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Almost hilbertian fields

by

Pierre Dèbes (Lille) and Dan Haran (Tel Aviv)

This paper is devoted to some variants of the Hilbert specialization prop-
erty. For example, the RG-hilbertian property (for a field K), which arose in
connection with the Inverse Galois Problem, requires that the specialization
property holds solely for extensions of K(T ) that are Galois and regular
over K. We show that fields inductively obtained from a real hilbertian field
by adjoining real pth roots (p odd prime) are RG-hilbertian; some of these
fields are not hilbertian. There are other variants of interest: the R-hilbertian
property is obtained from the RG-hilbertian property by dropping the con-
dition “Galois”, the mordellian property is that every non-trivial extension
of K(T ) has infinitely many non-trivial specializations, etc. We investigate
the connections existing between these properties. In the case of PAC fields
we obtain pure Galois-theoretic characterizations. We use them to show that
“mordellian” does not imply “hilbertian” and that every PAC R-hilbertian
field is hilbertian.

Introduction. Hilbert’s irreducibility theorem is classically used in the
Inverse Galois Problem in the following way. If a finite group G can be real-
ized as the Galois group of an extension E/Q(T ), then it can also be realized
as the Galois group of an extension of Q by specializing T to some rational
number t ∈ Q: Hilbert’s theorem indeed assures that the Galois group is
preserved by specialization for infinitely many t ∈ Q. A common approach
to the Inverse Galois Problem is thus to work over Q(T ), which provides
a geometrical angle: finite extensions E/Q(T ), if they are regular over Q,
i.e., if E ∩ Q = Q, exactly correspond to covers of P1 defined over Q. In
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fact, most works in this area focus on this regular form of the Inverse Galois
Problem: is each finite group the Galois group of a regular Galois exten-
sion of Q(T )? But then, one does not need the full Hilbert specialization
property to deduce the Inverse Galois Problem: one only needs it for regular
Galois extensions of Q(T ). This weaker property is called the RG-hilbertian
specialization property.

All this generalizes in a straightforward manner to arbitrary fields (in-
stead of Q) to give rise to the Inverse Galois Problem and its regular form
over a field K, and to the notions of hilbertian and RG-hilbertian fields. The
RG-hilbertian property has been introduced by Fried and Völklein. In their
paper [FrVo] they give Galois-theoretic characterizations of hilbertian fields
and RG-hilbertian fields that are Pseudo Algebraically Closed (PAC) and
use them to produce an example of an RG-hilbertian but non-hilbertian PAC
field, thereby showing that the RG-hilbertian property is indeed weaker than
the full hilbertian property. These results along with the relevant definitions
are recalled in Section 3.

In Section 1, we produce a new wide class of RG-hilbertian fields. These
are all extensions inductively obtained from a real hilbertian field by adjoin-
ing real pth roots (for some fixed prime p 6= 2); we call them real p-radical
extensions. Furthermore, many such real p-radical extensions are not hilber-
tian and among them are some classical fields such as the real closure of Q
under taking real pth roots, the p-fermatian closure of Q, etc. These new
examples of RG-hilbertian non-hilbertian fields are contained in R and so,
contrary to those from [FrVo], are not PAC; furthermore, they are relatively
“small” in that their index over Q is p∞ and the Galois group of their Galois
closure is of order (p − 1)p∞. This first part suggests that there are more
RG-hilbertian fields than may have been expected first, and consequently
more fields for which the Inverse Galois Problem should hold if one believes
in the Regular Inverse Galois Problem.

In Section 3 we deal with another specialization property, close to the
hilbertian property. We say a field K is mordellian if for every polyno-
mial P (T, Y ) ∈ K[T, Y ], absolutely irreducible and with degY P ≥ 2, there
exist infinitely many t ∈ K such that P (t, Y ) has no root in K. If the
same property holds but with the single polynomial P (T, Y ) replaced by
any finite set of polynomials P1(T, Y ), . . . , Pn(T, Y ) (and with t the same
for all Pi’s), then the field K can classically be shown to be hilbertian
(e.g. [FrJa, Lemma 12.1]). But it has been unknown whether this remains
true with n = 1, that is, if mordellian fields are hilbertian. We show the
answer is negative: the mordellian property is a new specialization prop-
erty. In fact, we give a Galois characterization of mordellian PAC fields
and combine it with [FrVo] to produce a mordellian non-hilbertian PAC
field.
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In Section 4 we introduce some further specialization properties in a more
systematic manner. These are variations on the (RG)-hilbertian-mordellian
definitions. For example an R-hilbertian field is a field for which the hilber-
tian specialization property holds but only for absolutely irreducible polyno-
mials. Theorem 4.2 shows that R-hilbertian PAC fields are hilbertian. We do
not know whether the same result holds if the PAC assumption is removed.
In Section 5, we investigate more completely the relations existing between
the variants of the hilbertian property we have introduced (Theorem 5.1).
The paper ends with other related observations and open questions.

The somewhat more technical Section 2 contains several group-theoretic
lemmas used in the paper.

Unless otherwise specified, the fields we consider are of characteristic 0.

We wish to thank Bruno Deschamps for valuable comments on a prelim-
inary version of the paper.

1. RG-hilbertian fields. For each integer n 6= 0 let ζn be a primitive
n-root of 1. Denote the nth root function R→ R (if n is odd) and R+ → R+

(if n is even) by n
√−.

Given a prime p 6= 2, an extension K/k with k ⊆ R is called a real p-
radical extension if there exists a sequence (an)n>0 of real numbers an ∈ R
such that: {

K = k( p
√
a1, p
√
a2, . . .),

an ∈ k( p
√
a1, . . . , p

√
an−1) for each n > 0.

Remark 1.1. Let K/k be a tower of real p-radical extensions, that is,
K is the union of an increasing sequence of fields K1 = k,K2,K3, . . . such
that Ki+1/Ki is a p-radical extension for each i > 0. Then K/k is itself a
real p-radical extension.

