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Certain L-functions at s = 1/2

by

Shin-ichiro Mizumoto (Tokyo)

Introduction. The vanishing orders of L-functions at the centers of their
functional equations are interesting objects to study as one sees, for example,
from the Birch–Swinnerton-Dyer conjecture on the Hasse–Weil L-functions
associated with elliptic curves over number fields.

In this paper we study the central zeros of the following types of L-
functions:

(i) the derivatives of the Mellin transforms of Hecke eigenforms for
SL2(Z),

(ii) the Rankin–Selberg convolution for a pair of Hecke eigenforms for
SL2(Z),

(iii) the Dedekind zeta functions.

The paper is organized as follows. In Section 1, the Mellin transform
L(s, f) of a holomorphic Hecke eigenform f for SL2(Z) is studied. We note
that every L-function in this paper is normalized so that it has a functional
equation under the substitution s 7→ 1 − s. In Section 2, we study some
nonvanishing property of the Rankin–Selberg convolutions at s = 1/2. Sec-
tion 3 contains Kurokawa’s result asserting the existence of number fields
such that the vanishing order of the Dedekind zeta function at s = 1/2 goes
to infinity.

Acknowledgements. The author would like to thank Professor Kuro-
kawa for his permission to include his result (Theorem 3.1 below) in this
paper.

Notation. As usual, Z is the ring of rational integers, Q the field of
rational numbers, C the field of complex numbers. The set of positive (resp.
nonnegative) integers is denoted by Z>0 (resp. Z≥0).
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For k∈ Z>0, Mk (resp. Sk) denotes the C-vector space of holomorphic
modular (resp. cusp) forms of weight k for SL2(Z).

Let H be the upper half plane, and let f : H → C be a C∞-function
satisfying

f((az + b)(cz + d)−1) = (cz + d)kf(z) for all
(
a b
c d

)
∈ SL2(Z).

Such an f is called a C∞-modular form of weight k. The Petersson inner
product of C∞-modular forms f and g of weight k is defined by

(f, g) :=
\

SL2(Z)\H
f(z)g(z)yk−2 dx dy

if the right-hand side is convergent. Here z = x + iy with real variables x
and y and the integral is taken over a fundamental domain of SL2(Z)\H.

For a complex variable s, we put

e(s) := e2πis and ΓC(s) := 2(2π)−sΓ (s).

Throughout the paper, z is a variable on H and s is a complex variable.
We understand that a sum over an empty set is equal to 0.

1. Mellin transforms of modular forms. For a normalized Hecke
eigenform

f(z) =
∞∑
n=1

a(n)e(nz) ∈ Sk

with k ∈ 2Z>0, the L-function

L(s, f) :=
∞∑
n=1

a(n)n−s−(k−1)/2 =
∏

p prime

(1− a(p)p−s−(k−1)/2 + p−2s)−1

converges absolutely and uniformly for Re(s) ≥ 1 + δ for any δ > 0 [De],
and the function

Λ(s, f) := ΓC

(
s+

k − 1
2

)
L(s, f)

extends to the whole s-plane as an entire function with functional equation

(1.1) Λ(s, f) = (−1)k/2Λ(1− s, f).

Hence if k ≡ 2 (mod 4), we have L(1/2, f) = 0. For the nonvanishing prop-
erty of L(1/2, f) in case k ≡ 0 (mod 4), we refer to [Ko1].

Theorem 1.1. Let k be an even integer ≥ 12 with k 6= 14, and let ν be a
nonnegative integer with ν ≡ k/2 (mod 2). Then there exists a normalized
Hecke eigenform f ∈ Sk such that Λ(ν)(1/2, f) 6= 0. Here the superscript (ν)
denotes the νth derivative.
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Remark 1.2. If ν 6≡ k/2 (mod 2), then Λ(ν)(1/2, f) = 0 by (1.1).

To prove Theorem 1.1, we need

Lemma 1.3. For an even integer k ≥ 12 with k 6= 14, there exists an
h ∈ Sk such that h(it) > 0 for all t > 1.

P r o o f. The space S12 is spanned by

∆(z) = e(z)
∞∏
n=1

(1− e(nz))24.

