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1. Introduction. By p we shall denote a prime number. The group of
integers modulo n will be denoted by Zn. Let G be an abelian group and
let S be a subset of G. As usual, we write

Σ(S) =
{∑

x∈A
x
∣∣∣A ⊂ S

}
.

The critical number of G, denoted by c(G), is the smallest s such that
Σ(S) = G for every subset S of G with cardinality s not containing 0.

The parameter c(G) was first studied by Erdős and Heilbronn in [4]. They
obtained the inequality c(Zp) ≤ 3

√
6p. Olson proved in [13] that c(Zp) ≤√

4p− 3 + 1. The authors of [1] obtained the inequality c(Zp) ≤
√

4p− 7.
The evaluation of c(G) for groups with composite order was first consid-

ered by Mann and Olson. They obtained the inequality c(Zp⊕Zp) ≤ 2p− 1
in [11]. Mann and Wou proved that c(Zp ⊕ Zp) = 2p − 2 in [12]. Dider-
rich proved in [2] the inequality p + q − 2 ≤ c(G) ≤ p+ q − 1, where
G is an abelian group of order pq and q is a prime. He conjectured that
c(G) = |G|/p + p − 2 if |G|/p is composite, where p is the smallest prime
dividing |G|. This conjecture is proved by Diderrich and Mann in [3] for
p = 2. Peng [15] proved Diderrich’s conjecture if G is the additive group
of a finite field. Lipkin [9] obtained a proof of this conjecture in the case
of cyclic groups with large order. This conjecture is proved by one of the
present authors in [5] for p ≥ 43 and by the authors of [8] for p = 3.

In this paper we achieve the evaluation of c(G), solving the above men-
tioned conjecture.

2. Some tools. Recall the following well known and easy lemma.

Lemma 2.1 [10]. Let G be a finite group. Let X and Y be subsets of G
such that X + Y 6= G. Then |X|+ |Y | ≤ |G|.
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We use the following result.

Lemma 2.2 [2]. Let p, q be two primes and let G be an abelian group with
order pq. Let S be a subset of G such that 0 6∈ S and |S| = p+ q − 1. Then
Σ(S) = G.

Let G be an abelian group. Let B ⊂ G and x ∈ G. As usual, we write
λB(x) = |(B + x) \B|. For any B, x, Olson proved in [13, 14]

(1) λB(x) = λB(−x)

and

(2) λB(x) = λG\B(x).

We use the following property which is implicit in [13]: Let G be a finite
abelian group. Let S be a subset of G such that 0 6∈ S. Put B = Σ(S). For
every y ∈ S, we have

(3) |Σ(S)| ≥ |Σ(S \ y)|+ λB(y).

We also use the following result of Olson.

Lemma 2.3 (Olson [14]). Let G be an abelian group and let S be a gen-
erating subset of G such that 0 6∈ S. Let B be a subset of G such that
|B| ≤ |G|/2. Then there is x ∈ S such that

λB(x) ≥ min((|B|+ 1)/2, (|S ∪ −S|+ 2)/4).

This result follows, using (1), by applying Lemma 3.1 of [14] to S ∪−S.
We use the following lemma which is a consequence of the main result

in [6].

Lemma 2.4 [6]. Let S be a subset of an abelian group G such that S∩−S
= ∅. Then

|Σ(S)| ≥ 2|S|.
The proof follows easily by induction. Set B = Σ(S). By Lemma 2.3

applied to B or G \B and using (2), there is s ∈ S such that λB(s) ≥ 2. By
(3), |B| ≥ |Σ(S \ x)|+ 2 ≥ 2|S|.

3. The main result. Let X be a subset of G with cardinality k. Let
{xi; 1 ≤ i ≤ k} be an ordering of X. For 0 ≤ i ≤ k, set Xi = {xj | 1 ≤
j ≤ i} and Bi = Σ(Xi). The ordering {x1, . . . , xk} will be called a resolving
sequence of X if for all i, λBi(xi) = max{λBi(xj); 1 ≤ j ≤ i}. The critical
index of the resolving sequence is the smallest integer t such that Xt−1

generates a proper subgroup of G.
Clearly, every nonempty subset S not containing 0 admits a resolving

sequence. Moreover, the critical index is ≥ 1.