Indeed, each extension Ki+1/Ki is of the form Ki+1 = Ki( p
√
ain | n > 0)

with ain ∈ Ki( p
√
aik | 0 < k < n) (n > 0, i > 0). Choose an enumeration

(bm)m>0 of the countable set {aij | i, j > 0}. We may assume that each of the
numbers in the sequence (bm)m>0 occurs infinitely many times—otherwise
replace b1, b2, . . . by

b1, b1, b2, b1, b2, b3, b1, b2, b3, b4, b1, b2, b3, b4, b5, . . .

Next define by induction a sequence (mr)r>0 of integers (possibly finite)
by letting mr+1 be the first integer larger than mr such that bmr+1 ∈
k( p
√
bm1 , . . . ,

p
√
bmr ). We are done if we prove that {aij | i, j > 0} =

{bmr | r > 0}. Suppose that this is not the case and then let (i, j) be the
smallest pair (in the lexicographical order) such that aij 6∈ {bmr | r > 0}.
Then

aij ∈ Ki( p
√
ai1, . . . , p

√
ai,j−1) = k( p

√
aαβ | (α, β) < (i, j)).
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Therefore there exists a finite subset S of {(α, β) | (α, β) < (i, j)} such that
aij ∈ k( p

√
aαβ | (α, β) ∈ S). By assumption, aαβ ∈ {bmr | r > 0} for every

(α, β) ∈ S. Hence there is an integer r such that {aαβ | (α, β) ∈ S} ⊆
{bm1 , . . . , bmr}. Now there is an integer m > mr such that bm = aij . It then
follows from

bm = aij ∈ k( p
√
aαβ | (α, β) < (i, j)) ⊆ k( p

√
bm1 , . . . ,

p
√
bmr−1),

that m is in the sequence (mr)r>0. Thus aij ∈ {bmr | r > 0}—a contradic-
tion.

Examples 1.2. In this paper we will consider in particular the following
examples:

(a) For each prime p define the field Kp,∞ as the union of the field Kn

(n ≥ 0) defined inductively by: K0 = Q and for n > 0, Kn+1 is the field
generated over Kn by all elements p

√
b where b runs over Kn. The field Kp,∞

is the smallest extension of Q contained in R closed under taking real pth
roots.

(b) For each prime p consider the field Fp defined as in (a) but with
Kn+1 obtained from Kn by adjoining all elements p

√
1 + bp where b runs

over Kn. In [Ri], a field K is said to be p-fermatian if any sum xp + yp is a
pth power in K. The field Fp is the real p-fermatian closure of Q, i.e., the
smallest extension of Q contained in R that is p-fermatian. The field F2 is
more classically called the pythagorean closure of Q.

The fields Kp,∞, Fp are not hilbertian. In fact, for P (T, Y ) = Y p − T
[resp. P (T, Y ) = Y p − (1 + T p)], the polynomial P (t, Y ) has a root in K
for each t ∈ Kp,∞ [resp. for each t ∈ Fp]. However, Theorem 1.3 below will
show that for p 6= 2, these fields are RG-hilbertian, as is any real p-radical
extension with p 6= 2.

Below we say that the Inverse Galois Problem (IGP) [resp. the Regular
Inverse Galois Problem (RIGP)] holds over a field K if every finite group
G is the Galois group of a Galois extension E/K [resp. a Galois extension
E/K(T ) with E/K regular (i.e. E ∩ K = K)]. Also recall from [FrVo,
p. 478] that a field K is said to be RG-hilbertian if for each polynomial
P (T, Y ) ∈ K[T, Y ], absolutely irreducible, with degY P ≥ 1 and such that
the associated function field extensionK(T )[Y ]/(P (T, Y )) ofK(T ) is Galois,
there exist infinitely many t ∈ K such that P (t, Y ) is irreducible in K[Y ].

Theorem 1.3. Let k ⊆ R be a field , p 6= 2 be a prime number and K/k
be a real p-radical extension. Then K/k has the following properties:

(a) K/k is linearly disjoint from every Galois extension (finite or not)
of k not containing ζp.

(b) If the IGP holds over k then the IGP holds over K.
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(c) If k is hilbertian then K is RG-hilbertian. Consequently , if the RIGP
holds over K, then the IGP holds over K.

Corollary 1.4. The fields Kp,∞, Fp (p 6= 2) are RG-hilbertian but they
are not hilbertian. If the IGP holds over Q then it necessarily also holds over
the fields Kp,∞ and Fp (p 6= 2).

Remarks 1.5. (a) For each α ∈ R∩k, if K/k is a real p-radical extension,
then K(α)/k(α) is also a real p-radical extension. Furthermore, if the IGP
holds over k, it also holds over k(α) and if k is hilbertian, so is k(α). So
the conclusions of Theorem 1.3 also hold for every finite extension E of
K contained in R. On the other hand, it is unclear whether the condition
“E ⊆ R” can be removed. For example, are the fields Kp,∞(ζp), Fp(ζp)
RG-hilbertian? Are they hilbertian?

(b) Finding a p-radical extension K/Q such that the IGP does not hold
over K would disprove the IGP over Q (from Theorem 1.3(b)) and so the
RIGP over Q but also the RIGP over K (from Theorem 1.3(c)). Also the
field K could not be ample, for the RIGP is known to hold over ample fields
([Po], [DeDes]).

Lemma 1.6. Let F be a subfield of R and p be a prime number. Let
N/F be a Galois extension (finite or not) not containing ζp. Then for each
b ∈ F , the extensions F ( p

√
b)/F and N/F are linearly disjoint and the field

N( p
√
b) does not contain ζp.

P r o o f. Let b ∈ F . Suppose b ∈ F p, i.e. b has some pth root in F .
Since F ⊆ R, a fortiori the real p-root p

√
b is in F and so the assertions

of the lemma are trivial. Assume therefore that b 6∈ F p. Then Xp − b is
irreducible over F [La, Corollary VIII.9.1], and hence [F ( p

√
b) : F ] = p. Since

[N ∩ F ( p
√
b) : F ] divides this prime number, either N ∩ F ( p

√
b) = F ( p

√
b) or

N ∩ F ( p
√
b) = F .