This infinite-product expression implies in particular:

∆(it) > 0 for all t > 1.

Let El(z) ∈Ml be the Eisenstein series of weight l for SL2(Z) with l = 4
or 6 such that limt→∞El(it) = 1. Put

(1.2) σs(n) :=
∑

d|n
d>0

ds.

Then

E4(z) = 1 + 240
∞∑
n=1

σ3(n)e(nz)

implies E4(it) > 0 for t > 1, and

E6(z) = 1− 504
∞∑
n=1

σ5(n)e(nz)

implies E6(it) > E6(i) = 0 for t > 1.
There exist a, b ∈ Z≥0 such that 4a+ 6b = k − 12. Then

∆(z)E4(z)aE6(z)b ∈ Sk
satisfies the asserted condition.

Proof of Theorem 1.1. For h(z) =
∑∞
n=1 c(n)e(nz) ∈ Sk, we put

D(s, h) :=
∞∑
n=1

c(n)n−s−(k−1)/2

for Re(s) > 1. Then

Λ(s, h) := ΓC

(
s+

k − 1
2

)
D(s, h)(1.3)

= 2
∞\
1

h(it){ts+(k−3)/2 + (−1)k/2t(k−1)/2−s} dt,
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which gives analytic continuation of Λ(s, h) to the whole s-plane. Hence

Λ(ν)(1/2, h) = 2{1 + (−1)ν+k/2}
∞\
1

h(it)tk/2−1(log t)ν dt

for every ν ∈ Z≥0. Thus Lemma 1.3 implies Λ(ν)(1/2, h) > 0 for some h ∈ Sk
under the condition ν ≡ k/2 (mod 2). Writing h as a C-linear combination
of Hecke eigenforms in Sk, we obtain the asserted result.

Applying Lemma 1.3 to (1.3), we have

Corollary 1.4 (to the proof). Under the same assumption as in Theo-
rem 1.1, let σ ∈ R with 0 < σ < 1. Suppose σ 6= 1/2 if k ≡ 2 (mod 4). Then
there exists a normalized Hecke eigenform f ∈ Sk such that L(σ, f) 6= 0.

Remark 1.5. (1) Corollary 1.4 should be compared with the following
result of [Ko2]: Let fk,1, . . . , fk,dk be the basis of normalized Hecke eigen-
forms of Sk with k ∈ 2Z>0. Let t0 ∈ R and ε > 0. Then there exists a
constant C(t0, ε) > 0 depending only on t0 and ε such that for k > C(t0, ε)
the function

dk∑
ν=1

1
(fk,ν , fk,ν)

Λ(s, fk,ν)

does not vanish at any point s = σ + it with t = t0, 0 < σ < 1/2 − ε,
1/2 + ε < σ < 1.

(2) The nonvanishing property of L(s, f) in the interval (0, 1) is impor-
tant in the study of holomorphy of the third symmetric power L-function
attached to f (cf. [Sha]).

2. Rankin–Selberg convolutions. Let

f(z) =
∞∑
n=1

a(n)e(nz) ∈ Sk

be a normalized Hecke eigenform with k ∈ 2Z>0. Let 1ν be the identity
matrix of size ν ∈ Z>0. For each prime number p, we take Mp(f) ∈ GL2(C)
such that

(2.1) 1− a(p)p−(k−1)/2T + T 2 = det(12 −Mp(f)T ),

where T is an indeterminate. Each Mp(f) is determined up to conjugacy.
For normalized Hecke eigenforms f ∈ Sk and g ∈ Sl with k, l ∈ 2Z>0,

we put

L(s, f × g) :=
∏

p prime

(14 − p−sMp(f)⊗Mp(g))−1,

where ⊗ stands for the Kronecker product of matrices. The right-hand side
converges absolutely and uniformly for Re(s) ≥ 1 + δ for any δ > 0 [De]. By
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[Ran], [Se], [Sh],

ΓC

(
s− 1 +

k + l

2

)
ΓC

(
s+
|k − l|

2

)
L(s, f × g)

extends to the whole s-plane as a meromorphic function which is invariant
under the substitution s 7→ 1−s; it is holomorphic expect for possible simple
poles at s = 0 and 1.

