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A family of elliptic Q-curves defined over biquadratic
fields and their modularity

by

Takeshi Hibino and Atsuki Umegaki (Tokyo)

1. Introduction

Definition 1.1. Let E be an elliptic curve defined over Q. Then E is
called an (elliptic) Q-curve if E and its Galois conjugate Eσ are isogenous
over Q for any σ in Gal(Q/Q).

In Gross [4], E is assumed to have complex multiplication, but we do
not assume that in this paper.

Many versions of modularity problems are known for elliptic curves over
number fields. The most famous and typical is the Taniyama–Shimura con-
jecture, shown by Taylor and Wiles in the case where E is semi-stable. This
conjecture says that every elliptic curve E over Q is modular, i.e. E is isoge-
nous over Q to a Q-simple factor of the jacobian variety of the modular curve
X0(N) for a positive integer N . Similarly, a modular Q-curve is defined as
follows:

Definition 1.2. Let E be a Q-curve. Then we say that E is modular
if E is isogenous over Q to a factor of the jacobian variety of the modular
curve X1(N) for a positive integer N .

The following conjecture which was mentioned by Ribet is known as a
generalized Taniyama–Shimura conjecture (cf. [7]):

Conjecture 1.3. Every Q-curve is modular.

We have shown a method to construct families of Q-curves defined over
biquadratic fields in [6]. In this paper, by supposing a few more conditions
on Q-curves, we give a family of modular Q-curves defined over biquadratic
fields, which are either totally real fields or CM-fields (both cases can hap-
pen).
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This paper is organized as follows. In Section 2, we introduce our main
theorem. In Section 3, we give a modular equation of X0(22) and give some
of its properties. Using this equation, we shall prove the main theorem in
Section 4. In Section 5, using our main theorem, we give some interesting
examples.

2. Results. In order to state our main theorem, we need some notation.
We define the rational function j(x, y) by

(2.1) j(x, y) = (A(x) +B(x)y)/x22,

where

A(x) = 64(16x33 + 176x32 + 836x31 + 2288x30 + 4048x29 + 4873x28

+ 4048x27 + 2288x26 + 836x25 + 176x24 + 16x23 + 12x22

+ 768x21 + 41216x20 + 761024x19 + 7499008x18

+ 47232768x17 + 209361328x16 + 692209408x15

+ 1772657920x14 + 3605725376x13 + 5924557056x12

+ 7948915456x11 + 8761456704x10 + 7948914688x9

+ 5924548608x8 + 3605685248x7 + 1772548096x6

+ 692015104x5 + 209127424x4 + 47038464x3

+ 7389184x2 + 720896x+ 32768)

and

B(x) = 128(x+ 1)(x+ 2)(2x+ 1)

× (x2 + 4)(x2 + 2x+ 2)(x2 + 3x+ 1)

× (2x2 + 3x+ 2)(x3 − 4x− 4)(x3 − 4x2 + 4x+ 2)

× (x3 + 2x2 + 4x+ 2)(x4 − 2x3 + 2x2 + 4x+ 4)

× (x6 + 2x5 + 4x4 + 12x3 + 20x2 + 16x+ 4).

For any rational number r, we put

x(r) = r +
√
r2 − 1,(2.2)

y(r) =
(

2r − 1 +
2r + 1
r + 1

√
r2 − 1

)√
w(r),(2.3)

where w(r) = (r+ 1)(16r3 + 48r2 + 44r+ 13). Let Kr be the extension over
Q generated by x(r) and y(r). Then

Kr = Q(
√
r2 − 1,

√
w(r)).

We put jr = j(x(r), y(r)), and define the elliptic curve Er with j-invariant
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jr by

(2.4) Er :





Y 2 +XY = X3 − 36
jr − 1728

X − 1
jr − 1728

if jr 6= 0, 1728,

Y 2 + Y = X3 if jr = 0,
Y 2 = X3 +X if jr = 1728.

Now we state our main theorem:

Theorem 2.1. If the denominator of r is prime to 11 and r is not
congruent to 1 or 9 modulo 11, then the elliptic curve Er is a modular
Q-curve defined over Kr.

In the case [Kr : Q] = 4, Kr is a biquadratic extension. We denote by
σ and τ the elements in the Galois group Gal(Kr/Q) which fix Q(

√
r2 − 1)

and Q(
√
w(r)), respectively. The elliptic curve Er is isogenous via φ and ψ

respectively to its conjugates (Er)τ and (Er)σ, whose degrees are equal to
2 and 11, respectively. Then we have the following diagram:

Er (Er)τ

(Er)σ (Er)στ ,

φ //

ψ

²²
ψ′

²²

φ′
//

where φ′, ψ′ are Galois conjugates of φ, ψ.

