelerates the set of sequences $\left(s_{n}\right) \in L_{p}$ such that for all $j \in\{0, \ldots, p-1\}$,

$$
\lim _{n \rightarrow \infty} \frac{s_{(n+1) p+j+1}-s_{(n+1) p+j}}{s_{n p+j+1}-s_{n p+j}}=\lim _{n \rightarrow \infty} \frac{s_{(n+1) p+j}-s}{s_{n p+j}-s} .
$$

In particular, T_{+p} accelerates P_{p}.
Proof. This follows from Theorem 7.
Definition. We say that the auxiliary sequences $\left(g_{i}(n)\right), i \geq 1$, of the E_{+p}-algorithm satisfy the condition $\left(b_{+p}\right)$ if for all $i \geq 1$ and $j \in\{0, \ldots$ $\ldots, p-1\}$,

$$
\frac{g_{i}((n+1) p+j)}{g_{i}(n p+j)} \underset{n}{\longrightarrow} b_{j, i} \neq 1 \quad \text { with } b_{j, i} \neq b_{j, k} \text { for } k \neq i
$$

Remarks. 1. The condition $\left(b_{+1}\right)$ is a condition due to Brezinski, under which some results on convergence acceleration for the E-algorithm are proved in [2].
2. If the g_{i} satisfy the condition $\left(b_{+1}\right)$, then the condition $\left(b_{+p}\right)$ is satisfied in the following cases:
(i) $\left|b_{0, i}\right| \neq\left|b_{0, j}\right|$ for all $i \neq j$;
(ii) the numbers b_{i} are real and $b_{0, i} b_{0, j}>0$ for all $i \neq j$;
(iii) the numbers $b_{0, i}$ are real and p is odd.

We assume in the sequel that the condition $\left(b_{+p}\right)$ is satisfied.
Lemma. Let $j \in\{0, \ldots, p-1\}$. For each $k \geq 0$ and $i>k$,

$$
\frac{g_{k, i}^{((n+1) p+j)}}{g_{k, i}^{(n p+j)}} \underset{n}{\longrightarrow} b_{j, i}
$$

Proof. By induction on k.
With the help of Theorem 7 and the Lemma, we can easily prove
Theorem 9. Let $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C}), k \geq 1$. Then:

1. $E_{+p, k}^{(n)} \rightarrow s$ as $n \rightarrow \infty$.
2. $E_{+p, k}^{(n)}-s=o\left(E_{+p, k-1}^{(n)}-s\right)$ iff for all $j \in\{0, \ldots, p-1\}$,

$$
\frac{E_{+p, k-1}^{((n+1) p+j)}-s}{E_{+p, k-1}^{(n p+j)}-s} \underset{n}{\longrightarrow} b_{j, k} .
$$

Definition. Let $\left(f_{i}(n)\right), i=1,2, \ldots$, be some sequences of complex numbers. Then $\left(f_{1}, \ldots, f_{i}, \ldots\right)$ is called an asymptotic sequence if for each i, $f_{i+1}(n)=o\left(f_{i}(n)\right)$.

Let $\left(f_{1}, \ldots, f_{i}, \ldots\right)$ be an asymptotic sequence. Let $\left(t_{n}\right)$ be a sequence of complex numbers. The notation

$$
t_{n} \approx a_{1}(n) f_{1}(n)+\ldots+a_{k}(n) f_{k}(n)+\ldots
$$

where for each $i,\left(a_{i}(n)\right)$ is a p-periodic sequence, means that for all $k \geq 1$,

$$
t_{n}=a_{1}(n) f_{1}(n)+\ldots+a_{k}(n) f_{k}(n)+o\left(f_{k}(n)\right) \quad \text { as } n \rightarrow \infty
$$

(i.e. for each $j \in\{0, \ldots, p-1\},\left(t_{n p+j}\right)$ has an asymptotic expansion with respect to $\left(h_{1}, \ldots, h_{i}, \ldots\right)$ where $\left.\left(h_{i}(n)\right)=\left(f_{i}(n p+j)\right), i=1,2, \ldots\right)$.