In the first case p
√
b ∈ N ; and, as N/F is Galois, also the root ζp

p
√
b of

Xp − b is in N . Therefore ζp ∈ N , a contradiction.
In the second case, N and F ( p

√
b) are linearly disjoint over F . In partic-

ular, [N( p
√
b) : N ] = p. But [N(ζp) : N ] divides p− 1 and is not 1, so it does

not divide p = [N( p
√
b) : N ]. Therefore ζp 6∈ N( p

√
b).

Proof of Theorem 1.3. (a) follows by induction from Lemma 1.6. By
definition of real p-radical extension we have K =

⋃∞
i=0 ki, where k0 = k,

and ki = ki−1( p
√
ai), with ai ∈ ki−1, for each i ≥ 1. It suffices to show

that each ki is linearly disjoint from any given Galois extension E of k not
containing ζp.

Assume, by induction, that ki−1 is linearly disjoint from E over k and
ζp 6∈ Eki−1. By Lemma 1.6 (with F = ki−1, N = Eki−1, and b = ai),
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ki is linearly disjoint from Eki over ki−1 and ζp 6∈ Eki. Therefore
[La, Proposition X.5.1], ki is linearly disjoint from E over k.

(b) Let G be a finite group. It is a classical exercise to show that if the
IGP holds over k, then there actually exists a Galois extension N/k of group
G linearly disjoint from k(ζp)/k (and more generally, from any given finite
extension of k). From (a), the extensions K/k and N/k are linearly disjoint.
Thus we have G(NK/K) = G. The group G being arbitrary, the IGP holds
over K.

(c) For later reference, we prove a more general property than the RG-
hilbertian property. Instead of a single polynomial P (T, Y ), consider n ab-
solutely irreducible polynomials P1(T, Y ), . . . , Pn(T, Y ) ∈ K[T, Y ] such that

(∗) degY Pi ≥ 2 and the function field K(T )[Y ]/(Pi(T, Y )) is a Galois
extension of K(T ) for i = 1, . . . , n.

We show that, under the assumption “k hilbertian”, there exist infinitely
many t ∈ K such that each of the polynomials P1(t, Y ), . . . , Pn(t, Y ) is
irreducible in K[Y ].

Let K0 ⊆ K be a finite extension of k such that (∗) holds with K0 replac-
ing K. Denote the function field K0(T )[Y ]/(Pi(T, Y )) by Ni,T , i = 1, . . . , n.
Consider the field K0(ζp). It is a hilbertian field (as a finite extension of k)
and each Pi(T, Y ) is irreducible over it (since Pi(T, Y ) is absolutely irre-
ducible). Thus there exist infinitely many t ∈ K0 such that Pi(t, Y ) is
irreducible over K0(ζp) (1), i = 1, . . . , n. Combined with ζp 6∈ K0 (since
K0 ⊆ K ⊆ R), that implies that the specialization Ni,t of Ni,T at t (which,
since Ni,T /K0(T ) is Galois, is the splitting field of Pi(t, Y ) over K0) does
not contain ζp, i = 1, . . . , n. The extension K/K0 is a real p-radical exten-
sion. Thus Theorem 1.3(a) applies to conclude that the extensions Ni,t/K0

and K/K0 are linearly disjoint; hence Pi(t, Y ) is irreducible in K[Y ] for
i = 1, . . . , n.

2. Some preliminary group-theoretic results. The following results
will be used in the subsequent sections.

Lemma 2.1. Let G be a finite group, let K be a normal subgroup of G
and let B be a subgroup of G. Let C be a coset of K in G that satisfies
C ⊆ ⋃σ∈GBσ. Assume that BK = G. Then

(a) |C ∩Bσ| = |K ∩B| for every σ ∈ G;
(b) C is the disjoint union C =

⋃· ni=1(C ∩Bσi), where Bσ1 , . . . , Bσn are
the distinct conjugates of B in G; and

(c) the number n of distinct conjugates of B in G is (G : B).

(1) Here we use the classical fact that Hilbert subsets of a finite extension E of a
hilbertian field K contain infinitely many elements of the lower field K [FrJa, §11.2].



Almost hilbertian fields 275

P r o o f. The condition BK = G ensures that every conjugate of B in G
is of the form Bk with k ∈ K. Moreover, it is of the form Bk, where k runs
through a system Σ of representatives of the right cosets of K ∩B in K.

It then follows from C ⊆ ⋃σ∈GBσ that

(1) C =
⋃

k∈K
(C ∩Bk) =

⋃

k∈Σ
(C ∩Bk).

If g ∈ C and k ∈ K, then gk = k−1gk = g(g−1k−1g)k ∈ gK = C. Therefore

(d) C is invariant under conjugation by elements of K.

Proof of (a): Let k ∈ K. By (d), C ∩ Bk = (C ∩ B)k, and hence
|C ∩ Bk| = |C ∩ B|. In particular, by (1), we have C ∩ B 6= ∅. Choose
g ∈ C ∩B. Then |C ∩B| = |gK ∩B| = |K ∩ g−1B| = |K ∩B|.

Proof of (b): We have |C| = |K| = (K : K ∩ B) · |K ∩ B|, hence by
(a), |C| =

∑
k∈Σ |C ∩ Bk|. It follows from (1) that the sets {C ∩ Bk}k∈Σ

must be disjoint.

Proof of (c): Clearly n ≤ (G : B). By the proof of (b), the subgroups
Bk, for k ∈ Σ, are distinct. Hence n ≥ |Σ| = (K : K ∩ B) = (KB : B) =
(G : B).

Recall that a finite embedding problem % : Γ ³ A, α : G ³ A for a
profinite group Γ is a diagram

Γ

1 N G A 1

%

²²
// // α // //

in which the row is an exact sequence of finite groups and the map % : Γ →
A is an epimorphism. A (proper) solution is a surjective homomorphism
ψ : Γ → G such that α ◦ ψ = %; without the condition “ψ surjective”, such
a map ψ is said to be a weak solution. The embedding problem is said to be
split if α : G ³ A has a group-theoretic section.

