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Products of shifted primes: Multiplicative analogues of
Goldbach’s problem

by

P. D. T. A. Elliott (Boulder, Colo.)

1. I begin with

Conjecture I. If N is a sufficiently large positive integer , then every
rational r/s with 1 ≤ r ≤ s ≤ logN , (rs,N) = 1, has a representation of
the form

r

s
=
N − p
N − q , p, q prime, p < N, q < N.

The case r = 1 is equivalent to solving (s − 1)N = sx − y in positive
primes x, y not exceeding N . Goldbach’s problem is to correspondingly solve
N = x+ y.

Conjecture II. There is a positive integer k so that in the above nota-
tion and terms there are representations

r

s
=

k∏

i=1

(N − pi)εi , εi = +1 or − 1,

with the primes pi not necessarily distinct.

Conjecture III. There are representations of this type, but with the
number , k, of factors needed possibly varying with r and s.

An ideal method? Consider first the problem of representing 2 in the form
(p+ 1)(q + 1)−1 with primes p, q, an analogue of the prime-pair problem.

Let Q∗ denote the multiplicative group of positive rationals. The dual
group Q̂∗ may be identified with the (direct) product of denumerably many
copies of R/Z. It is rather “large”. A typical character g : Q∗ → U (-nit circle
in C) is, in classical parlance, a unimodular complex-valued completely mul-
tiplicative arithmetic function. There is a translation invariant Haar measure
dµ(g) on Q̂∗ that assigns to the whole (compact) group measure 1.
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We choose a weight wp so that S(g) =
∑
wpg(p+1), taken over all primes

p, converges absolutely, uniformly for g in Q̂∗. Then there is a representation
∑

2=(p+1)/(q+1)

wpwq =
\
Q̂∗

g(2)|S(g)|2 dµ(g).

To study the Goldbach analogue in Conjecture I we replace Q∗ by Q1,
the group generated by the primes p not exceeding N , (p,N) = 1, and
S(g) by

∑
g(N − p) taken over the same primes. We may naturally re-

strict dµ(g) to Q̂1, and
T
Q̂1
g(2)|S(g)|2 dµ(g) represents the number of so-

lutions to 2 = (N − p)(N − q)−1, p, q ≤ N , (pq,N) = 1. In standard
notation, Q̂1 is (R/Z)π(N)−ω(N); convergence properties are not needed,
but an explicit dependence of the integral upon the parameter N is in-
troduced.

Consider the analogous representation in the Hardy–Littlewood circle
method. There the rôle of Q1 is played by Z. Ẑ may be identified with
R/Z, and a typical character gα on Z is given by n 7→ exp(2πiαn), where
α (mod 1) is fixed. If Y (α) =

∑
exp(2πiαp), taken over the primes p ≤ N ,

then
T
Ẑ exp(−2πiαN)Y (α)2 dα is the number of solutions to N = p+q, with

p, q prime.
We cannot currently estimate this integral satisfactorily, but its analogue

with Y (α)3 in place of Y (α)2 we can. Following the standard procedure
the interval [0, 1) (i.e., the group Ẑ) is decomposed into major and minor
arcs. The major arcs are (small) intervals around rationals ak−1 (mod 1),
with (a, k) = 1, k “small compared to N”. To view this group-theoretically,
define a (translation invariant) metric σ on Ẑ by σ(gα, gβ) = ‖α − β‖ =
min |α − β − m|, the minimum taken over all integers m. The major arcs
are then the union of spheres (g;σ(g, gt) ≤ δ) around characters gt with t
rational, of small denominator k. In particular gkr = 1, i.e. the characters gr
are of order low compared to N .

What remains of Ẑ is called the minor arcs.
For groups other than Z in the present account I propose to replace arcs

in corresponding definitions by cells.
Can we similarly decompose Q̂1, Q̂∗? The decomposition of Ẑ in the

circle method varies according to the problem at hand. For Q̂1 and problems
involving shifted primes the following suggests itself.

Define a (translation invariant) metric % on Q̂1 by

%(g, h) =
( ∑

p≤N
(p,N)=1

1
p
|g(p)− h(p)|2

)1/2

.
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For major cells we take the tubular neighbourhoods (“worms”):

(g; inf
|τ |≤T

%(g, hτ ) ≤ δ)

where hτ is the completely multiplicative function given by hτ (q) = qiτχ(q)
for a real τ , and primitive Dirichlet character χ. Strictly speaking a Dirichlet
character χ (mod D) does not belong to Q̂1 so, contrary to classical practice,
we define χ to be 1 on the primes dividing D.

That χ be primitive corresponds to the restriction (a, k) = 1 in the
circle method. We would expect the order of χ (and the value of T ) to
be small compared to N . In a later section I show that under favourable
circumstances these worms may be replaced by %-spheres about (modified)
Dirichlet characters.

What remains of Q̂1 is called the minor cells.
I leave as a (not altogether easy) exercise to the reader that the (modi-

fied) Dirichlet characters are everywhere dense in Q̂1. We shall not explicitly
use this fact.

When studying Q̂∗, a family of metrics (
∑
p−λ|g(p)− h(p)|2)1/2, λ > 1,

seems appropriate.