3. The modular curve X0(22). Let Γ = SL2(Z). For a positive integer
N , we define the modular subgroups Γ0(N) and Γ1(N) of Γ by

Γ0(N) =
{(

a b
c d

)
∈ Γ

∣∣∣∣ c ≡ 0 (mod N)
}

and

Γ1(N) =
{(

a b
c d

)
∈ Γ

∣∣∣∣∣ a ≡ d ≡ 1, c ≡ 0 (mod N)
}
.

We denote by X,X0(N) and X1(N) the modular curves defined over Q
corresponding to Γ, Γ0(N) and Γ1(N), respectively.

In this section, we prepare some data on the modular curve X0(22) to
obtain our main theorem. We assume that N is a square-free positive integer.
For any positive integer d dividing N , we define the automorphism wd on
X0(N) which corresponds to the matrix

(
xd y
zN wd

)
,
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where x, y, z, w ∈ Z satisfy xwd2 − yzN = d. If d is not equal to 1, then wd
is an Atkin–Lehner involution. Moreover we put

W (N) = {wd | d |N},
which is the subgroup of the automorphism group of X0(N), and define the
quotient curve X∗0 (N) by

(3.5) X∗0 (N) = X0(N)/W (N),

which is defined over Q. From Proposition 2.1 of [6], we have the following
result:

Lemma 3.1. The equation

(3.6) y2 = 2(x3 + 4x2 + 4x+ 2)(2x3 + 4x2 + 4x+ 1)

is a non-singular model of X0(22) over Q and a covering map j : X0(22)→
X is given by (2.1). Moreover the Atkin–Lehner involutions w2 and w11 act
on the modular curve X0(22) by

(3.7)





(w∗2x,w
∗
2y) =

(
1
x
,− y

x3

)
,

(w∗11x,w
∗
11y) = (x,−y)

in equation (3.6).

Now we can regard model (3.6) over Q as a model over the local ring
Z(11) of Z at 11. Hence we define a scheme C over Z(11) by equation (3.6).
Then the special fibre C of C is given by the model

(3.8) C : y2 = 4(x− 1)2(x− 3)2(x− 4)2

over F11. Then C has the following important property. Recall that a point
of X0(N) over a field with finite characteristic is called supersingular if the
elliptic curve corresponding to the point is supersingular.

Lemma 3.2. The supersingular points in characteristic 11 of the modular
curve X0(22) correspond to the points on C with y = 0, i.e. {(1, 0), (3, 0),
(4, 0)}.

P r o o f. It is known that the supersingular j-invariants in characteristic
11 are j = 0 and j = 1728 = 1. Let M be the modular curve X0(22)
over Z(11). The special fibre of M has two irreducible components, which
we denote by Z and Z ′, and these two components intersect in exactly
three points, since the genus of X0(22) is equal to 2. Then we see that the
intersection points correspond to the supersingular points ([2]). MoreoverM
has only one non-regular point. In fact, one of the three intersection points
corresponds to the pair (e, α) of an elliptic curve e and its subgroup α of
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order 2 such that the j-invariant of e is equal to 1728 and the order of the
automorphism group which fixes α is equal to 4, and the others correspond
to the pairs with the automorphism group of order 2.

Next we consider the minimal model of M. Let M̃ be the scheme over
Z(11) which is obtained by blowing-up M at the non-regular point. Then

M̃ is regular, and the special fibre of M̃ has three components Z,Z ′ and
E. We can check that the self-intersection number of Z is equal to −3,
similarly Z ′2 = −3, and that the self-intersection number of E is equal to
−2, so M̃ is the minimal model over Z(11). It is easy to see that C also
has two irreducible components and three intersection points. The minimal
model of C over Z(11) is obtained by blowing up along the ideal (x−1, y, 11).

Because of the universality of the minimal model, M̃ is also the minimal
model corresponding to C. Thus we see that the supersingular points on C
correspond to the three intersection points, namely the points with y = 0 of
C (see Figure 1).

M
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Fig. 1

This completes the proof.