Lemma 2.2. Let P be a projective profinite group, let F̂2 be the free
profinite group on 2 generators, and let Γ = P ? F̂2 be the free profinite
product of P and F̂2. Consider a finite embedding problem % : Γ ³ A,
α : G ³ A for Γ , and let B be a proper subgroup of G. Then there exists a
continuous homomorphism ψ : Γ → G such that α ◦ ψ = % and ψ(Γ ) * Bσ

for every σ ∈ G.

P r o o f. As P is projective, there is a continuous homomorphism ψ′ :
P → G such that α ◦ψ′ = resP %. Let x1, x2 be free generators of F̂2 and let
a1, a2 be their %-images in A. Let C1 = α−1(a1) and C2 = α−1(a2); these
are cosets of the kernel K of α. Choose g1 ∈ C1 and g2 ∈ C2 (in a way to be
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specified below) and define ψ′′ : F̂2 → G by ψ′′(x1) = g1 and ψ′′(x2) = g2.
Then α ◦ψ′′ = res

F̂2
%. The maps ψ′ and ψ′′ define a unique homomorphism

ψ : Γ → G such that α ◦ ψ = %.
If α(B) is a proper subgroup of A, then, for every σ ∈ G,

α(ψ(Γ )) = %(Γ ) = A = Aα(σ) * α(B)α(σ) = α(Bσ),

and hence ψ(Γ ) * Bσ. Thus we are left with the case α(B) = A, that is,
BK = G.

By our choice g1, g2 ∈ ψ(Γ ). Therefore it suffices to show that we can
choose g1 ∈ C1 and g2 ∈ C2 so that

(2) {g1, g2} * Bσ for each σ ∈ G.
If either C1 or C2 are not contained in

⋃
σ∈GB

σ, this is clear. Assume
therefore that C1, C2 ⊆

⋃
σ∈GB

σ.
Let Bσ1 , . . . , Bσn be the distinct conjugates of B in G. By Lemma 2.1,

n ≥ 2 and so we may choose g1 ∈ C1 ∩ Bσ1 and g2 ∈ C2 ∩ Bσ2 . By
Lemma 2.1(b) we have

g1 6∈
⋃

i6=1

Bσi and g2 6∈
⋃

i 6=2

Bσi .

Thus {g1, g2} * Bσi for each 1 ≤ i ≤ n. This gives (2).

Lemma 2.3. Let H = Hn = G0nV , where V is a vector space over Z/3Z
(written additively) of finite dimension n ≥ 3, and G0 = 〈c〉 of order 2 acts
on V by vc = −v, for all v ∈ V . Then

(a) If σ ∈ H \ V , then σ2 = 1 and vσ = −v, for all v ∈ V .
(b) The centralizer of each σ ∈ H \ V in H is 〈σ〉.
(c) If B ≤ H and σ ∈ B \V , then B = 〈σ〉nW , where W is a subspace

of V , and 〈σ〉 of order 2 acts on W by wσ = −w. In particular , B ∼= Hm

for some m ≤ n.
(d) rankH (= the least number of generators of H) is n+ 1.
(e) The Frattini subgroup Φ(H) of H is trivial.

P r o o f. Property (a) is immediate, and (b) follows from (a).
(c) Put W = B ∩ V . By (a), 〈σ,W 〉 = 〈σ〉nW . Clearly, 〈σ〉 nW ⊆ B.

Conversely, let b ∈ B. If b ∈ V then b ∈ W ; if b 6∈ V , then σb ∈ V , and
hence σb ∈W . Therefore b ∈ 〈σ〉nW . Thus B = 〈σ〉nW .

(d) As rankV = dimV = n and rankG0 = 1, we have rankH ≤ n + 1.
Suppose, on the contrary, that σ, σ1, . . . , σn−1 generate H. Without loss
of generality σ 6∈ V . We may assume that σi ∈ V , for i = 1, . . . , n− 1,
otherwise replace σi by σσi. Put W = 〈σ1, . . . , σn−1〉. Then H = 〈σ,W 〉
and |W | = 3dimW < 3n. By (a), H = 〈σ〉nW , and hence |H| < 2 · 3n. But
clearly |H| = 2 · 3n, a contradiction.
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(e) If W is a subspace of V of dimension n−1, then G0nW is a maximal
subgroup of H; so is V . Therefore

Φ(H) ⊆ V ∩
⋂

W≤V
dimW=n−1

G0 nW =
⋂

W≤V
dimW=n−1

W = {0}.

Lemma 2.4. Let a finite group G act on a finite group A0, and let α0 :
G n A0 → G be the canonical projection. Let m ≥ 1 be an integer. Then
there is a finite group A on which G acts, with the following property. Let
Γ = GnA and let α : Γ → G be the canonical projection. If H is a subgroup
of Γ such that α(H) = G and (Γ : H) ≤ m, then there is an epimorphism
θ : H → GnA0 such that α0 ◦ θ = resH α.

P r o o f. Part A: It suffices to find A finitely generated (instead of fi-
nite). Suppose that A is a finitely generated group that has all the required
properties except for being finite. Then Γ is also finitely generated, and
hence has only finitely many subgroups of index ≤ m|G n A0|. Therefore
the intersection N of these subgroups is of finite index in Γ . Clearly, N is
a characteristic subgroup of Γ and N ≤ A. Let A1 = A/N . It follows that
A1 is a finite group. We claim that it has the required property.

Let Γ1 = Γ/N = G n A1, let µ : Γ → Γ1 be the quotient map, and let
α1 : Γ1 → G be the map induced from α, that is, α1 ◦ µ = α.

Let H1 be a subgroup of Γ1 such that α1(H1) = G and (Γ1 : H1) ≤ m.
Let H = µ−1(H1) ≤ Γ . Then α(H) = G and (Γ : H) ≤ m. Hence by
assumption there is an epimorphism θ : H → G n A0 such that α0 ◦ θ =
resH α.