Major arcs in the circle method. Attached to the major arc about the
point ak−1 (mod 1) is the asymptotic estimate

(1)
1

π(N)

∑

p≤N
e2πiak−1p → µ(k)

φ(k)
, N →∞,

a result depending upon the distribution of primes in residue classes (mod k).
For a general gα in this arc

(2)
1

π(N)

∣∣∣
∑

p≤N
gα(p)

∣∣∣ ≈ |µ(k)|
φ(k)

min(1, π(N)−1σ(gα, gak−1)−1),

where ≈ denotes “behaves like”.

Major cells in Q̂∗. It would appear that the multiplicative analogue of
the prime p is, for problems of prime pair type, the shifted prime p+ 1. For
a primitive Dirichlet character χ (mod k),

1
π(N)

∑

p≤N−1

χ(p+ 1)→ µ(k)
φ(k)

, N →∞.

The similarity with (1) is striking.

Major cells in Q̂1. Attached to a worm about the (primitive) character
χ (mod k) is the estimate

1
π(N)

∑

p≤N
χ(N − p)→ µ(k)χ(N)

φ(k)
, N →∞.
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Generally
1

π(N)

∣∣∣
∑

p≤N
g(N − p)

∣∣∣ ≈ |µ(k)χ(N)|
φ(k)
√

1 + τ2
exp
(− 1

2%
2(g, hτ )

)
.

Compared to (2), |S(g)| peaks very much less violently, indeed it falls only
slowly away from an extremum. As with the circle method, we might accel-
erate the process by considering powers |S(g)|2m, m ≥ 1. This amounts to
seeking a representation of the form

2 =
m∏

i=1

(N − pi)
m∏

j=1

(N − qj)−1.

We might also replace Q̂1 by (C∗)π(N)−ω(N), i.e. allow g(p) = zp complex
and non-zero, and work in terms of many complex variables zp.

Vinogradov effected his proof of Goldbach’s conjecture for (sufficiently
large) odd numbers by providing a non-trivial upper bound for Y (α) on the
minor arcs.

A satisfactory bound for S(g) on the minor cells of Q̂1 is still wanting.
To establish anything non-trivial at the moment we need not only that g
not lie in any (low-order worm) of the major cells, but that g2, g3 not lie
there either. Since there are 3π(N)−ω(N) characters g : Q1 → U which satisfy
g3 = 1, there is at present a (corresponding) “third region” of Q̂1 in which
g is between the major and the (reliably) minor cells.

In the following sections I show that something can still be done, al-
though for the moment I abandon control on the number of factors in the
representing product and aim at Conjecture III.

2. I give the notation again. Let 0 < δ ≤ 1, N a positive integer, P a set
of primes not exceeding N and coprime to N ,

|P | =
∑

p∈P
1 ≥ δπ(N) > 0.

Let Q1 be the multiplicative group generated by the positive integers n not
exceeding N , (n,N) = 1, Γ the subgroup of Q1 generated by the N−p with
p in P , G1 the quotient group Q1/Γ .

Theorem 1. If N ≥ N0(δ), then we may remove a set of primes q,
not exceeding N and with

∑
q−1 ≤ c1(δ), such that G, the subgroup of G1

generated by the rationals in Q1 with no q-factor , satisfies

(i) |G| ≤ c2(δ),
(ii) there is a subgroup L of G so that G/L is arithmic (1),

(iii) |L| ≤ 4/δ.

(1) The term “arithmic” is explained on the next page; see also [2], p. 392.
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Conjecture. In (iii) 4/δ should be 1/δ. Then δ > 1/2 would force
|L| = 1, and G itself would be arithmic. We may perhaps view (iii) as
singular integral as geometric obstruction.

(ii) asserts the existence of a positive integer D and a group homomor-
phism (Z/DZ)∗ → G/L which makes the following diagram commute:

(Z/DZ)∗

Q3 G/L

JJJJJJJJ$$
//

vvvvvvvv::

Here Q3 is the subgroup of Q1 when the q-factors are removed, (D,Q3) =
1, (Z/DZ)∗ is the multiplicative group of reduced residue classes (mod D),
the maps Q3 → (Z/DZ)∗, Q3 → G → G/L are canonical. D and the cj(δ)
may be effectively determined, but not the individual q. We may perhaps
view (ii) as singular series. It asserts that the representability of an integer
by products of theN−p essentially depends upon the residue class (mod D)
to which it belongs.

Corollary. If 1 ≤ r < s ≤ N , rs is coprime to N and not divisible by
a q, and if r ≡ s (mod D), then there is a representation

(
r

s

)|L|
=
∏

p∈P
(N − p)dp ,

with integer exponents dp.

The proof of Theorem 1 is a little lengthy.

Lemma 1. Let c > 0. If
∑

q≤N
(q,M)=1
q prime

1
q

(1− Re qiτ ) ≤ β ≤ 1
8 log logN,

where |τ | ≤ N c, 1 ≤M ≤ N4, N ≥ e2, then

τ logN � eβ .

P r o o f. Without the condition (q,M) = 1, a precise result of this type
may be found in [3], Lemma 7.