4. Proofs. In this section we shall prove Theorem 2.1. First, we introduce
the criterion for the modularity of Q-curves which is given in [5]. Let N be
a square-free positive integer, and p a rational prime which divides N . We
consider two quotient curves of X0(N). One of them is X∗0 (N), which is
defined by (3.5), and the other is

(4.9) X∗0 (N ; p) = X0(N)/W (N ; p),

where

(4.10) W (N ; p) =
{
wd
∣∣ d | Np

}

is the subgroup in the automorphism group of X0(N). Then we have a
covering map

f : X∗0 (N ; p)→ X∗0 (N)
of degree 2. By Theorem C of [5], we know the following:
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Theorem 4.1. Let x be a point on X0(N) such that the image y in
X∗0 (N) of x is a Q-rational point , but not a cuspidal point or a CM point.
Moreover we assume that some prime divisor p of N satisfies the following
conditions:

(a) the reduction of y at p is not a supersingular point ,
(b) the fibre X∗0 (N ; p)y over y has no Q-rational points,
(c) p ≥ 5, p 6= 1 + 2n and p 6= 1 + 3 · 2n, n ∈ Z, n > 0.

Then the Q-curve corresponding to x is modular.

Remark 4.2. We note that the rational prime 11 is the minimum prime
satisfying condition (c) of Theorem 4.1.

Remark 4.3. In Hasegawa–Hashimoto–Momose [5], they obtained sim-
ilar results for all p ≥ 5 under some conditions modulo p. In general, it is
not easy to obtain a result similar to our main theorem, because we must
check the additional conditions.

Now we recall the elliptic curve Er which is given in (2.4).

Lemma 4.4. The elliptic curve Er is a Q-curve defined over Kr.

P r o o f. As this lemma has been proved in Theorem 3.3 of [6], we only
give a sketch of the proof. We make use of the result by Elkies [3] that
the Q-curves of “degree N”, i.e. Q-curves which have isogenies to their
conjugates with degree dividing N , are parameterized by the Q-rational
points of X∗0 (N). We recall that model (3.6) is a defining equation of X0(22)
over Q and the Atkin–Lehner involutions w2 and w11 act on the points (x, y)
of X0(22) in the manner which is given by (3.7). Then it is easy to check
that the rational function t = 1

2 (x+1/x) parameterizes the points of X∗0 (22)
(which is of genus 0) by calculating the pole divisors of x and t. Now we
specialize t to a rational number r in order to use the result of Elkies. Then
it follows that

(4.11) x = r ±
√
r2 − 1,

so that we choose the point (x(r), y(r)) on X0(22) which belongs to the
fibre of the point r on X∗0 (22), where x(r) and y(r) are given in (2.2) and
(2.3). Since the relation between a point on X0(22) and the corresponding
j-invariant is given in (2.1), we see that the elliptic curve Er is a Q-curve
defined over Kr.

Finally, we prove our main theorem.

Proof of Theorem 2.1. We note that the rational prime 11 satisfies con-
dition (c) in Theorem 4.1.

Using defining equation (3.6) of X0(22) over Q, we obtain model (3.8)
over F11. From Lemma 3.2, the points with y = 0 in model (3.8) correspond
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to the supersingular points on X0(22) over F11. Moreover, by using relation
(2.1), we see that

j ≡
{

0 (mod 11) if and only if x ≡ 4 (mod 11),
1728 (mod 11) if and only if x ≡ 1 or 3 (mod 11).

Therefore if x is not congruent to 1, 3 or 4 modulo 11, the image of (x, y) in
X∗0 (22) is not a supersingular point in characteristic 11.

We recall that the point (x(r), y(r)) of X0(22) belongs to the fibre of the
Q-rational point r of X∗0 (22). Then it follows that

r ≡
{

1 (mod 11) if x ≡ 1 (mod 11),
9 (mod 11) if x ≡ 3 or 4 (mod 11).

Therefore if the denominator of r is prime to 11 and r 6≡ 1, 9 (mod 11),
then the point on X∗0 (22) corresponding to r is not a supersingular point in
characteristic 11, and hence the point (x(r), y(r)) satisfies condition (a) in
Theorem 4.1.

Next we consider the Q-rational points of X0(22; 11) = X0(22)/〈w2〉 in
order to verify condition (b) in Theorem 4.1. We put

(4.12) S =
2 · 112 · x
(x− 1)2 , T =

2 · 112 · y
(x− 1)3 .