Since (Γ : H) ≤ m, we have N ≤ H. Since (H : Ker θ) = |G n A0|, we
have (Γ : Ker θ) ≤ m|G n A0|, and hence N ≤ Ker θ. Therefore θ induces
an epimorphism θ1 : H1 → GnA0 such that α0 ◦ θ1 = resH1 α1.

H

Γ H1 GnA0

Γ1 G

²²
µ

BBBBBBÃÃ

θ

RRRRRRRRRRRRRR))

µ

AAAAAAÃÃ

α

RRRRRRRRRRRRRRRR((

θ1
//

²²
α0

²²α1 //

Thus we may relax the requirement that A be finite by A being finitely
generated.

Part B: Free products. Let e = |A0|. Let F be the free group on e
generators and let Γ = G ? F be the free product. Define an epimorphism
α : Γ → G by letting α be the identity on G and α(F ) = 1. Let A = Kerα;
then Γ = GA and G ∩ A = 1, so Γ = G n A and α : G n A → G is the
canonical projection.
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Let H be a subgroup of Γ such that α(H) = G and (Γ : H) ≤ m. By
the Kurosh Subgroup Theorem [Mas, Theorems VII.5.1, VII.5.2],

H =
m

F
i=1

(H ∩Gγi) ?
n

F
j=1

(H ∩ F δj ) ? E

where γ1, . . . , γm, δ1, . . . , δn ∈ Γ and E is a finitely generated free group
[Mas, Theorem VII.5.3]. Thus H can be written as the free product H =
F1 ? F2, where F1 = H ∩ F δ1 . Since (F δ1 : F1) ≤ (Γ : H) ≤ m < ∞, the
group F1 is a finitely generated free group of rank

rankF1 = 1 + (F δ1 : F1)(e− 1) = e+ [(F δ1 : F1)− 1](e− 1) ≥ e
[FrJa, Proposition 15.25]. Therefore there exists an epimorphism θ1 :
F1 → A0.

Define θ : H → G n A0 by letting θ be θ1 on F1 and resF2 α on F2

(here we identify G with its preimage in G n A0). As F1 ≤ F δ1 ≤ A, and
hence α(F1) = 1, we see that α0 ◦ θ = resH α. In particular, α0(θ(H)) = G;
furthermore θ(H) ⊇ θ1(F1) = A0; thus θ is an epimorphism.

3. Mordellian fields. We recall the following characterization of hilber-
tian fields (e.g. [FrJa, Lemma 12.1]):

Lemma 3.1. A field K is hilbertian if and only if for every finite set
of absolutely irreducible polynomials P1(T, Y ), . . . , Pm(T, Y ) ∈ K[T, Y ], of
degree ≥ 2 in Y , there exist infinitely many t ∈ K such that none of the
polynomials P1(t, Y ), . . . , Pm(t, Y ) ∈ K[Y ] has a root in K.

It would be interesting to know whether one can take m = 1 in the above
lemma. Formally, we define:

Definition 3.2. A field K is mordellian if for every absolutely irre-
ducible polynomial P (T, Y ) ∈ K[T, Y ] with degY P > 1, there exist in-
finitely many t ∈ K such that P (t, Y ) ∈ K[Y ] has no root in K.

Clearly, every hilbertian field is mordellian. Thus the question is, whether
the converse is true (2). In this section we show that this is not the case: we
produce PAC mordellian fields that are not hilbertian. Recall a field K is
P(seudo) A(lgebraically) C(losed) if every curve defined over K has at least
one K-rational point (in fact infinitely many) [FrJa, Chapter 10]. Moreover,
we show that the mordellian property neither implies nor is implied by the
RG-hilbertian property. To show this, we first develop a Galois-theoretic
characterization of mordellian fields.

Let K be a field, let K be its algebraic closure, and let F be a finite Galois
extension of E = K(T ). Let t ∈ K. Extend T 7→ t to a place φ : F → K;

(2) See [FrJa, Exercise 12.1] for a related problem.
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such an extension is unique up to composition with elements of the Galois
group G(F/E) [La, Corollary VII.2.6]. Assume that φ is unramified in F ;
this is true for all but finitely many values of t. The decomposition group
Dt of φ in F/E is a subgroup of G(F/E) and it is uniquely determined by t,
up to conjugation in G(F/E). There is an epimorphism φ∗ : G(K)→ Dt ⊆
G(F/E) given by

(1) φ(φ∗(σ)z) = σ φ(z),

for all σ ∈ G(K), z ∈ F integral over K[T ]. In fact, if F ′ is the residue
field of F , then φ∗ is the composition of resF ′ : G(K) → G(F ′/K) and the
isomorphism G(F ′/K)→ Dt.

Remark 3.3. Embedding property . Let E = K(T ) and L be the algebraic
closure of K in F .

(a) Replacing φ by φ ◦ σ for a suitable σ ∈ G(F/E) if necessary, we may
assume that φ is an L-place. It then follows from (1) with z ∈ L that the
following diagram commutes:

(2)

G(K)

G(F/E) G(L/K)

φ∗

yyrrrrrrrr
resL
²²resF/L //

(b) Conversely, let φ∗ : G(K) → G(F/E) be a homomorphism
such that (2) commutes. If K is PAC, the field-crossing argument (see
[FrJa, Proposition 23.2]) says that there exist infinitely many L-places
φ : F → K unramified over E such that φ(E) = K and (1) holds. In
particular, φ∗(G(K)) is the decomposition group of φ. Choose φ so that
t = φ(T ) 6=∞; then φ extends T 7→ t.

Now we can express the mordellian property in terms of decomposition
groups.

Lemma 3.4. A field K is mordellian if and only if the following property
holds:

(M1) Let F/K(T ) be a finite Galois extension, let G be its Galois group,
and let B be a proper subgroup of G. Then there exist infinitely
many t ∈ K such that Dt 6⊆ Bσ for every σ ∈ G.