Theorem 2.1. Let f ∈ Sk be a normalized Hecke eigenform and let l be
an even integer satisfying l ≥ k and l 6= 14. Then there exists a normalized
Hecke eigenform g ∈ Sl such that L(1/2, f × g) 6= 0.

Remark 2.2. Some results have been known concerning the nonvanish-
ing at s = 1/2 of automorphic L-functions for GL(2) twisted by characters
on GL(1) ([F-H], [Ko-Za], [W1], [W2]). The above theorem may be seen as
a result on such L-functions twisted, in contrast, by automorphic forms on
GL(2).

The rest of this section is devoted to the proof of Theorem 2.1.
We fix k and l as in the assumption of Theorem 2.1 and put

(2.2) λ := (l − k)/2 and µ := (l + k)/2.

For normalized Hecke eigenforms

f(z) =
∞∑
n=1

a(n)e(nz) ∈ Sk, g(z) =
∞∑
n=1

b(n)e(nz) ∈ Sl,

[Sh, Lemma 1] gives

L(s, f × g) = ζ(2s)
∞∑
n=1

a(n)b(n)n1−µ−s

for Re(s) > 1. For ν ∈ 2Z≥0, the Eisenstein series

Eν(z, s) :=
∑

(m,n)∈Z2−(0,0)

(mz + n)−ν |mz + n|−2s

has a meromorphic continuation to the whole s-plane. By [Sh], we have

(2.3) 2(4π)−s−µ+1Γ (s+ µ− 1)L(s, f × g)

=
\

SL2(Z)\H
f(z)g(z)E2λ(z, s− λ)ys+µ−2 dx dy,

where z = x+iy. This gives analytic continuation of L(s, f×g) to the whole
s-plane. We study (2.3) at s = 1/2.

Lemma 2.3. Put

(2.4) Cλ(z) := 1
2y

1/2−λE2λ(z, 1/2− λ)
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for λ ∈ Z≥0 and z ∈ H. Let

(2.5) Cλ(z) =
∑

n∈Z
cλ(n, y)e(nx)

be the Fourier expansion, where z = x+ iy. Then

(2.6) cλ(n, y)

=





y1/2−λ
{(

γ − log 4π + 2
λ∑
r=1

1
2r − 1

)
+ log y

}
if n = 0,

(−1)λ
√
π y−λ

σ0(|n|)√
|n| ·

Wsgn(n)λ,0(4π|n|y)
Γ (sgn(n)λ+ 1/2)

if n 6= 0.

Here σ0 is defined as in (1.2) with s = 0, sgn(n) := n/|n| for n 6= 0, γ is
the Euler constant

(2.7) γ = 0.57721 . . . ,

and Wa,b(y) is Whittaker’s function which is a solution of the differential
equation (

4y2 d
2

dy2 + 1− 4b2 + 4ay − y2
)
W (y) = 0

(see, e.g., [E-M-O-T1, p. 264]).

P r o o f. By [Ma, p. 210],

E2λ(z, 1/2− λ) = lim
s→1

ϕλ(y, s)

+ (−1)λ · 2
√
π

y

∑

n∈Z
n6=0

σ0(|n|)√
|n| ·

Wsgn(n)λ,0(4π|n|y)
Γ (sgn(n)λ+ 1/2)

e(nx)

with

ϕλ(y, s) := 2ζ(s) + (−1)λ23−sπy1−s Γ (s− 1)ζ(s− 1)
Γ (s/2 + λ)Γ (s/2− λ)

.

