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On characters of order p (mod p2)

by

Leo Murata (Yokohama)

1. Statement of results. Let p be an odd prime number, and a be a
natural number which is not divisible by p. We put, for ν ≥ 1,

r(a, pν) = [(Z/pνZ)× : 〈amod pν〉],
where (Z/pνZ)× denotes the multiplicative group of all irreducible residue
classes modulo pν , 〈amod pν〉 the cyclic subgroup generated by the class
a (mod pν), and [:] the index of the subgroup. This number r(a, pν) is called
the residual index of a modulo pν . When r(a, pν) = 1, we say that a is a
primitive root mod pν .

In the present article, we shall make some observations about the dis-
tribution of primitive roots with respect to the moduli p and p2. Since the
distribution of primitive roots is closely related to other number-theoretical
topics, such as the value distribution of Dirichlet characters, and the equi-
distribution property of the arguments of Gauss sums, we have some appli-
cations in these topics.

In this section we explain our results; the proofs are found in the second
section.

The author expresses his sincere gratitude to his colleagues, S. Egami,
P. Elliott, Y. Motohashi, G. Tenenbaum, for their kind suggestions.

First, we notice that r(a, pν) and r(a, pν+1) are not independent. A
residue class a (mod pν) splits into p residue classes modulo pν+1:

{a+ kpν (mod pν+1) : k = 0, 1, . . . , p− 1}.
Then we have the following relations.

Lemma. Let r(a, pν) = R and N = 1
R (p− 1)pν−1. Then

1. For any k, r(a+ kpν , pν+1) = R or Rp.
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2. If N ≡ 0 (mod p), then for any k, r(a + kpν , pν+1) = R. If N 6≡
0 (mod p), then there exists one and only one K = K(a, pν), 0 ≤ K ≤ p−1,
such that

r(a+ kpν , pν+1) =
{
Rp if k = K,
R if k 6= K.

From this lemma we see that, when a is a primitive root mod p, i.e.
ν = 1, R = 1 and N = p − 1, then according to whether K(a, p) 6= 0 or
= 0, a is a primitive root mod p2 or a pth power residue mod p2. Moreover,
if a is a primitive root mod p2, i.e. ν = 2, R = 1 and N = p(p − 1), then
the lemma shows again that, for any k, r(a+ kp2, p3) = 1. In particular, by
the same argument, we see that a primitive root mod p2 is automatically a
primitive root mod pν , ν ≥ 2.

Let g(pν) be the least primitive root mod pν . Then the above well known
observation yields the following.

Theorem 1. For any ε > 0 and any ν ≥ 1, we have

g(pν)� p1/4+ε.

For the case ν = 1, this was proved by Burgess [2] using his famous
estimate of character sums. For the case ν = 2, it was proved by Cohen–
Odoni–Stothers [3].

In the above theorem, the condition K(a, p) = 0 plays an important role.
We are interested in the distribution property of the set

{K(a, p) : 1 ≤ a ≤ p− 1}.
In order to consider this set, we introduce here a distribution function. For
θ ∈ R, define

fp(θ) =
1

p− 1
|{1 ≤ a ≤ p− 1 : K(a, p) ≤ θ(p− 1)}|.

This is a non-decreasing function, fp(θ) = 0 for θ < 0 and fp(θ) = 1 for
θ > 1. Moreover we can prove

Theorem 2. For 0 ≤ θ ≤ 1, we have

fp(θ) = θ +O(p−1/12 log p).

This theorem shows that the set {K(a, p)}p−1
a=1 distributes in the interval

[1, p− 1] almost uniformly .
Here we note an interesting property of K(a, p). Let Zp denote the ring

of p-adic integers. Then the polynomial Xp−1 − 1 decomposes into p − 1
components in Zp[X]:

Xp−1 = (X − ω1)(X − ω2) . . . (X − ωp−1), ωi ∈ Zp.
Fermat’s little theorem implies that, for any a with 1 ≤ a ≤ p − 1, there
exists one and only one (p− 1)th root of unity whose first Hensel coefficient
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is equal to a. So we can set

ωa = a+ ca,2p
1 + . . .+ ca,mp

m−1 + . . . , a = 1, . . . , p− 1; 0 ≤ ca,m ≤ p− 1.

In other terms, ωa is the value of the Teichmüller character at a (mod p).
It follows from the lemma that

K(a, p) = ca,2 =
ω(a)− a

p
.

The distribution of primitive roots mod p2 is controlled by the p-adic coef-
ficients of the (p − 1)th roots of unity in Zp, and also by the values of the
Teichmüller character.

For the next topic we need some new notation.
Let χ0 be the principal Dirichlet character mod p2, and put

D = {χ : a non-principal Dirichlet character mod p2 such that χp = χ0},
D = D ∪ {χ0}.

Note that |D| = p− 1 and every element in D is primitive.
For a non-principal Dirichlet character ψ mod q, and for integers M,N ,

define the character sum of ψ by

S(ψ;M,N) =
M+N∑

n=M+1

ψ(n),

and the Gauss sum of ψ by

G(ψ) =
q∑

n=1

ψ(n) exp
(

2πin
q

)
.