P r o o f. Let P (T, Y ) ∈ K[T, Y ] be irreducible, monic in Y , and of de-
gree ≥ 2 in Y . Let F be a finite Galois extension of K(T ) that contains the
splitting field of P (T, Y ) over K(T ) and let G be its Galois group. Let y be
a root of P (T, Y ) in F and let B be the (necessarily proper) subgroup of G
that fixes y. Then {σy | σ ∈ G} are all the roots of P (T, Y ), and σBσ−1 is
the fixed group of K(T )(σy), for each σ ∈ G.
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Let t ∈ K be such that T 7→ t is unramified in F . Extend T 7→ t to a
place φ : F → K and let Dt be the decomposition group of φ in F/K(T ).
Then {φ(σy) | σ ∈ G} are the roots of P (t, Y ) ∈ K. We have φ(σy) ∈ K iff
Dt fixes σy iff Dt ⊆ σBσ−1.

Thus for all but finitely many t ∈ K we have:

(3) P (t, Y ) has a root in K iff Dt ⊆ Bσ for some σ ∈ G.

Therefore (M1) implies that K is mordellian.
Conversely, let K be mordellian, and let F , G, and B be as in (M1).

Let y be a primitive element for the fixed field of B over K(T ), integral
over K[T ]. Then the irreducible polynomial P (T, Y ) of y over K(T ) is in
K[T, Y ], and so we can apply (3) to conclude that (M1) holds.

Remark 3.5. In the setup of (M1) let L be the algebraic closure of
K in F . We may assume in (M1) that the restriction map G(F/K(T )) →
G(L/K) splits. Indeed, by [Ha, Lemma 2.2] there is a finite Galois extension
F ′/K(T ) such that F ⊆ F ′ and, denoting by L′ the algebraic closure of K in
F ′, the map G(F ′/K(T ))→ G(L′/K) splits. Let G′ be its Galois group and
let B′ ≤ G′ be the preimage of B under the restriction map res : G′ → G.
If φ′ : F ′ → K is a place and φ : F → K is its restriction to F , then
φ∗ = res ◦ φ′∗. Therefore, φ′∗(G(K)) 6⊆ (B′)σ

′
for every σ′ ∈ G′ implies

φ∗(G(K)) 6⊆ Bσ for every σ ∈ G.

In the case of PAC fields, Lemma 3.4 leads to the following criterion.

Proposition 3.6. Let K be a PAC field and let Γ be its absolute Galois
group. Then K is mordellian if and only if the following condition holds:

(M2) Let α : G→ A be a split epimorphism of finite groups, let % : Γ → A
be a continuous epimorphism, and let B be a proper subgroup of G.
Then there exists a continuous homomorphism ψ : Γ → G such that
α ◦ ψ = % and ψ(Γ ) is contained in no conjugate of B in G.

P r o o f. Suppose that (M2) holds. Let F , G, and B be as in (M1). Let
L be the algebraic closure of K in F , let A = G(L/K), and let α : G → A
and % : Γ → A be the restriction maps to L. By Remark 3.5 we may assume
that α : G → A splits. Let ψ be as in (M2). By Remark 3.3(b) there are
infinitely many t ∈ K such that Dt = ψ(Γ ); for these t, Dt 6⊆ Bσ for every
σ ∈ G. Thus (M1) holds.

Conversely, assume (M1). Let % : Γ → A, α : G → A, and B ≤ G be
as in (M2). Let L be the fixed field of Ker %; thus A = G(L/K) and % is
the restriction map to L. We will use the following result recently proved
in Inverse Galois Theory: if K is an ample field, split embedding problems
over K(T ) have proper regular solutions ([Po, Main Theorem A] or [HaJa,
Theorem 6.4]). This result, applied here over the PAC (and so ample) field
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K, precisely asserts that there exists a Galois extension F of K(T ) that
contains L and is regular over L, and an isomorphism θ : G→ G(F/K(T ))
such that resL ◦ θ = α. Without loss of generality G = G(F/K(T )) and
α = resL.

By (M1) there is an element t ∈ K such that T 7→ t is unramified in F
and its extension φ : F → K defines a homomorphism φ∗ : Γ → G such
that φ∗(Γ ) = Dt 6⊆ Bσ for every σ ∈ G. By Remark 3.3(a) we may assume
that α ◦ φ∗ = %.

Proposition 3.6 should be compared with the following result which pro-
vides a Galois-theoretic characterization of the hilbertian and RG-hilbertian
properties for PAC fields.

Proposition 3.7 [FrVo, Theorems A and B]. Let K be a PAC field.
Then

(a) K is hilbertian if and only if all finite embedding problems over K
are solvable.

(b) K is RG-hilbertian if and only if every finite group is a Galois group
over K.

We now use Propositions 3.6 and 3.7 to prove the following.

Proposition 3.8. There exist mordellian PAC fields K1,K2 that are not
hilbertian and

(a) K1 is not RG-hilbertian,
(b) K2 is RG-hilbertian.

P r o o f. Let F̂2 be the free profinite group on 2 generators. If P is
a projective profinite group, then Γ = P ? F̂2 is projective. By [FrJa,
Corollary 20.16] there is a PAC field K with absolute Galois group Γ . By
Lemma 2.2, Γ satisfies the criterion (M2) of Proposition 3.6, and hence K
is mordellian.

(a) In the above, take P to be finitely generated, e.g. P = Ẑ. Then Γ
is also finitely generated, and therefore not every finite group is a quotient
of Γ . By Proposition 3.7, K is not RG-hilbertian. In particular, K is not
hilbertian.

(b) Let G1, G2, . . . be an enumeration of all finite groups. Let G =∏∞
i=0Gi and for each i ≥ 0 let πi : G→ Gi be the canonical projection. Let

% : P → G be the universal Frattini cover of G. Then P is projective [FrJa,
Proposition 20.33]. Take Γ and K as above.