The di-gamma function

(2.8) ψ(s) := Γ ′(s)/Γ (s)

assumes the values

(2.9) ψ(m+ 1/2) = 2
m∑
r=1

1
2r − 1

− log 4− γ

for m ∈ Z≥0, hence by a direct computation we have

lim
s→1

ϕλ(y, s) = 2
(
γ − log 4π + 2

λ∑
r=1

1
2r − 1

)
+ 2 log y.
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We have

(2.10) (4π)1/2−µΓ (µ− 1/2)L(1/2, f × g) = (f · Cλ, g)

from (2.3). Here

(2.11) f(z)Cλ(z) =
∑

ν∈Z

{ ∑
m+n=ν

a(m)c(n, y)e−2πmy
}

e(νx)

with a(m) := 0 for m ≤ 0.
Now we recall the holomorphic projection operator of [St] (specialized to

our case): Let ϕ : H → C be a C∞-modular form (see the Notation above)
of weight w ∈ Z for SL2(Z) with Fourier expansion

ϕ(z) =
∑

ν∈Z
r(ν, y)e(νx).

Suppose that w ≥ 6 and that ϕ satisfies the growth condition

(2.12)
1\
0

dx

∞\
0

|ϕ(z)|yw−2e−εy dy <∞

for every ε > 0. Put

(2.13) r(ν) :=
(4πν)w−1

Γ (w − 1)

∞\
0

r(ν, y)e−2πνyyw−2 dy

and

πhol(ϕ)(z) :=
∞∑
ν=1

r(ν)e(νz).

Then πhol(ϕ) ∈ Sw and (ϕ, h) = (πhol(ϕ), h) for all h ∈ Sw. This πhol(ϕ) is
called the holomorphic projection of ϕ.

We apply πhol to ϕ = f ·Cλ in (2.10). The validity of the condition (2.12)
in this case (with w = l) follows from the first assertion of

Lemma 2.4. (1) For any ε > 0 there exists a positive constant M such
that

|f(z)Cλ(z)| < My−l/2(y1/2+ε + y−1/2−ε) for all z ∈ H.
(2) We have

∑
m+n=ν

∞\
0

|a(m)cλ(n, y)|e−2π(m+ν)yl−2 dy <∞ for every ν ∈ Z.

P r o o f. We denote by c1, c2, . . . some positive constants independent of
n and y.
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(1) Suppose y ≥ δ for some δ > 0. By (2.6) we have

|Cλ(z)| ≤
∑

n∈Z
|cλ(n, y)|(2.14)

≤ c1y1/2−λ + c2y
1/2−λ|log y|

+ c3y
−λ∑

n 6=0

|Wsgn(n)λ,0(4π|n|y)|.

By [E-M-O-T1, p. 264, (5)],

Wκ,0(y) = e−y/2yκ 2F0(1/2− κ, 1/2− κ;−y−1)

for κ ∈ C with the hypergeometric function 2F0, hence

(2.15) |Wsgn(n)λ,0(4π|n|y)| ≤ c4e−2π|n|y(|n|y)sgn(n)λ

for n 6= 0. It follows from (2.14) that |Cλ(z)| ≤ c5y1/2−λ|log y|, hence

(2.16) |f(z)Cλ(z)| ≤ c6y1/2−λ−k/2|log y| for y ≥ δ.
Since yl/2|f(z)Cλ(z)| is SL2(Z)-invariant, the assertion (1) follows from
(2.16) and [St, Proposition 2].

(2) First we show the finiteness of the integral

I(m,n) :=
∞\
0

|a(m)cλ(n, y)|e−2π(m+ν)yyl−2 dy

for ν ∈ Z>0, 0 ≤ n ≤ ν − 1, and m = ν − n. If n = 0, we have

I(ν, 0) ≤ c7
∞\
0

(y1/2−λ + y1/2−λ|log y|)e−4πνyyl−2 dy <∞

since l − λ = µ ≥ 12. Next we use the estimate

(2.17) |Wλ,0(x)| ≤ c8x1/2|log x| as x→ +0,

which follows from [E-M-O-T1, p. 264, (2), p. 262, (5),(10)]. If 1 ≤ n ≤ ν−1,
we have

I(n− ν, n) ≤ c9
∞\
0

|Wλ,0(4πny)|yl−λ−2 dy <∞

by (2.15) and (2.17). Hence it remains to show that
∑
n<0

I(ν − n, n) <∞.
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From |a(m)| = O(mk/2) it follows that
∑
n<0

I(ν − n, n)

≤ c10

∞∑
n=1

nk/2
∞\
0

e−2π(2ν+n)yyl−2|cλ(−n, y)| dy

≤ c11

∞∑
n=1

nk/2
(
n

1/n\
0

e−2πnyyl−1dy + n−λ
∞\

1/n

e−4πnyyl−λ−2 dy
)

by (2.15) and (2.17). Hence
∑
n<0

I(ν − n, n) ≤ c12ζ(l − k/2− 1) <∞.