Additive bases 235

We shall write λi = λBi(xi). By induction we have, using (3), for all
1 ≤ j ≤ k,

|Σ(X)| ≥ λk + . . .+ λj + |Bj−1|.
Put δ(m) = 0 if m is odd and = 1 otherwise. By Lemma 2.3, λi ≥ (i+ 1 +
δ(i))/2 for all i ≥ t. In particular, for all s ≥ t,
(4) |Σ(X)| ≥ (k + s+ 3)(k − s+ 1)/4− 1/2 + |Bs−1|.

Theorem 3.1. Let G be a finite abelian group with odd order and let p
be the smallest prime dividing |G|. Let S be a subset of G such that 0 6∈ S
and |S| = |G|/p+ p− 2. If |G|/p is composite, then Σ(S) = G.

P r o o f. Set |G| = n. One may check easily the result for n = 27. Suppose
n > 27. Set k(n) = (n/p + p − 2)/2. We shall write sometimes k instead
of k(n). Clearly we may partition S = X ∪ Y so that |X| = |Y | = k,
X ∩ −X = Y ∩ −Y = ∅ and |Σ(X)| ≤ |Σ(Y )|.

The result holds by Lemma 2.1 if |Σ(X)| > n/2. Suppose the contrary.
Since n is odd, we have

(5) |Σ(X)| ≤ (n− 1)/2.

Let {xi; 1 ≤ i ≤ k} be a resolving sequence for X with critical index t.
We first prove that

(6) t ≥ 4.

Suppose on the contrary that t ≤ 3. By (5) and (4) applied with s = 3,

(7) 4 + (k − 2)(k + 6)/4− n/2 ≤ 0.

Put f(n) = 4 + (k(n)−2)(k(n) + 6)/4−n/2. Observe that f ′(n) ≥ 0. Hence
f(n) is increasing as a function of n. Since n ≥ p3, we have by (7), f(p3) ≤ 0.
Hence p4 − 6p3 + 5p2 + 4p + 4 ≤ 0. It follows that p = 3. But in this case
n > 27 and hence n ≥ p3 + 2p2 = 45. It follows that f(n) ≥ f(45) = 5/2,
contradicting (7).

By Lemma 2.4, |Bt−1| ≥ 2(t−1). Obviously |Bt| = |Bt−1|+|xt+Bt−1| =
2|Bt−1| ≥ 4(t− 1).

By (5) and (4), applied with s = t+ 1,

(8) 4t− 4 + (k − t)(k + t+ 4)/4− n/2 ≤ 0.

Set F (t, n) = 4t − 4 + (k(n) − t)(k(n) + t + 4)/4 − n/2. Notice that
∂
∂tF (t, n) = 3− t/2. Let us show that

(9) t ≥ 6.

Suppose on the contrary that 4 ≤ t ≤ 5. Clearly F (5, n) > F (4, n), and
F (4, n) is an increasing function of n. Now by (8), we have F (4, p3) ≤ 0. It
follows that p4 − 6p3 + 5p2 + 4p+ 52 ≤ 0, a contradiction.
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Let us show that

(10) t ≥ n/p2 + p− 1.

Assume the contrary and set G(n) = F (n/p2+p−2, n). Since n/p2+p−2 ≥ 6
(we recall that n > 27), we have by (8),

(11) G(n) ≤ 0.

Observe that G′(n) = 4/p2 + n/(8p2) − 1/(4p) − n/(2p4) − 3/8 ≥ 0. In
particular G(n) is an increasing function. By (11), we have p4−6p3−11p2 +
132p− 188 ≤ 0, contradicting (11).

Let H be the proper subgroup generated by Xt−1. Let p′ be the smallest
prime divisor of n/p. By (10), |H∩S| ≥ n/(pp′)+p′−1. If n/p is the product
of two primes, then by Lemma 2.2, Σ(S ∩H) = H. If n/p is the product of
more than two primes, then by the induction hypothesis, Σ(S ∩H) = H.

Since |H| > n/(pp′), we see easily that q = |G|/|H| is a prime. Clearly
|S \H| ≥ q−1. Let a1, . . . , aq−1 be distinct elements from S \H. We denote
by ai the image of ai in G/H under the canonical morphism.

By the Cauchy–Davenport Theorem (cf. [10]), {0, a1}+ . . .+{0, ap−1} =
G/H. It follows that Σ(a1, . . . , ap−1) + H = G. The theorem now follows
since Σ(S ∩H) = H.
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