Let φ : Γ → P be the epimorphism which is the identity on P and
maps F̂2 onto 1. Every finite group Gi is a quotient of Γ (by πi ◦ % ◦ φ). By
Proposition 3.7, K is RG-hilbertian; and to show that K is not hilbertian, it
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suffices to show that Γ is not ω-free, that is, that there is a finite embedding
problem for Γ that has no solution.

Without loss of generality G0 is of order 2, say, G0 = 〈c〉. Let H = Hn =
G0nV as in Lemma 2.3, where n ≥ 3, and let α : H → G0 be the canonical
projection. We claim that there is no epimorphism ψ : Γ → H such that
α ◦ ψ = π0 ◦ % ◦ φ : Γ → G0.

Assume the contrary. Let B = ψ(P ). Then B is not contained in V ,
since α(B) = G0, while α(V ) = 1. By Lemma 2.3(c), B ∼= Hm for some
m ≤ n. By Lemma 2.3(e), the Frattini subgroup of B is trivial. Therefore ψ
maps the Frattini subgroup of P into 1, and hence induces an epimorphism
ψ : G→ B such that α ◦ ψ = π0.

Recall that c is the generator of the subgroup G0 of G. Let σ = ψ(c).
Since c centralizes Gi for i ≥ 1, σ centralizes ψ(Gi) in B. Furthermore,
ψ(Gi) ≤ V , since π0(Gi) = 1. By Lemma 2.3(b), ψ(Gi) = 1. Hence ψ(G) =
〈σ〉. It follows that ψ(P ) = 〈σ〉.

Now let D = ψ(Γ ). Then D = 〈σ, σ1, σ2〉, where σ1, σ2 are the images of
the generators of F̂2 in G. By Lemma 2.3(d), D 6= H.

4. R-hilbertianity and further specialization properties. The
hilbertian property of a field K is that

(Data:) For every polynomial P (T, Y ) ∈ K[T, Y ] with
degY P ≥ 2 such that

(Assumption:) P (T, Y ) is irreducible in K(T )[Y ],
there exist infinitely many t ∈ K such that

(Conclusion:) P (t, Y ) is irreducible in K[Y ].

We consider variants of the hilbertian property where the assumption
is modified to include the extra hypothesis (R) or/and (G) below and the
conclusion about P (t, Y ) either remains the Hilbert conclusion or is weak-
ened to be the Mordell conclusion below. Given a polynomial P (T, Y ) ∈
K[T, Y ] irreducible in K(T )[Y ], the possible extra hypotheses (R) and (G)
are:

(R) P (T, Y ) is absolutely irreducible,
(G) The function field K(T )[Y ]/(P (T, Y )) is a Galois extension of K(T ),

and the possible conclusions (for t ∈ K) are:

(Hilbert) P (t, Y ) is irreducible in K[Y ],
(Mordell) P (t, Y ) has no root in K[Y ].

According to what the conclusion is, these new properties are called
hilbertian or mordellian. We add the prefix R and/or G (or no prefix) ac-
cording to the assumptions that are made on the polynomial P (T, Y ).
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Examples 4.1. These definitions contain in particular the definitions of
“RG-hilbertian” and “mordellian” given respectively in Sections 1 and 3.
But they give rise to new ones. For example, a field K is RG-mordellian
if for every polynomial P (T, Y ) ∈ K[T, Y ], absolutely irreducible, with
degY P ≥ 2 and such that the function field K(T )[Y ]/(P (T, Y )) is a Ga-
lois extension of K(T ), there exist infinitely many t ∈ K such that P (t, Y )
has no root in K[Y ].

There are some relations between all these specialization properties.
Some are classical and some are proved in this paper. Theorem 5.1 (in the
next section) recapitulates these results. The current section is concerned
with the R-hilbertian property. By the above, a field K is R-hilbertian
if for every polynomial P (T, Y ) ∈ K[T, Y ], absolutely irreducible, with
degY P ≥ 2, there exist infinitely many t ∈ K such that P (t, Y ) is irre-
ducible in K[Y ].

Theorem 4.2. Every PAC R-hilbertian field is hilbertian.

P r o o f. Let K be a PAC R-hilbertian field. By Proposition 3.7(a) it
suffices to show that every finite embedding problem for G(K) is solvable.
In fact, since PAC fields have a projective absolute Galois group, Jarden’s
Lemma [Mat, p. 231] allows us to restrict our attention to split embedding
problems. So let L be a finite Galois extension of K and let its Galois group
G = G(L/K) act on a finite group A0. Let α0 : GnA0 → G be the canonical
projection, and let resL : G(K) → G be the restriction map. We have to
find an epimorphism ψ : G(K)→ GnA0 such that α0 ◦ ψ = resL.

Put m = |G| and let A and α : Γ = G n A → G be as in Lemma 2.4.
Using [Po, Main Theorem A] or [HaJa, Theorem 6.4], as in the proof of
Proposition 3.6, we may assume that there is a Galois extension F of K(T )
with Galois group Γ such that α is the restriction to L of G(F/K(T )) and
F/L is regular. Let E1 be the fixed field of G in F . Then E1 ∩ L = K,
and hence E1 is regular over K. Therefore there is an absolutely irreducible
polynomial P (T, Y ) ∈ K[T, Y ], monic in Y , a root of which generates E1

over K(T ).
Since K is R-hilbertian, there exist infinitely many t ∈ K such that

P (t, Y ) ∈ K[Y ] is irreducible. Choose such an element t so that a place
φ : F → K that extends T 7→ t is unramified over K(T ). By Remark 3.3(a)
there is a homomorphism φ∗ : G(K) → G(F/K(T )) such that (2) (from
Section 3) commutes. The image H of φ∗ in G(F/K(T )) is the decomposition
group of φ. The residue field F ′ of F contains a root of P (t, Y ), and hence
|H| = [F ′ : K] ≥ degP = |Γ |/|G|. Therefore (Γ : H) ≤ |G|. Furthermore,
α(H) = resLG(K) = G.