Proposition 2.5. The notation being as above, let

πhol(f · Cλ)(z) =
∞∑
ν=1

α(ν)e(νz) ∈ Sl.

Then

α(ν) = (4πν)λ−1/2Γ (µ− 1/2)
Γ (l − 1)

a(ν)

×
{

2
λ∑
r=1

1
2r − 1

+ 2
µ−1∑
r=1

1
2r − 1

− log(64π2ν)
}

+ (−1)λ2l−1(2π)λ+1/2Γ (µ− 1/2)2

Γ (l − 1)

×
∑

m+n=ν
m,n∈Z
n 6=0

a(m)σ0(|n|)
Γ (sgn(n)λ+ 1/2)Γ (µ− sgn(n)λ)

· νl−1

(m+ ν + |n|)µ−1/2

× F
(
µ− 1/2, 1/2− sgn(n)λ;µ− sgn(n)λ;

m+ ν − |n|
m+ ν + |n|

)
.

Here F = 2F1 is the hypergeometric function. The above series converges
absolutely for every ν ∈ Z>0.

P r o o f. By Lemma 2.4(1), ϕ = f · Cλ satisfies the growth condition
(2.12). So from (2.13) we have

α(ν) =
(4πν)l−1

Γ (l − 1)

∞\
0

( ∑
m+n=ν

a(m)c(n, y)e−2πmy
)
e−2πνyyl−2 dy.



60 S. Mizumoto

By Lemma 2.4(2),

(2.18) α(ν) =
(4πν)l−1

Γ (l − 1)

∑
m+n=ν

a(m)I1(n)

with

I1(n) :=
∞\
0

e−2π(m+ν)yyl−2c(n, y) dy,

and the right-hand side of (2.18) is absolutely convergent; here we fix ν and
put m = ν − n. From (2.6) and (2.9),

I1(0) = (4πν)−µ+1/2Γ (µ− 1/2)
{

2
λ∑
r=1

1
2r − 1

+ 2
µ−1∑
r=1

1
2r − 1

− log(64π2ν)
}
.

If n 6= 0, (2.6) gives

I1(n) = (−1)λ
√
π · σ0(|n|)√

|n| · Γ (sgn(n)λ+ 1/2)−1I2(n)

with

I2(n) :=
∞\
0

e−2π(m+ν)yyµ−2Wsgn(n)λ,0(4π|n|y) dy.

By [E-M-O-T2, p. 216, (16)],

I2(n) = 2
√
π|n| · Γ (µ− 1/2)2

Γ (µ− sgn(n)λ)
· {2π(m+ ν + |n|)}−µ+1/2

× F
(
µ− 1/2, 1/2− sgn(n)λ;µ− sgn(n)λ;

m+ ν − |n|
m+ ν + |n|

)
.

Thus from (2.18) the result follows.

By Proposition 2.5 we have

(2.19) (4π)1/2−λ Γ (l − 1)
Γ (µ− 1/2)

α(1) = A(λ, µ) +R(λ, µ)

with

A(λ, µ) := 2
λ∑
r=1

1
2r − 1

+ 2
µ−1∑
r=1

1
2r − 1

− log(64π2),(2.20)

R(λ, µ) :=
(−1)λ2πΓ (µ− 1/2)
Γ (1/2− λ)Γ (l)

∞∑
m=2

a(m)σ0(m− 1)m−µ+1/2(2.21)

× F (µ− 1/2, λ+ 1/2; l; 1/m).
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Lemma 2.6. For all λ and µ we have

|R(λ, µ)| ≤ R∗(λ, µ)

with

R∗(λ, µ) :=
4Γ (µ− 1/2)Γ (λ+ 1/2)

Γ (l)
·
{
ζ

(
k − 1

2

)2

− 1
}
.