By using the previous Lemma, we can easily prove
Theorem 10. If $\left(g_{1}, \ldots, g_{i}, \ldots\right)$ is an asymptotic sequence, then so is $\left(g_{k, k+1}, \ldots, g_{k, i}, \ldots\right)$ for each $k \geq 1$.

Theorem 11. Let $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C})$. Assume that:

1. $\left(g_{1}, \ldots, g_{i}, \ldots\right)$ is an asymptotic sequence.
2. $s_{n}-s \approx a_{1}(n) g_{1}(n)+\ldots+a_{i}(n) g_{i}(n)+\ldots$ where $\left(a_{i}(n)\right)$ is p-periodic for each i.

For each $k \geq 1$, we have:
(i) $E_{+p, k}^{(n)}-s \approx a_{k+1}(n) g_{k, k+1}^{(n)}+\ldots+a_{i}(n) g_{k, i}^{(n)}+\ldots$
(ii) If $a_{i}(n)=0$ for all $i>k$ and n, then $E_{+p, k}^{(n)}=s$ for all n.
(iii) Let $j \in\{0, \ldots, p-1\}$. If $a_{i}(j)=0$ for all $i>k$, then $E_{+p, k}^{(n p+j)}=s$ for all n. If the coefficients $a_{i}(j), i \geq k$, are not all zero, then

$$
\frac{E_{+p, c}^{(n p+j)}-s}{E_{+p, k-1}^{(n+j)}-s} \xrightarrow[n]{\longrightarrow} \frac{b_{j, k}-b_{j, i_{j}}}{b_{j, k}-1}
$$

where i_{j} is the smallest index such that $i_{j} \geq k$ and $a_{i_{j}}(j) \neq 0$.
(iv) If $\prod_{j=0}^{p-1} a_{k}(j) \neq 0$ then $E_{+p, k}^{(n)}-s=o\left(E_{+p, k-1}^{(n+p)}-s\right)$.

Proof. (i) By induction on k.
(ii), (iii) and (iv) follow from (i).

Remark. If $\prod_{j=0}^{p-1} a_{k}(j) \neq 0$ for each $k \geq 1$, then $E_{+p, k}^{(n)}-s=$ $o\left(E_{+p, k-1}^{(n+p)}-s\right)$ for all $k \geq 1$.

An immediate consequence of Theorem 11 is
Corollary. Let $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C})$. Assume that $\left(g_{1}, \ldots, g_{i}, \ldots\right)$ is an asymptotic sequence. If

$$
s_{n}-s \approx a_{1} g_{1}(n)+\ldots+a_{i} g_{i}(n)+\ldots
$$

where $a_{i} \neq 0$ for all $i \geq 1$, then $E_{+p, k}^{(n)}-s=o\left(E_{+p, k-1}^{(n+p)}-s\right)$ for all $k \geq 1$.
Theorem 12. Let $\left(s_{n}\right) \in \operatorname{Conv}(\mathbb{C})$. Assume that:

1. For each $j \in\{0, \ldots, p-1\}$,

$$
\begin{equation*}
s_{n p+j}-s \approx \lambda_{j}^{n} n^{\alpha_{j}}\left(a_{j, 0}+\frac{a_{j, 1}}{n^{\alpha_{j, 1}}}+\ldots+\frac{a_{j, i}}{n^{\alpha_{j, i}}}+\ldots\right) \tag{5}
\end{equation*}
$$

where $0<\left|\lambda_{j}\right|<1, a_{j, 0} \neq 0,0<\operatorname{Re} \alpha_{j, 1}<\operatorname{Re} \alpha_{j, 2}<\ldots<\operatorname{Re} \alpha_{j, i}<\ldots$
2. The auxiliary sequences $\left(g_{i}(n)\right)$ of the E_{+p}-algorithm are such that for all $i \geq 1$ and $j \in\{0, \ldots, p-1\}$,