We make three passes with our argument. Assume first that there is no
condition (q,M) = 1. Set σ = 1 + (logN)−1 and argue with Euler products:

|ζ(σ)ζ(σ + iτ)−1| = exp
(∑

q≤N

1
qσ

(1− Re qiτ ) +O(1)
)
� eβ .
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Since ζ(σ + iτ) � |τ |−1 + (log(2 + |τ |))3/4 (see [6], Théorème 11.1), and
(σ − 1)ζ(σ)→ 1 as N →∞,

logN � (|τ |−1 + (logN)3/4)eβ � |τ |−1eβ + (logN)7/8.

This is the first pass.
We restore the condition (q,M) = 1 and replace the use of ζ(s) by that

of ζ(s)
∏
q|M (1− q−s). This leads to a bound

logN �
(

M

φ(M)

)2

eβ(|τ |−1 + (log(2 + |τ |))3/4).

Again the term involving log(2 + |τ |) may be omitted in favour of logN . In
particular, τ � (logN)−7/8(log logN)2. This is our second pass. It allows
us to assert that

∑

q|M

1
q

(1− Re qiτ )�
∑

q|M

|τ | log q
q

� |τ | log logM � (logN)−1/2.

Note that for any y ≥ 2,
∑

q|M

log q
q
�
∑

q≤y

log q
q

+
log y
y

∑

q|M
q>y

1� log y +
log y
y
· logM

log y
,

and we may set y = logM .
At the expense of replacing β by β + O((logN)−1/2) we may remove

the condition (q,M) = 1 from the hypothesis of the lemma and proceed as
initially. This is the third pass.

Lemma 2. Let gj , 1 ≤ j ≤ k, be multiplicative functions with values in
the complex unit disc. The inequality

∑

p<N

∣∣∣
k∑

j=1

cjgj(N − p)
∣∣∣
2
≤ λ

k∑

j=1

|cj |2,

with

λ = 4π(N) +
γ0N

φ(N) logN
max

1≤j≤k
max

χ (mod d)

d

φ(d)2

k∑

l=1
l 6=j

∣∣∣
∑

n<N
(n,N)=1

gj(n)gl(n)χ(n)
∣∣∣

+O(N(logN)−21/20)

is valid for all complex cj and all N ≥ e2. Here γ0 is absolute and the inner-
most maximum runs over the Dirichlet characters to squarefree moduli d.

P r o o f. This is an analogue of Theorem 3 of [5], and may be obtained
in the same way. No doubt a result of this type holds with 1 in place of the
leading coefficient 4.
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Lemma 3. There is a positive c so that

φ(N)−1
∑

n≤N
(n,N)=1

g(n)� T−c + exp
(
−c min
|τ |≤T

∑

q≤N
(q,N)=1
q prime

1
q

(1− Re g(q)qiτ )
)

uniformly for multiplicative g with values in the complex unit disc, T ≥ 1,
N ≥ e2.

P r o o f. The classical treatment of Halász, [7], needs a modification, such
as that carried out in [4], Lemma 12.

3. Proof of Theorem 1, first step. Let U be the complex unit disc.
Until further notice χ will revert to its classical meaning.

Lemma 4. If g : Q1 → Q1/Γ → U extends a character on G1, then
there is an integer m, 1 ≤ m ≤ 4/δ, a Dirichlet character χ to a squarefree
modulus d not exceeding a bound depending only upon δ, and a constant γ,
also depending at most upon δ, so that

∑

q≤N, (q,N)=1
χ(q)g(q)m 6=1

1
q
≤ γ.

Remarks. The exceptional set of primes q may vary with g. The bound
4/δ should no doubt be δ−1.

P r o o f (of Lemma 4). We obtain upper and lower bounds for

S =
k∑

j=1

∣∣∣
∑

p∈P
(g(N − p))j

∣∣∣
2
,

where the N − p belong to the set of integers generating Γ .
A lower bound is k(δπ(N))2.
The inequality dual to that in Lemma 2 asserts that

k∑

j=1

∣∣∣
∑

p≤N
apgj(N − p)

∣∣∣
2
≤ λ

∑

p≤N
|ap|2

for all complex ap. Setting gj(n) = (g(n))j and choosing the ap appropriately
gives an upper bound S ≤ |P |λ. Combined with the lower bound this yields

kδ ≤ 4 + γ1 max
χ (mod d)

d

φ(d)2

k−1∑

j=1

1
φ(N)

∣∣∣
∑

n<N
(n,N)=1

g(n)jχ(n)
∣∣∣(3)

+O((logN)−1/20)

for an absolute constant γ1.
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Let 0 < 3ε < δ. Replacing δ by δ − ε and fixing d0 at a sufficiently
large value in terms of ε allows us to confine the maximum to the range
1 ≤ d ≤ d0 (still over squarefree moduli).

We estimate the innermost sum of (3) by Lemma 3. Fixing T at a value
sufficiently large in terms of ε shows that

k(δ − 2ε)

≤ 4 + γ2

k∑

j=1

exp
(
−c min
|τ |≤T

min
χ (mod d)

∑

q≤N
(q,N)=1
q prime

1
q

(1− Re g(q)jχ(q)qiτ )
)

+O((logN)−1/20).