P r o o f. Euler’s integral representation [E-M-O-T1, p. 59, (10)] gives

F (µ− 1/2, λ+ 1/2; l; 1/m)

=
Γ (l)

Γ (µ− 1/2)Γ (λ+ 1/2)

1\
0

tµ−3/2(1− t)λ−1/2(1− t/m)−λ−1/2
dt.

Hence

(2.22) F (µ− 1/2, λ+ 1/2; l; 1/m)

≤ Γ (l)
Γ (µ− 1/2)Γ (λ+ 1/2)

(1− 1/m)−λ−1/2
1\
0

tµ−3/2(1− t)λ−1/2 dt

≤
(

1 +
1

m− 1

)λ+1/2

.

Similarly we have

(2.23) F (µ− 1/2, λ+ 1/2; l; 1/m) > 1.

Using Deligne’s bound [De]

|a(m)| ≤ σ0(m)m(k−1)/2,

from (2.22) and (2.23) we obtain

(2.24)
∣∣∣
∞∑
m=2

a(m)σ0(m− 1)m−µ+1/2 · F (µ− 1/2, λ+ 1/2; l; 1/m)
∣∣∣

≤
∞∑
m=2

σ0(m)σ0(m− 1)m−l/2
(

1 +
1

m− 1

)λ+1/2

.

Since σ0(m− 1) ≤ 2
√
m− 1, the sum (2.24) is majorized by

2
∞∑
m=2

σ0(m)m(1−k)/2 = 2
{
ζ

(
k − 1

2

)2

− 1
}
.
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Lemma 2.7. (1) If 2 ≤ m ∈ Z, then

2
m∑
r=1

1
2r − 1

= γ + log 2 + log(2m− 1) +
1

2m− 1

− 1
3(2m− 1)2 +

θm

120(m− 1/2)4

with 0 < θm < 1, where γ is the Euler constant as in (2.7).
(2) If 12 ≤ k ∈ Z, then

ζ

(
k − 1

2

)2

≤ 1 + 21− 21
44 (k−1) + 2−

21
22 (k−1).

(3) If 1 < x ∈ R, then

Γ (x− 1/2)
Γ (x)

≤ 1√
x− 1/2

· exp
(

1
4x− 2

+
1

(4x− 2)2

)
.

P r o o f. (1) is immediate from the Euler–MacLaurin formula (see, e.g.,
[Rad]).

(2) Suppose 1 < σ ∈ R and 2 ≤ N ∈ Z. The Euler–MacLaurin formula
gives

(2.25) ζ(σ) =
N∑
n=1

n−σ +
N1−σ

σ − 1
− N−σ

2
+

σ

12
N−σ−1θ

with 0 < θ < 1. If we put N = 2 and use the inequality
1
2

+
2

σ − 1
+

σ

24
≤ 2σ/22 for σ ≥ 11

2
,

the result follows.
(3) The di-gamma function ψ(s) defined by (2.8) is increasing for 0 <

s ∈ R. Hence from the mean value theorem it follows that

(2.26)
Γ (x− 1/2)

Γ (x)
≤ exp

(
−1

2
ψ

(
x− 1

2

))
for 1 < x ∈ R.

By [Rad, p. 37],

logΓ (s) =
1
2

log(2π) +
(
s− 1

2

)
log s− s

− 1
2

∞\
0

B2(x− [x])−B2

(x+ s)2 dx for 0 < s ∈ R

with B2(x) being the second Bernoulli polynomial. Differentiating, we have

ψ(s) = log s− 1
2s

+
∞\
0

B2(x− [x])−B2

(x+ s)3 dx.



L-functions at s = 1/2 63

Here
∣∣∣∣
∞\
0

B2(x− [x])−B2

(x+ s)3 dx

∣∣∣∣ ≤ max
0≤x≤1

|B2(x)−B2| ·
∞\
0

dx

(x+ s)3 =
1

8s2

since B2(x)−B2 = x2 − x. Hence (3) follows from (2.26).