$$
g_{i}(n p+j) \approx \lambda_{j}^{n} n^{\theta_{j, i}}\left(a_{j, i, 0}+\frac{a_{j, i, 1}}{n^{\alpha_{j, i, 1}}}+\ldots+\frac{a_{j, i, k}}{n^{\alpha_{j, i, k}}}+\ldots\right)
$$

with $a_{j, i, 0} \neq 0,0<\operatorname{Re} \alpha_{j, i, 1}<\operatorname{Re} \alpha_{j, i, 2}<\ldots<\operatorname{Re} \alpha_{j, i, k}<\ldots$
Then for each $k \geq 1$ and each $j \in\{0, \ldots, p-1\}$, either there exists n_{0} such that $E_{+p, k}^{(n p+j)}=s$ for all $n \geq n_{0}$, or $E_{+p, k}^{(n p+j)}-s=o\left(E_{+p, k-1}^{((n+1) p+j)}-s\right)$ and

$$
E_{+p, k}^{(n p+j)}-s \approx \lambda_{j}^{n} n^{\beta_{j, k}}\left(b_{j, k, 0}+\frac{b_{j, i, 1}}{n^{\beta_{j, i, 1}}}+\ldots+\frac{b_{j, i, k}}{n^{\beta_{j, i, k}}}+\ldots\right)
$$

with $b_{j, k, 0} \neq 0, \operatorname{Re} \beta_{j, k} \leq \operatorname{Re} \alpha_{j}-k, 0<\operatorname{Re} \beta_{j, i, 1}<\operatorname{Re} \beta_{j, i, 2}<\ldots$ $\ldots<\operatorname{Re} \beta_{j, i, k}<\ldots$

Proof. By induction on k.
Theorem 12 generalizes a result for the E-algorithm (i.e. $p=1$) given in [5].

Definition. The E_{+p}-algorithm is called effective on $\left(s_{n}\right)$ if for all $k \geq 1$, either $E_{+p, k}$ is exact on $\left(s_{n}\right)$ (i.e. there exists n_{0} such that $E_{+p, k}^{(n)}=s$ for all $\left.n \geq n_{0}\right)$ or $E_{+p, k}^{(n)}-s=o\left(E_{+p, k-1}^{(n+p)}-s\right)$.

Theorem 13. Assume that $\left(s_{n}\right)$ satisfies (5). The E_{+p}-algorithm with the following particular auxiliary sequences is effective on $\left(s_{n}\right)$:
I. $g_{i}(n)=s_{n+i p}-s_{n+(i-1) p}, \quad i \geq 1$;
II. $g_{1}(n p+j)=\lambda_{j}^{n p+j} n^{\beta_{j}}, \beta_{j} \in \mathbb{C}, j=0, \ldots, p-1$ and $g_{i}(n)=$ $s_{n+(i-1) p}-s_{n+(i-2) p}$ for $i \geq 2$;
III. $g_{i}(n)=\left(s_{n}-s_{n-p}\right) / n^{i-1}, i \geq 1$;
IV. $g_{i}(n)=\left(s_{n}-s_{n-p}\right) / n^{i-2}, i \geq 1$;
V. $g_{i}(n)=\frac{\left(s_{n+p}-s_{n}\right)\left(s_{n}-s_{n-p}\right)^{2}}{\left(s_{n+p}-2 s_{n}+s_{n-p}\right) n^{i-1}}, i \geq 1$;
VI. $g_{i}(n p+j)=\lambda_{j}^{n p+j}(n+i)^{\beta_{j}}, \beta_{j} \in \mathbb{C}, i \geq 1, j=0, \ldots, p-1$.