Again γ2 is absolute.
This inequality holds for all positive integers k.
Denote the double minimum by mj (= mj(T )). Let B denote the se-

quence of positive integers j for which mj ≤ M . This is not the M of
Lemma 1. Here

k(δ − 2ε− γ2 exp(−cM)) ≤ 4 +O((logN)−1/20) + γ2

k∑

j=1
mj≤M

1.

Fixing M large enough in terms of ε we see that the sequence B has a lower
asymptotic density of at least δ− 3ε. Let r be the highest common factor of
the integers in B. By adjoining 1 to B and using Schnirelmann’s addition
theorems (cf. [1], Chapter 8; [2], Chapter 22), we see that every sufficiently
large integer t has a representation rt = j1 + . . . + js, with r, s bounded in
terms of δ − 3ε.

Since

(4) 1− Re z1 . . . zw ≤
w∑
u=1

w(1− Re zu)

for zu in the unit disc,

mrt(sT ) = mj1+...+js(sT ) ≤ s
s∑

u=1

mju(T ) ≤ sM.

The inequality

(5) min
|τ |≤sT

min
χ (mod d)
d≤d0

∑

q≤N
(q,N)=1
q prime

1
q

(1− Re g(q)rtχ(q)qiτ ) ≤ sM

holds for all positive integers t.
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There is an integer v, not exceeding [d0]!, for which every χv is principal.
Replacing rt, τ, s by rtv, τv, v2s respectively, we may remove the character
χ(q) from the last inequality. In particular

(6)
∑

q≤N
(q,N)=1
q prime

1
q

(1− Re g(q)vrtqiτ(t)) ≤ v2sM + v

for a certain τ(t), not exceeding vsT in absolute value, and so bounded in
terms of δ, ε.

Since g(q)vrt1g(q)vrt2g(q)vr(t1+t2) = 1, we can further argue from (4)
that ∑

q≤N
(q,N)=1
q prime

1
q

(1− Re qiv(τ(t1)+τ(t2)−τ(t1+t2))) ≤ 3v(vsM + 1),

uniformly for all positive integers tj . We are ready to apply Lemma 1, and
conclude that for N sufficiently large in terms of δ, ε,

τ(t1) + τ(t2)− τ(t1 + t2)� (logN)−1,

uniformly in the tj .
There is now an ω such that τ(t) − tω � (logN)−1 for all positive t.

This particular result goes back to Exercise 99 (Chapter 3, p. 17) of Pólya
and Szegő, [8]. However, in our case the sequence τ(t) is uniformly bounded
in terms of δ, ε. Thus ω must be zero, τ(T )� (logN)−1 uniformly in t.

We return to the inequality (5) and remove the τ(t):

(7)
∑

q≤N
(q,N)=1
q prime

1
q

(1− Re g(q)vrt)� 1,

since
∑

q≤N

|qiτ(t) − 1|
q

� |τ(t)|
∑

q≤N

log q
q
� 1, t = 1, 2, . . .

We are nearly there. For |θ| ≤ 1,

lim
k→∞

1
k

k∑
t=1

θt =
{

1 if θ = 1,
0 else.

The uniformity of our inequality (7) then shows that
∑

q≤N, (q,N)=1
g(q)vr 6=1

1
q
� 1,
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the upper bound depending only upon δ, ε. This is the asserted result save
that vr is not explicitly bounded in terms of δ.

Looking back to (3), near the beginning of this lemma, with k chosen so
that kδ > 4 we can find an integer j, 1 ≤ j ≤ k − 1, for which

1
φ(N)

∣∣∣
∑

n<N
(n,N)=1

g(n)jχ(n)
∣∣∣ ≥ y1(δ, k) > 0.

With T, d1 sufficiently large in terms of y1,

exp
(
−c min

d≤d1

min
|τ |≤T

∑

q≤N
(q,N)=1

1
q

(1− Re g(q)jχ(q)qiτ )
)
> y2 > 0.

For some d not exceeding d1, |τ | ≤ T ,
∑

q≤N
(q,N)=1

1
q

(1− Re g(q)jχ(q)qiτ ) ≤ y3(δ, k).

By adjusting y3 upwards if necessary, we can adjoin the condition g(q)vr = 1
to the sum. Raising g(q)jχ(q)qiτ to its vrth power, we see that τ logN � 1.
Again we may remove τ :

∑

q≤N
(q,N)=1

1
q

(1− Re g(q)jχ(q)) ≤ y4(δ, k).

If g(q)jχ(q) is not 1, then since it is a vrth root of unity,

1− Re g(q)jχ(q) ≥ min
(a,b)=1
2≤b≤vr

(1− Re exp(2πiab−1)) ≥ y5 > 0.

Thus ∑

q≤N, (q,N)=1
g(q)jχ(q)6=1

1
q
≤ y6(δ, k).

We can choose any k > 4δ−1; k = [4δ−1] + 1 will do.

The proof was constructed assuming N to be sufficiently large in terms
of δ. For the finitely many remaining values of N Lemma 4 is trivially valid.

4. Proof of Theorem 1, second step. We set out to make the excep-
tional set of primes q in Lemma 4 uniform in g. The notation of the previous
section remains in force.