It is known that, for a primitive character ψ, |G(ψ)| = √q, so G(ψ)q−1/2

lies on the unit circle in the complex plane.
For these two quantities—character sums and Gaussian sums—we can

prove the following results:

Theorem 3. For any M,N ∈ N, we have
1

p− 1

∑

χ∈D
S(χ;M,N)� p11/12 log p, uniformly in M,N.

Theorem 4. For any natural number k, we have

1
p− 1

∑

χ∈D

(
G(χ)
p

)k
� p−1/12, uniformly in k.

An application of the Pólya–Vinogradov inequality yields the estimate
1

p− 1

∑

χ∈D
S(χ;M,N)� p log p,
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and Burgess’ bound gives the estimate, for any ε > 0,

1
p− 1

∑

χ∈D
S(χ;M,N)� N1/2p3/8+ε.

We also have the bound � p log log p under G.R.H. ([5], see also [7]). Theo-
rem 3 means that, if we take an average of S(χ;M,N) over the set D, then
we are able to prove a little better estimate than the Pólya–Vinogradov
bound.

As we remarked in the above, for χ ∈ D, G(χ)p−1 lies on the unit circle
in the complex plane, so we can define the argument of Gauss sum a(χ) by

G(χ)
p

= e2πia(χ), 0 ≤ a(χ) < 1.

We see from Theorem 4, by Weyl’s criterion, that the set {a(χ) : χ ∈ D} is
approximately uniformly distributed in the interval [0, 1). Moreover, we can
prove the following quantitative result.

Theorem 5. Let I = [a, b] be an interval of length b− a < 1. Then
∣∣∣∣

1
p− 1

∑

a(χ)∈I
1− (b− a)

∣∣∣∣� p−1/12 log p.

In fact, this is a direct consequence of the Erdős–Turán inequality (cf.
for example [1], Theorem 2.1).

2. Proofs

Proof of the Lemma. 1. It is obvious that (a+ kpν)pN ≡ 1 (mod pν+1).
This means that the order of the class a+kpν in the group (Z/pν+1Z)× is a
divisor of pN . From our assumption, this order must be equal to N or pN ,
therefore r(a+ kpν , pν+1) = Rp or R, respectively.

2. We define x by

aN ≡ 1 + xpν (mod pν+1), 0 ≤ x ≤ p− 1.

First we show that, if N ≡ 0 (mod p), then x 6= 0. Let s be N/p and assume
x = 0, i.e.

aN ≡ 1 (mod pν+1).

Then we can take two numbers j and y which satisfy the relations

as ≡ 1 + ypj (mod pj+1), y 6= 0, j < ν.

We have

aN − 1 = (as − 1)(as(p−1) + . . .+ as + 1)



Characters of order p (mod p2) 249

and

(1)
p−1∑

k=0

ask =
p−1∑

k=0

(1 + kypj) + T (pj+1) = p+ T (pj+1),

where the terms in T ( ) are multiples of pj+1. Combining (1) with aN =
1 +T (pν+1), we have as ≡ 1 (mod pν), which means r(a, pν) = Rp and this
contradicts our assumption. Thus we get x 6= 0.

Now it is clear that r(a+Kpν , pν+1) = pR happens if and only if

(2) (a+Kpν)N ≡ 1 (mod pν+1).

Since (a+Kpν)N − 1 = xpν + aN−1NKpν + T (pν+1), (2) holds if and only
if K satisfies the relation

ax+NK ≡ 0 (mod p).

IfN ≡ 0 (mod p), then, as proved above, x 6≡ 0 (mod p), and there exists no
K which satisfies the above relation. This proves the first part of assertion 2.

If N 6≡ 0 (mod p), then we can determine only one K by

K ≡ −axN−1 (mod p), 0 ≤ K ≤ p− 1.

For this value of K, r(a+Kpν , pν+1) = Rp and for k 6= K, r(a+ kpν , pν+1)
= R.

Proof of Theorem 2. Let ω be the Teichmüller character that maps
(Z/pZ)× to Qp. Let 1 ≤ a ≤ p− 1, and put

ω(a) = a+ ca,2p
1 + . . .+ ca,mp

m−1 + . . .

Then the above lemma implies that ca,2 = K(a, p), and thus

(3) ap − a ≡ K(a, p)p (mod p2).

Now we show that, for any c not divisible by p,

(4)
p∑
a=1

e

(
c(ap − a)

p2

)
� p11/12

(
1 +
|c|
p

log p
)
,

where e(x) means, as usual, exp(2πix). In fact the left hand side is equal to

(5)
p∑
a=1

e

(
cap

p2

)
+

p∑
a=1

e

(
cap

p2

){
e

(−ca
p2

)
− 1
}
.

Here we refer to Heath-Brown’s recent results on Heilbronn’s exponential
sum ([4]): For any integer c not divisible by p, and for any positive integersM
and N , we have

(6)
p∑
a=1

e

(
cap

p2

)
� p11/12

as well as
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(7)
M+N∑

a=M+1

e

(
cap

p2

)
� p11/12 log p

uniformly in c,M,N . Now the first term in (5) is bounded by (6), and to
the second term in (5) we apply partial summation and the estimate (7),
getting the claim (4).