Proof. This follows immediately from Theorem 12.
Let us mention that in the cases considered in Theorem 13 the $E_{+p^{-}}$ algorithm is a generalization of the ε-algorithm (case I), the process p (case II), the transformation T of Levin (case III), the transformation U of Levin (case IV), the transformation V of Levin (case V), and the G-transformation (case VI).
4. Applications. Let $\left(s_{n}\right)$ be a convergent sequence such that the error $s_{n}-s$ has an asymptotic expansion of the form

$$
s_{n}-s \approx a_{1} g_{1}(n)+\ldots+a_{i} g_{i}(n)+\ldots
$$

where for all $i \geq 1$ and $j \in\{0, \ldots, p-1\}$,

$$
\frac{g_{i}(n p+j)}{g_{i}(n p+j-1)} \underset{n}{\longrightarrow} b_{j, i}
$$

with

$$
\prod_{m=0}^{p-1} b_{m, i} \neq 0,1 \quad \text { and } \quad \prod_{m=0}^{p-1} b_{m, i} \neq \prod_{m=0}^{p-1} b_{m, k} \quad \text { for } i \neq k
$$

The auxiliary sequences $\left(g_{i}(n)\right), i \geq 1$, satisfy the condition $\left(b_{+p}\right)$. Consequently, we can use the E_{+p}-algorithm for accelerating $\left(s_{n}\right)$.

If there exist $i_{0} \geq 1$ and $r, s \in\{0, \ldots, p-1\}$ such that $b_{r, i_{0}} \neq b_{s, i_{0}}$ then $\left(g_{i_{0}(n+1)} / g_{i_{0}(n)}\right)$ is not convergent. Hence, we cannot use Brezinski's result [2] and Fdil's result [5] for the E-algorithm.

Assume that the auxiliary sequences $\left(g_{i}(n)\right), i \geq 1$, of the E-algorithm are such that for all $k \geq 0$ and $i>k$,

$$
\frac{g_{k, i}^{(n+1)}}{g_{k, i}^{(n)}} \underset{n}{\longrightarrow} b_{i} \quad \text { with } 1>b_{1} \geq \ldots \geq b_{i} \geq \ldots
$$

If some numbers b_{i} are close to 1 , the E-algorithm is numerically unstable. Choose a positive integer p^{*} (odd if there exists i such that $b_{i}=-1$) such that $b_{1}^{p^{*}}$ is not close to 1 (for example, $b_{1}^{p^{*}} \leq 0.8$). Then the condition $\left(b_{+p^{*}}\right)$ is satisfied and the $E_{+p^{*}}$-algorithm with $\left(g_{i}(n)\right), i \geq 1$, as auxiliary sequences is numerically stable. Consequently, we can use the $E_{+p^{*-}}$ algorithm instead of the E-algorithm for accelerating the convergence. For illustration, consider the sequence

$$
s_{n}=\sum_{k=0}^{n}(k+1)(k+2)(.9)^{k}, \quad n=0,1, \ldots
$$

It is convergent to $s=2000$. From a result due to Wimp [14, p. 19], we get

$$
s_{n}-s \approx a_{1} g_{1}(n)+\ldots+a_{i} g_{i}(n)+\ldots
$$

with $g_{i}(n)=(.9)^{n}(n+1)^{2-i+1}, i \geq 1, n \geq 0$.
Applying the E-algorithm and the E_{+4}-algorithm to $\left(s_{n}\right)$, with $g_{i}(n)$, $i \geq 1$, as auxiliary sequences, we obtain

n	$E_{n}^{(0)}$	$E_{+4, n / 4}^{(0)}$
4	2000.00000000115	2.934258724233079
8	2000.000000001432	28.04921739106413
12	2000.000000010298	1999.999999999997
16	2000.000000096219	2000.000000000004
20	2000.000060098672	2000.000000000002
24	1999.999887612695	1999.999999999999