Lemma 5. There is a subgroup G2 of Q1/Γ with the property that the
primes q taken by the canonical map Q1 → Q1/Γ onto any of the cosets
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outside of G2, have the sum of their reciprocals bounded independently of
N . Moreover , the order of G2 does not exceed a value depending only upon δ.

Remark. In particular, we may delete the character in Lemma 4, and
choose a common value for the powers m, uniform in g.

Let h denote a typical character on G1 = Q1/Γ , and g its extension to
Q1:

g : Q1 → G1
h→ U.

If t1, . . . , ts are distinct elements of G1, and p 7→ p denotes the action of the
canonical map Q1 → G1, then

∑

p<N
(p,N)=1

1
p

(1− Re g(p)χ(p)) ≥
∑

j

∑
ω

(1− Reh(tj)ω)βj,ω = L(h, χ),

say, where ω runs through the values assumed by χ, and βj,ω is any real
non-negative number not exceeding

∑

p<N, (p,N)=1
p=tj , χ(p)=ω

1
p
.

It will be convenient to choose for βj,ω the minimum of this sum and α,
with α to be fixed later. For ease of presentation set βj =

∑
ω βj,ω. Thus

0 ≤ βj ≤
∑

p<N, (p,N)=1
p=tj

p−1.

In terms of the metric %(g, h) defined on Q̂1 in Section 1, we have

1
2%(g, h)2 =

∑

p<N
(p,N)=1

1
p

(1− Re g(p)h(p)).

For s large enough L(h, χ) may be considered essentially 1
2%(g, χ)2. We ex-

tend % to a metric on Cπ(N)−ω(N) and regard Q̂1 for topological purposes
as a subset of Cπ(N)−ω(N). This loses us the translation invariance of % on
Q̂1 but allows the choice of a standard Dirichlet character for g, h.

We wish to estimate how often the distances %(gi, gjχ) can be small, for
1 ≤ i < j ≤ v, and all (standard) χ to moduli not exceeding d0, say. We
move this question onto Ĝ1.

Let µ be the Haar measure on Ĝ1, normalised so that µĜ1 = 1.

Lemma 6.

µ

(
h ∈ Ĝ1;L(h, χ) ≤ 1

2

s∑

j=1

βj

)
≤ 4
( s∑

j=1

βj

)−2∑

j

∣∣∣
∑
ω

ωβj,ω

∣∣∣
2
.
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P r o o f. Arguing as Chebyshev would, the desired measure does not ex-
ceed

µ

(
h ∈ Ĝ1; Re

s∑

j=1

∑
ω

ωβj,ωh(tj) ≥ 1
2

s∑

j=1

βj

)

≤ µ
(
h ∈ Ĝ1;

∣∣∣
s∑

j=1

∑
ω

ωβj,ωh(tj)
∣∣∣ ≥ 1

2

s∑

j=1

βj

)

≤ 4
( s∑

j=1

βj

)−2 \
h∈Ĝ1

∣∣∣
s∑

j=1

(∑
ω

ωβj,ω

)
h(tj)

∣∣∣
2
dµ(h)

= 4
( s∑

j=1

βj

)−2 s∑

j=1

∣∣∣
∑
ω

ωβj,ω

∣∣∣
2
.

Let θ(χ) denote the upper bound in Lemma 6, and set

θ =
∑

d≤d0

∑

χ (mod d)

θ(χ),

the moduli d assumed squarefree.

Lemma 7 (Well-spaced functions on Ĝ1). If v2θ < 1, then there are
functions hj , 1 ≤ j ≤ v, in Ĝ1, such that

L(hihk, χ) ≥ 1
2

s∑

j=1

βj for 1 ≤ i < k ≤ v,

for every χ (mod d), d ≤ d0.

P r o o f. Any character on G1 will serve for h1. Using the translation
invariance of Haar measure, the previous lemma guarantees that

µ

(
h ∈ Ĝ1;L(h1h, χ) ≤ 1

2

s∑

j=1

βj for some χ (mod d), d ≤ d0

)

does not exceed θ. There is an h for which L(h1h, χ) is suitably large.
We successively remove sets to obtain functions hi inductively. Having

hi, 1 ≤ i ≤ k− 1, an hk may be chosen, so that every L(hihk, χ) is suitably
large, by removing from Ĝ1 a set of µ-measure at most (k − 1)θ.

Since θ(1 + 2 + . . . + v − 1) = θ 1
2 (v − 1)v ≤ v2θ < 1, v steps of this

argument are possible.

We return to the group Q̂1.

Lemma 8 (In a worm is in a sphere). Suppose T ≤ N , χ1, χ2 are Dirichlet
characters of order ≤ b ≤ N , to moduli ≤ N , and m is a positive integer



Products of shifted primes 43

not exceeding N . Then

%(g, χ1)� exp(
√
mb min
|τ |≤T

%(g, χ1p
iτ ) +

√
b %(gm, χ2)).

P r o o f. Choose τ to minimize %(g, χpiτ ) subject to |τ | ≤ T (the com-
pletely multiplicative function χpiτ has value χ(p)piτ on the prime(s) p),
and let δ denote the minimum value. By (4), with the zj equal,

%(gm, χm1 p
imτ ) ≤ m1/2%(g, χ1p

iτ ) = m1/2δ.