Since the Atkin–Lehner involution w2 acts on the points (x, y) as in (3.7), we
note that S and T are invariant under w2. Moreover as Sx2− (2S+2 ·112)x
+ S = 0 and y = (x− 1)3T/(2 · 112), S and T generate a subfield which is
of index 2 in Q(X0(22)). Consequently, S and T generate the function field
of X0(22; 11), and we can take S and T as parameters of X0(22; 11). Then
we obtain the following defining equation of X0(22; 11):

(4.13) T 2 = S3 + 188S2 + 11616S + 234256,

since the defining equation of X0(22) is written as (3.6). Hence X0(22; 11) is
isomorphic to X0(11), whose Mordell–Weil rank over Q is equal to zero.
In particular, the number of Q-rational points of X0(11) is 5 (cf. [1]),
and hence we see that the set of Q-rational points of this curve (4.13)
is {∞, (0,±484), (−44,±44)}. In fact, we can give a defining equation of
X0(11) as

(4.14) Y 2 + Y = X3 −X2 − 10X − 20,

and an isomorphism from X0(22; 11) to X0(11) as follows:

(4.15) X =
S

4
+ 16, Y =

T

8
− 1

2
.

Hence if r 6= 1,−7/4, then the point of X0(22; 11) corresponding to r is not
a Q-rational point. This is condition (b) in Theorem 4.1.
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Finally, we summarize the conditions for the modularity of Er in terms
of a rational number r. Elliptic curves of CM type are modular by [8], and
hence we may assume that Er does not have complex multiplication. If the
denominator of r is prime to 11 and r is not congruent to 1 or 9 modulo 11,
then the Q-curve Er corresponding to r is modular from Theorem 4.1. This
completes the proof of Theorem 2.1.

Remark 4.5. For a square-free positive integer N and a prime number
p dividing N , if X∗0 (N) is isomorphic to the projective line P1 and X∗0 (N ; p)
has finite Q-rational points, then we can get a similar theorem. In fact, we
have results for the cases (N, p) = (33, 11), (46, 23).

5. Examples

Example 5.1. Let r = 11/5. Then Kr = Q(
√

6,
√

29) has class number
1. The Q-curve Er has j-invariant

j(Er) =
1

522 (9982696912817251292602665401196304704

− 4075418948813532109010913359756115456
√

6

+ 1853740279115963052151887869295541248
√

29

− 756786299924789576937842692427292672
√

174 ).

The quadratic twist E of Er by

α = 1585084727553− 1248019557557
2

√
6

− 989865700341
√

29 +
826800325581

2

√
174

has the following global minimal model:

E : y2 = x3 +
(
9 + 1

2

√
6 + 1

2

√
174

)
x2

+ (−383506419653− 156534506597
√

6

+ 71201118525
√

29 + 29073539873
√

174 )x

− 182798829223792711− 74627160360067580
√

6

+ 33944822557919841
√

29 + 13857943481193026
√

174.

Then E has discriminant

∆(E) = 770987498697389702212257965120

+ 314754328312196256240261626880
√

6

− 143168784300891113577113736960
√

29

− 58448411438624093585994387840
√

174,
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which generates the ideal

(∆(E)) = p12
2 · p2

5 · (pσ5 )11 · (pτ5) · (pστ5 )22,

and conductor

cond(E) = p4
2 · p5 · (pσ5 ) · (pτ5) · (pστ5 ) = 22 · 5,

where p2 = (−2+
√

6) and p5 =
(

1
2 +
√

6+ 1
2

√
29
)
. Therefore E is a modular

Q-curve by Theorem 2.1.

Example 5.2. Let r = −4/5. Then Kr = Q(
√−1,

√
41) has class number

4 and a quadratic twist of Er has the following model:

(5.16) E : y2 = x3 − (9720− 10296
√−1− 1260

√
41)x

− 326592 + 741312
√−1 + 90720

√
41.

The curve E has j-invariant

j = − 1
522 (2528188128191313216− 9524265011230514688

√−1

− 201763471435658496
√

41 + 1359858285331273728
√−41 )

and conductor

condK(E) = p8
2 · p2

3 · p5 · (pσ5 ) · (pτ5) · (pστ5 ),

where p2 =
(
2, 1

2 −
√−1 − 1

2

√
41
)
, p3 =

(
3, 5

2 + 3
2

√−1 + 3
2

√
41 + 1

2

√−41
)

and p5 = (5, 1 +
√−1 +

√
41 ). Then this Q-curve is modular.

Remark 5.3. All the calculations in the above were done by a program
with GNU C and PARI-library, ver. 1.39.
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