Let us now give another application of the E_{+p}-algorithm.
The use of some quadrature formulas for computing the integral $s=$ $\int_{0}^{1} \ldots \int_{0}^{1} f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{k}$, where f does not have a logarithmic singularity, often leads to an asymptotic expansion of the form

$$
\begin{equation*}
T(h)-s \approx a_{1} h^{\gamma_{1}}+\ldots+a_{k} h^{\gamma_{k}}+\ldots, \tag{6}
\end{equation*}
$$

where $T(h)$ is an approximate value of s, associated with the step length h ($[0,1]$ is divided into $1 / h$ subintervals of length h), $0<\gamma_{1}<\ldots<\gamma_{i}<\ldots$ (see, for example, [6, 8-12]).

Let $\left(h_{n}\right)$ be a sequence of step lengths. Set $s_{n}=T\left(h_{n}\right), n \geq 0$, and $g_{i}(n)=h_{n}^{\gamma_{i}}$ for $i \geq 1, n \geq 0$. Thus

$$
s_{n}-s \approx a_{1} g_{1}(n)+\ldots+a_{i} g_{i}(n)+\ldots
$$

For the choice $h_{n}=1 / 2^{n}, n \geq 0$ (geometric sequence), the auxiliary sequences $\left(g_{i}(n)\right), i \geq 1$, satisfy the condition $\left(b_{+1}\right)\left(b_{i}=1 / 2^{\gamma_{i}}\right)$ and the E-algorithm is numerically stable. Consequently, we can compute s with high accuracy. The disadvantage of this choice is that the number of function evaluations is doubled from one step to the next.

The choice $h_{n}=1 /(n+1), n \geq 0$ (harmonic sequence), is the most economic in terms of the number of function evaluations. However, the E-algorithm with $\left(g_{i}(n)\right), i \geq 1$, as auxiliary sequences is numerically unstable.

Håvie [9] proposed the following general choice:

$$
h_{2 n}=\frac{1}{\sigma_{0} M^{n}}, \quad h_{2 n+1}=\frac{1}{\sigma_{1} M^{n}}, \quad n \geq 0
$$

where $\sigma_{0}, \sigma_{1}, M \in \mathbb{N}^{*}$ with $1 \leq \sigma_{0}<\sigma_{1}, 2 \leq M$.

σ_{0}	σ_{1}	M	$\left(h_{n}\right)$
1	2	4	$\left(\frac{1}{2}\right)^{n}$
1	2	3	Bauer
2	3	2	Bulirsch

For this general choice, we have, for all $i \geq 1$ and $n \geq 0$,

$$
\frac{g_{i}(2 n+1)}{g_{i}(2 n)}=\left(\frac{\sigma_{0}}{\sigma_{1}}\right)^{\gamma_{i}}, \quad \frac{g_{i}(2 n+2)}{g_{i}(2 n+1)}=\left(\frac{\sigma_{1}}{\sigma_{0} M}\right)^{\gamma_{i}} .
$$

The sequences $\left(g_{i}(n)\right), i \geq 1$, satisfy the condition $\left(b_{+2}\right)$. Consequently, the E_{+2}-algorithm can be used for accelerating $\left(s_{n}\right)$.

Let p be a positive integer, $p \geq 2$. Put

$$
h_{j}=\frac{1}{2^{j}}, \quad h_{p(n+1)+j}=\frac{1}{2^{n+p}+j}, \quad j=0, \ldots, p-1, n=0,1, \ldots
$$

This choice is more economical than Håvie's choice. We have, for all $i \geq 1$,

$$
\begin{aligned}
& \frac{g_{i}(n p)}{g_{i}(n p-1)} \underset{n}{\longrightarrow}\left(\frac{1}{2}\right)^{\gamma_{i}}, \quad \frac{g_{i}(n p+j)}{g_{i}(n p+j-1)} \xrightarrow[n]{\longrightarrow} 1 \quad \text { for } j=1, \ldots, p-1, \\
& \frac{g_{i}(n+p)}{g_{i}(n)} \underset{n}{\longrightarrow} b_{i}=\left(\frac{1}{2}\right)^{\gamma_{i}} .
\end{aligned}
$$