By the triangle inequality (% viewed on Cπ(N)−ω(N)),

%(χ2, χ
m
1 p

imτ ) ≤ m1/2δ + %(gm, χ2).

If χ2χ1 is defined (mod w), then
( ∑

p<N
(p,Nw)=1

1
p
|1− χ2χ

m
1 (p)pimτ |2

)1/2

falls under the same bound. Let χ2χ
m
1 have order ∆. Then again by (4),

( ∑

p<N
(p,Nw)=1

1
p
|1− pimτ∆|2

)1/2

≤ ∆1/2(m1/2δ + %(gm, χ2)).

Note that w ≤ N2, ∆ ≤ b2. We may therefore appeal to Lemma 1 of
Section 2 and deduce that

mτ∆ logN � exp(∆1/2(m1/2δ + %(gm, χ2)))

� exp((bm)1/2δ + b1/2%(gm, χ2)),

provided the final exponent does not exceed 1
8 log logN .

Again by the triangle inequality

%(g, χ1) ≤ %(g, χ1p
iτ ) + %(χ1p

iτ , χ1).

The second of the bounding terms is

�
(∑

p<N

1
p
|piτ − 1|2

)1/2

�
(
|τ |2

∑

p<N

(log p)2

p

)1/2

� |τ | logN,

and the inequality of the lemma follows readily.
Otherwise (bm)1/2δ + b1/2%(gM , χ2) > 1

8 log logN and the asserted in-
equality of Lemma 8 is “trivially” valid.

Remark. According to Lemma 4, for each (extended) character g on Q1,
there is an m, 1 ≤ m ≤ 4/δ, and a Dirichlet character χ2 to a modulus not
exceeding a function of δ, so that %(gm, χ2) � 1, uniformly in g,N . Since
the number of possible χ2 is bounded in terms of δ, we may take the same
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value of m for all the χ2. With this value of m, Lemma 8 shows that for any
χ1 to a modulus not exceeding N , and of order at most b,

%(g, χ1)� exp((mb)1/2 min
|τ |≤N

%(g, χ1p
iτ )).

This explains the subtitle of Lemma 8.

We put the results of these last two subsections together. Let t1, . . . , ts
be elements in G1. Suppose that θ < 1, and let v = [θ−1/2]. If θ = 0, then
we can choose any positive value for v. Thus v ≥ 1.

Let h1, . . . , hv be functions in Ĝ1, guaranteed by Lemma 7, for which
the L(hihk, χ) are large.

Extend the hi to gi on Q1. Then

exp
(

(md0)1/2 min
|τ |≤N

∑

p<N
(p,N)=1

1
p

(1− Re gigkχ1(p)piτ )
)

�
∑

p<N
(p,N)=1

1
p

(1− Re gigkχ1(p))

� L(hihk, χ1)�
s∑

j=1

βj , 1 ≤ i < k ≤ v,

for all Dirichlet characters χ1 to moduli at most d0 (≤ N).
Appeal to Lemma 3 shows that for a certain positive (absolute) con-

stant c,

φ(N)−1
∑

n<N
(n,N)=1

gigkχ1(n)� N−c +
( s∑

j=1

βj

)−c(md0)−1/2

uniformly for 1 ≤ i < k ≤ v and all χ1 to moduli not exceeding d0.
We render the exceptional set in Lemma 4 effectively uniform in g by

estimating
v∑

j=1

∣∣∣
∑

p∈P
gj(N − p)

∣∣∣
2

from above and below. Again we appeal to the inequality dual to that of
Lemma 2. This time

δv ≤ 4 +O
(
N−c + max

d≤d0

max
χ (mod d)

( s∑

j=1

βj

)−c(md0)−1/2)

+O(d−1/2
0 ) +O((logN)−1/20).



Products of shifted primes 45

If d0 is fixed at a value sufficiently large in terms of δ, and θ does not
exceed a certain value θ0, depending only upon δ, then the terms 4 and
O(d−1/2

0 ) will together not exceed δv/4. If N is large enough in terms of δ,
then for some χ1 to a modulus not exceeding d0,

∑s
j=1 βj will be bounded

in terms of δ alone.
However, θ > θ0 entails

( s∑

j=1

βj

)2
< 4θ−1

0 d2
0

s∑

j=1

∣∣∣
∑
ω

ωβj,ω

∣∣∣
2

for some character χ (mod d), d ≤ d0. Here |ω| ≤ 1, βj,ω ≤ α, so that
the upper bound does not exceed rθ−1

0 d2
0α
∑s
j=1 βj . With α = θ0(4d2

0)−1,∑s
j=1 βj ≤ 1 ensues.
In either case

∑s
j=1 βj is bounded in terms of δ alone, i.e.

min
χ (mod d)
d≤d0

s∑

j=1

∑
ω

min
(
α,

∑

p<N, (p,N)=1
p=tj , χ(p)=ω

1
p

)
� 1,

uniformly in s,N .
In our present circumstances we may allow the ti to run through all the

elements of G1. Those for which the innermost minimum is α are bounded
in number in terms of δ alone. They generate a subgroup G2 of G1 of order
bounded in terms of δ.