We now define, for any t ∈ R,

ψθ(t) =
{

1 if t ≤ θ(p− 1),
0 if θ(p− 1) < t,

and write its Fourier expansion as

ψθ(t) =
p−1∑

k=0

c(k, θ)e
(
kt

p

)
,

where

c(k, θ) =





1
p

p−1∑
m=0

ψθ(m)e
(−km

p

)
if k 6= 0,

1
p

[θ(p− 1)] if k = 0.

We easily get, for k 6= 0,

(8) |c(k, θ)| ≤ 1
p

∣∣∣∣
[θ(p−1)]∑
m=0

e

(−km
p

)∣∣∣∣�
1
k
.

Then we have

fp(θ) =
1

p− 1

p−1∑
a=1

ψθ(K(a, p)) =
1

p− 1

p−1∑

k=0

c(k, θ)
p−1∑
a=1

e

(
kK(a, p)

p

)

= c(0, θ) +
1

p− 1

p−1∑

k=1

c(k, θ)
p−1∑
a=1

e

(
k(ap − a)

p2

)
,

where we have used the relation (3). Now, with the estimate (8), we have

fp(θ) = θ +O

(
1
p

)
+

1
p− 1

O

(
p11/12

p−1∑

k=1

1
k

(
1 +

k

p
log p

))

= θ +O(p−1/12 log p).

Proof of Theorem 3. For simplicity, we assume M = 0. We prepare the
character sum which singles out pth power residue classes mod p2:

1
p

∑

χ∈D
χ(a+ kp) =

{
1 if r(a+ kp, p2) ≡ 0 (mod p),
0 otherwise.
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Let N be a natural number ≤ p2, and let

θ =
N

p2 and θ′ =
[
N

p

]
.

From our lemma again, the conditions r(a+kp, p2) ≡ 0 (mod p) and K(a, p)
= k are equivalent. Hence

θ′∑
t=0

(
1
p

∑

χ∈D
χ(a+ tp)

)
=
{

1 if K(a, p) ≤ θ(p− 1),
0 if K(a, p) > θ(p− 1).

So we can express fp(θ) by character sums:

fp(θ) =
1

p− 1

θ′∑
t=0

|{1 ≤ a ≤ p− 1 : K(a, p) = t}|

=
1

p(p− 1)

∑

χ∈D

θ′∑
t=0

p−1∑
a=1

χ(a+ tp).

Then, with Burgess’ bound,
1

p− 1

∑

χ∈D
S(χ; 0, N) =

1
p− 1

∑

χ∈D
S(χ; 0, (θ′ + 1)p) +O(p7/8+ε)

= pfp(θ)− 1
p− 1

∑

n<(θ′+1)p

1 +O(p7/8+ε),

for any ε > 0. The second term is pθ+O(1) as p→∞, and we can estimate
the first term by Theorem 2.

Proof of Theorem 4. First we shall prove that, for any a not divisible
by p,

(9)
∑

χ∈D
G(χ)χ(a)� p · p11/12,

uniformly in a. In fact,

∑

χ∈D
G(χ)χ(a) =

p2∑
n=1

e

(
n

p2

)∑

χ∈D
χ(an)

=
p2∑
n=1

an≡yp(mod p2)

(p− 1)e
(
n

p2

)
−

p2∑
n=1

an6≡yp(mod p2)

e

(
n

p2

)

= p

p∑
y=1

e

(
ypa

p2

)
,
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where a denotes the inverse residue class of a (mod p2). Then the Heath-
Brown’s estimate (6) yields the desired bound.

In order to prove Theorem 4, it is sufficient to show

(10)
∑

χ∈D

(
G(χ)
p

)k
� p11/12, uniformly in k < p2.

For k not divisible by p, Odoni [6] proves that, if we choose a normal
character χ ∈ D which has the property χ(1 + p) = e(−1/p), then any
character ψ ∈ D can be written in the form ψ = χt, 1 ≤ t ≤ p− 1, and

(11) G(ψ) = G(χt) = χt(t)pe
(
t

p2

)
.

We now choose a new normal character τ ∈ D which has the property
τ(1 + p) = e(−k/p), i.e. τ = χk. Then by Odoni’s argument, we can prove

G(τ) = pτ(k)e
(
k

p2

)

as well as

(12) G(τ t) = pτ t(kt)e
(
kt

p2

)
for 1 ≤ t ≤ p− 1.

Then we have, by (11) and (12),

∑

ψ∈D

(
G(ψ)
p

)k
=

p−1∑
t=1

{
χt(t)e

(
t

p2

)}k
=

p−1∑
t=1

τ t(t)e
(
kt

p2

)

=
p−1∑
t=1

G(τ t)
p

τ t(k) =
1
p

∑

ψ∈D
G(ψ)ψ(k),

and (10) is proved by (9).
When k = sp with 1 ≤ s < p, then by (11) again, we have

∑

ψ∈D

(
G(ψ)
p

)sp
= −1.

The uniformity in k is now clear, and this ends the proof of Theorem 4.
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