The condition $\left(b_{+p}\right)$ is satisfied and the E_{+p}-algorithm is numerically stable. Thus, we can use the E_{+p}-algorithm for computing s with high accuracy. Note that the E-algorithm with $g_{i}(n)=h_{n}^{\gamma_{i}}, i \geq 1$, as auxiliary sequences is numerically unstable because for all $i \geq 1$, the sequence $\left(g_{i}(n+1) / g_{i}(n)\right)$ has 1 as an accumulation point.

Example: $\int_{0}^{1} \frac{1}{\sqrt{x}} d x=2$.
Let $T(h)$ be the approximate value of $s=\int_{0}^{1}(1 / \sqrt{x}) d x$ computed by the rectangular method:

$$
T(h)=h \sum_{k=0}^{1 / h-1}((k+1 / 2) h)^{-1 / 2} .
$$

The function $T(h)$ has an asymptotic expansion of the form (6), with $\gamma_{i}=$ $(2 i-1) / 2$ for $i=1,2, \ldots$

Let $\left(h_{n}\right)$ be the preceding sequence of step lengths with $p=4$. Applying the E-algorithm and the E_{+4}-algorithm to the sequence $s_{n}=T\left(h_{n}\right)$, we obtain

n	$E_{n}^{(0)}$	$E_{+4, n / 4}^{(0)}$
8	2.000005028488225	2.000267155507016
16	2.000000047703804	2.000001670788114
24	2.000002619190568	2.000000068392044
32	1.99977686651984	2.000000003881382
40	2.203733445234798	2.00000000023691
48	0.5596855849893074	2.000000000014719

We see that the E_{+4}-algorithm is more effective than the E-algorithm for accelerating $\left(s_{n}\right)$.

References

[1] C. Brezinski, Algorithmes d'Accélération de la Convergence en Analyse Numérique. Etude numérique, Technip, Paris, 1978.
[2] -, A general extrapolation algorithm, Numer. Math. 35 (1980), 175-187.
[3] C. Brezinski and M. Redivo Zaglia, Extrapolation Methods, Theory and Practice, North-Holland, Amsterdam, 1991.
[4] J. P. Delahaye, Sequence Transformations, Springer, Berlin, 1988.
[5] A. F dil, Some results on convergence acceleration for the E-algorithm, Appl. Math. (Warsaw) 24 (1997), 393-413.
[6] L. Fox, Romberg integration for a class of singular integrands, Comput. J. 10 (1967), 87-93.
[7] H. L. Gray and W. D. Clark, On a class of nonlinear transformations and their applications to the evaluation of infinite series, J. Res. Nat. Bur. Standards Sect. B 73 (1969), 251-274.
[8] T. Håvie, Error derivation in Romberg integration, BIT 12 (1972), 516-527.
[9] -, Generalized Neville type extrapolation schemes, ibid. 19 (1979), 204-213.
[10] D. C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Rev. 13 (1971), 435-490.
[11] J. N. Lyness, Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity, J. Comput. Phys. 20 (1976), 346-364.
[12] J. N. Lyness and B. W. Ninham, Numerical quadrature and asymptotic expansions, Math. Comp. 21 (1967), 162-177.
[13] C. Schneider, Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialfallen, Numer. Math. 24 (1975), 177-184.
[14] J. Wimp, Sequence Transformations and their Applications, Academic Press, New York, 1984.
A. Fdil

Département de Mathématiques
E.N.S. de Marrakech
B.P. S 41

40000 Marrakech, Morocco

[^0]: 1991 Mathematics Subject Classification: Primary 65B05.
 Key words and phrases: convergence acceleration, E-algorithm, linear periodic convergence, numerical quadrature.