For the remaining elements of G1, which without loss of generality we
again enumerate by tj , j = 1, 2, . . . , we see that

∞∑

j=1

∑

p<N, (p,N)=1
p=tj

1
p
� 1.

We have reached the following situation:

0 0

Q2 G2 0

Q1 G1 0

²² ²²

²²

//

²²

//

// //

where the vertical maps denote identification, and Q2 is derived from Q1 by
stripping a set of primes q for which

∑
q−1 is bounded in terms of δ alone.

We have shown that |G2| ≤ c0(δ) uniformly in N .
This establishes Lemma 5 and part of Theorem 1.
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5. Proof of Theorem 1, third step. Arithmicity. We modify the
above argument, with t1, . . . , ts running through the elements of G2, and
characters h : G2 → U extended canonically and then by projection to
g : Q1 → Q2 → G2 → U . Thus g(q) = 1 on a set of primes q for which∑
q−1 converges.
Let H be the subgroup of Ĝ2 generated by characters h that extend to a

g such that for some Dirichlet character χ, to a modulus not exceeding d1,∑
p−1 taken over the primes p < N , p |Q2, g(p)χ(p) 6= 1, does not exceed

c1.

Lemma 9. If d1, c1 are fixed at sufficiently large values, depending at
most upon δ, then |Ĝ2/H| ≤ 4/δ.

Replacing 4 by 1 in Lemma 2 would replace 4 by 1 here.

P r o o f. If h1, h2 in Ĝ2 belong to distinct cosets of H, then the corre-
sponding extensions gj : Q1 → Q2 → G2 → U , j = 1, 2, satisfy

∑

p<N
p|Q2

1
p

(1− Re g1g2χ(p)) > c1

for all χ (mod d), d ≤ d1. Supposing we can find s distinct such coset
representatives, then the corresponding s extensions gj satisfy

s|P |2 =
s∑

j=1

∣∣∣
∑

p∈P
gj(N − p)

∣∣∣
2

≤ (4 +O((logN)−1/20 + c
−1/md1
1 ) +O(d−1/2

1 ))π(N)|P |,
where m may be taken to be the same value as earlier provided c1 is fixed
large enough. If d1, c1, N are sufficiently large (in terms of δ), then s ≤ [4/δ].
Here we use the fact that s is an integer. This establishes the lemma.

Let J be the subgroup of G2 on which H is trivial.
We remove from Q2 all primes p1 counted in a sum

∑
p−1

1 , p1 < N ,
p |Q2, gχ(p1) 6= 1, for some g induced from H. These satisfy

ω0

∑ 1
p1
≤ |Ĝ2|c1 = |G2|c1 ≤ c3(δ) <∞,

where

ω0 = min
gχ(p)6=1

(1− gχ(p)).

Note that g is defined on G2, so satisfies g(p)|G2| = 1. Since the modulus
of χ does not exceed d1, χr is principal for some r not exceeding the least
common multiple of the integers up to [d1]. Thus once δ is fixed, gχ(p)
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belongs to a fixed set of roots of unity. An explicit lower bound can be given
for ω0, depending upon δ alone.

It is convenient to also remove from Q2 the primes not exceeding d1.
Call the resulting subgroup of Q2, Q3. Let G3 be the subgroup of G2 that
it generates (mod Γ ).

We reach
0 0 0

Q3 G3 G3J/J ∼= G3/L

Q2 G2 G2/J

Q1 G1

²² ²² ²²

²²

//

²²

//

²²

²²

// //

²²
//

In this diagram Gj = QjΓ/Γ , j = 2, 3. By standard theorems in group
theory, G3J/J ' G3/G3 ∩ J = G3/L, say. Note that G3/L may be viewed
as a subgroup of G2/J . In particular, |L| = |G3 ∩ J | ≤ |J |.

We have defined J so that the upper exact sequence

0 Ĝ2/H Ĝ2 H 0

0 J G2 G2/J 0

oo oo oo oo

// // // //

is dual to the lower exact sequence, term by term. Therefore |J | = |Ĵ | =
|Ĝ2/H| ≤ 4/δ. Hence |L| ≤ 4/δ.

We prove that G3/L is arithmic.
Let h be a character on G3/L. Since U is Z-divisible, there is a character

h′ : G2/J → U which coincides with h on G3/L. Here we use the identifica-
tion of G3/L as a subgroup of G2/J . We then lift h′ up to Q1 in the natural
way:

g : Q1 → Q2 → G2 → G2/J
h′→ U.

Since h′ belongs to (G2/J)∧, i.e. to H, we may view g as “induced from H”.
Attached to g there is a Dirichlet character χ, to a modulus not exceeding

d1, so that g coincides with χ on Q3. Let D be the product of the primes not
exceeding d1. In the previous statement we may replace χ by the character
it induces mod D. (Remember that the χ have squarefree moduli, although
the argument could be adjusted if they did not.)