Lemma 2.8. In the notation of (2.20) and Lemma 2.6, we have

|A(λ, µ)| > R∗(λ, µ)

for all λ, µ defined by (2.2).

P r o o f. (i) Estimate for A(λ, µ). First note that

A(λ, µ) ≤ A(λ′, µ′) if λ ≤ λ′ and µ ≤ µ′ .
If λ ≥ 1, then µ ≥ 14 and

A(λ, µ) ≥ A(1, 14) = 0.0803 . . .

by Lemma 2.7(1). If λ = 0, the same lemma gives

A(0, 88) = −0.018 . . . and A(0, 90) = 0.0038 . . .

Hence we have

(2.27) |A(λ, µ)| > 8× 10−2 for all µ if λ ≥ 1,

and

(2.28) |A(0, µ)| > 3.8× 10−3 for all µ.

We also have

(2.29) |A(0, µ)| > 1.2 for µ ≤ 26

since A(0, 26) = −1.26 . . .
(ii) Estimate for R∗(λ, µ). If λ ≥ 1, we have

R∗(λ, µ)
R∗(λ− 1, µ− 1)

≤ 1
4
· (l − 2)2 − (k − 1)2

(l − 2)2 + (l − 2)
<

1
4
,

hence

R∗(λ, µ) ≤ 2−2λR∗(0, k).

Observe that R∗(0, k) is a decreasing function of k. Hence, if λ ≥ 1, we have

(2.30) R∗(λ, µ) ≤ max{2−2R∗(0, 16), 2−4R∗(0, 12)} < 7.2× 10−3

by Lemma 2.7(2) and (3). If λ = 0 and µ ≥ 28, then

(2.31) R∗(0, µ) ≤ R∗(0, 28) < 3.7× 10−4.
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If λ = 0 and µ ≤ 26, then

(2.32) R∗(0, µ) ≤ R∗(0, 12) < 0.12.

Comparing (2.27) with (2.30), (2.28) with (2.31), and (2.29) with (2.32), we
have the assertion of Lemma 2.8.

Combining Lemma 2.8 with Lemma 2.6 and (2.19), we see that α(1) 6= 0
in the notation of Proposition 2.5. Hence πhol(f · Cλ) 6= 0. Thus for some
g ∈ Sl we have

(f · Cλ, g) = (πhol(f · Cλ), g) 6= 0

in (2.10). This completes the proof of Theorem 2.1.

3. Dedekind zeta functions. Let K be an algebraic number field of
finite degree. The functional equation of the Dedekind zeta function ζK(s)
tells us that the vanishing order ords=1/2 ζK(s) is a nonnegative even integer.
On this we have

Theorem 3.1 (Kurokawa). For every ν ∈ Z>0 there exists a Galois
extension Kν over Q of degree 23ν such that

ords=1/2 ζKν (s) ≥ 2ν.

In particular ,

sup
K/Q finite

ords=1/2 ζK(s) =∞.

P r o o f. Put

(3.1) gK := 1
2 ords=1/2 ζK(s) ∈ Z≥0 .

Let F/Q be a finite extension and let Li/F (i = 1, 2) be finite Galois exten-
sions such that L1 ∩ L2 = F . By [Br], the function

ζL1L2(s)ζF (s)
ζL1(s)ζL2(s)

is entire, hence

(3.2) gL1L2 ≥ gL1 + gL2 − gF .
By [Frö], there exists a sequence {Ni}∞i=1 of Galois extensions over Q of
degree 8 such that

Ni+1 ∩N1 . . . Ni = Q and ζNi(1/2) = 0 for i ≥ 1.

Then Kν := N1 . . . Nν satisfies gKν ≥ ν by (3.2).

Remark 3.2. (1) We refer to [Den2] for an interpretation of the zeros
of the Dedekind zeta functions at s = 1/2.
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(2) Let gK be as in (3.1). Theorem 3.1 leads naturally to the following
problem: Classify the algebraic number fields by gK . For example, one can
ask whether gK = 0 for every finite abelian extension K/Q. This is equiva-
lent to asking whether L(1/2, χ) 6= 0 for every Dirichlet character χ, which
is a longstanding open problem in analytic number theory.
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