Let σ denote the composition of canonical maps Q3 → G3 → G3/L.
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For integers a, b dividing Q3, and satisfying a ≡ b (mod D), the lifting
g satisfies g(a)g(b) = χ(a)χ(b) = 1. Otherwise expressed, h(σ(a)/σ(b)) =
h(σ(a))h(σ(b)) = 1. Since this holds for all characters h on G3/L, σ(a)/σ(b)
is the identity of G3/L. The map a (mod D)→ σ(a)

(Z/DZ)∗

Q3 G3/L

KKKKKKKK%%vvvvvvvv::

σ //

is well defined, and gives a commutative diagram of group homomorphisms.
G3/L is arithmic.

With G = G3, Theorem 1 is established.

Proof of the Corollary to Theorem 1. If integers r, s divide Q3 and satisfy
r ≡ s (mod D), then r/s in Q3 7→ 1 in (Z/DZ)∗ 7→ identity in G3/L. Under
the canonical map Q3 → G3, r/s is taken to an element in L. Therefore
(r/s)|L| is taken to the identity of L, and so of G; (r/s)|L| belongs to Γ . In
other terms, (r/s)|L| has a product representation of the asserted type.

6. Concluding remarks. Any integer m made up of primes not ex-
ceeding N , not dividing N and not among the q, has a representation

(8) m|G| =
∏

p∈P
(N − p)ep ,

with the ep integral. The order of G may also be replaced by φ(D)|L|, with
D from the arithmicity condition of G/L.

We can determine an effective upper bound for a set of representatives
for G/L in terms of δ and

∑
p|N 1/p only. We find D. Given (s,D) = 1,

a sufficiently strong version of Dirichlet’s theorem on primes in arithmetic
progression provides that

∑

p≤y, (p,N)=1
p≡s (modD)

1
p
>

2 log log y
3φ(D)

−
∑

p|N

1
p
> c1(δ),

for y ≥ ys = max
(
c0, exp exp

(φ(D)
2

∑
p|N

1
p

))
, say. There is a prime p < ys,

not dividing N and not a q, which maps onto the class s (mod D). By vary-
ing s, the arithmicity of G/L guarantees a complete set of representatives
for G/L. Note that for a certain constant c1 depending at most upon δ,
ys ≤ exp(c1(log logN)2φ(D)) uniformly in s.

When P runs through all primes p < N , (p,N) = 1, we expect there to be
no exceptional primes q. There is a reasonable hope that the representatives
for G/L determined in the preceding manner all belong to Γ . In that case
we could replace |G| in (8) by |L|, which would then not exceed 4.
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Let Q(y) denote the number of exceptional primes q not exceeding y.
From Theorem 1, an integration by parts shows that

N\
2

Q(y)
y2 dy ≤ c4(δ) <∞,

uniformly in N . In particular, if 0 < γ < 1,

min
Nγ≤y≤N

Q(y) log y
y

N\
Nγ

dy

y log y
≤ c4.

The integral is − log γ, and for a suitable value of γ, independent of N ,
Q(y) < y(4 log y)−1 for some y in [Nγ , N ]. Then

(
1
2y, y

]
contains at least

y(8 log y)−1 primes not dividing N , and not among the q. Let m denote their
product.

For all sufficiently large N , m will lie in the interval [exp(Nγ/16),
exp 2N ]. Moreover, since each N − p has at most c5 logN/ log logN distinct
prime factors, in any representation of the form (8),
∑

p∈P
|ep| ≥ |G|y log logN(8c5 log y logN)−1 > Nγ(logN)−2, N ≥ N2.

The generality of Theorem 1 militates against a reduction in the number of
terms in the representing product.

Again let P contain all the primes up to N but not dividing N . To
remove the exceptional primes q in Theorem 1 in this case it would suffice
to show that given a positive integer d, (d,N) = 1, there is a prime p, not
exceeding N , such that p ≡ N (mod d), (N−p)d−1 is not divisible by any q.
Since the q might cover all primes in an interval (Nε, N ], we are essentially
to represent N in the form p+ n where every prime divisor of n is at most
Nε in size. This is a problem of independent difficulty. Of course we need
only solve it for a certain fixed ε > 0, so there is some hope, involving much
calculation.

The present paper provides the details to a lecture that I gave as the
second plenary address on the first day of the international conference in
analytic number theory held in Kyoto, May 19 to 25, 1996. The statement of
Theorem 1 is a little complicated, and when P is the set of all primes p < N ,
(p,N) = 1, the presence of the exceptional primes q does not seem intrinsic.
At the end of that same day, my pleasure at being in Japan combined with
jet lag to relax me, and I succeeded in devising a method to remove the
exceptional primes. Of the various results possible, the following may be
compared with Conjecture III.

Theorem 2. There is an integer k so that if c > 0, N > N0(c), then
every integer m in the range 1 ≤ m ≤ (logN)c, (m,N) = 1, has a represen-



50 P. D. T. A. Ell iott

tation
mk =

∏

p≤N/2
(N − p)dp

with integral exponents dp.

An explicit value can be given for k.
Although the proof of Theorem 2 proceeds from Theorem 1, considerable

further argument is required, and I leave it to another occasion.
It is with great pleasure that I thank the organisers, Professors Hirata-

Kohno, Noriko, Motohashi, Yoichi and Murata, Leo, for the invitation to
speak at this conference, for the financial help, and for their wonderful hos-
pitality.
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