By Lemma 2.4 there is an epimorphism θ : H → G n A0 such that
α0 ◦ θ = resH α = resH resF/L. Put ψ = θ ◦ φ∗; then α0 ◦ ψ = resL.
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5. Concluding remarks. The next result recapitulates what we know
about the relations existing between the various specialization properties we
have introduced.

Theorem 5.1. All implications shown in the diagram below hold and
none of the converses to (2), (3), (4), (5) and (6) holds.

hilbertian
⇔ G-hilbertian

R-hilbertian

both mordellian and RG-hilbertian

mordellian
⇔ R-mordellian RG-hilbertian

G-mordellian
⇔ RG-mordellian

(1)

®¶

�����

�����

(2)
®¶

�����

�����

(3)

®¶

�����

����� (4)

®¶

������

������

(5)

®¶

������

������
(6)

®¶

�������

�������

Thus, out of the 8 possible variants of the hilbertian property, there are
at least 4 and at most 5 that are non-equivalent. We do not know whether
the converse of (1) holds in general; by Theorem 4.2, that is the case for
PAC fields.

P r o o f (of Theorem 5.1). Some of the implications are classical. For ex-
ample, “G-hilbertian ⇒ hilbertian” is proved in [FrJa, Lemma 11.12] (3).
Equivalences “mordellian ⇔ R-mordellian” and “G-mordellian ⇔ RG-mor-
dellian” readily follow from the fact that if a polynomial P (T, Y ) is irre-
ducible in K[T, Y ] but is not absolutely irreducible, then the K-rational
points (t, y) on the curve P (t, y) = 0 are singular points; in particular there
are only finitely many of them. Implications (1), (3), (4) and (5) are trivial
and implications (2) and (6) hold because the Hilbert conclusion implies the
Mordell conclusion.

(3) With the slight adjustment that the extension K(T, y)/K(T ) in their proof should
be required to be Galois.
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From Corollary 1.4 the fields Kp,∞, Fp (p 6= 2) are RG-hilbertian, and
hence, by (6), G-mordellian, but not hilbertian. In fact, these fields are not
even mordellian (see Examples 1.2). It follows that neither the converse to
(4) nor the converse to (5) hold. The field K1 from Proposition 3.8 is mordel-
lian but not RG-hilbertian. In particular, it is RG-mordellian. It follows that
neither the converse to (3) nor the converse to (6) hold. Finally, the PAC
field K2 from Proposition 3.8 is both mordellian and RG-hilbertian, but
not hilbertian. By Theorem 4.2 it is not even R-hilbertian. Therefore the
converse to (2) does not hold.

We end the paper with some related comments.

P -splitting fields. B. Deschamps [Des] introduces the following defini-
tion. Given a field K and an irreducible polynomial P (T, Y ) ∈ K[T, Y ]
with degY P ≥ 2, a field K is said to be P -splitting (P -décomposant)
if for all t ∈ K the polynomial P (t, Y ) is totally split in K[Y ]. A P -
splitting field is not hilbertian and, in fact, most classical non-hilbertian
fields are P -splitting for some polynomial P (T, Y ) (Examples 5.2 below).
But there are non-hilbertian fields that are not P -splitting for any choice
of P . In fact, we show below that “P -splitting for some P” is equivalent to
“non-G-mordellian” (Remark 5.3).

Examples 5.2. The fields R, Qtr (field of totally real algebraic num-
bers), F2 (pythagorean closure of Q) are P (T, Y )-splitting for P (T, Y ) =
Y 2 − (1 + T 2).

The fields Qp and Qtp (field of totally p-adic algebraic numbers) are
P (T, Y )-splitting for P (T, Y ) = Y p−Y−(pT/(T 2−p)). More generally, letK
be the quotient field of a henselian discrete valuation ring. Let Q(Y ) ∈ K[Y ]
be a monic polynomial with integral coefficients and such that the reduction
q(Y ) of Q(Y ) is totally split and has no multiple roots in the residue field of
K (e.g. Q(Y ) = Y 2 − Y ) and let π be an element of K of minimal positive
valuation. Then K is P (T, Y )-splitting for P (T, Y ) = Q(Y )−(πT/(T 2−π)).

Indeed, it is straightforwardly checked that, for each t ∈ K, the element
t/(t2 − π) is in the valuation ring of K. Thus for each t ∈ K, the reduction
of P (t, Y ) equals q(Y ) and so is totally split in the residue field of K (with
only simple roots). Apply Hensel’s lemma to lift each of those roots to a
root of P (t, Y ) in K.

Remark 5.3. We have: “P -splitting for some P ⇔ non-G-mordellian”.
Indeed, suppose K is P -splitting for some polynomial P (T, Y ). Let N be the
normal closure of the function field K(T )[Y ]/(P (T, Y )). For all but finitely
many t ∈ K, the specialization of N at t is trivial. So if Q(T, Y ) ∈ K[T, Y ]
is the irreducible polynomial of a primitive element of the Galois extension
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N/K(T ), then Q(t, Y ) is totally split in K[Y ]; thus the field K is not G-
mordellian.

Conversely, suppose K is not G-mordellian. That is, there exists a
polynomial P (T, Y ) = a0(T )Y d + a1(T )Y d−1 + . . . + ad(T ) ∈ K[T, Y ]
with degY P ≥ 2, irreducible in K(T )[Y ], such that the function field
K(T )[Y ]/(P (T, Y )) is a Galois extension of K(T ) and P (t, Y ) has a root
in K for all but finitely many t ∈ K. The Galois assumption on P (T, Y )
yields that P (t, Y ) is in fact totally split in K[Y ] for all but finitely many
t ∈ K. Let {t1, . . . , tn} be the finite set of possible exceptions and p(T ) =
(T − t1) . . . (T − tn). Set then P̃ (T, Y ) = a0(T )Y d + a1(T )p(T )Y d−1 + . . .+
p(T )dad(T ). It is readily checked that P̃ (t, Y ) is totally split for all t ∈ K.
Thus K is P̃ -splitting.

Finite extensions. Finite extensions of hilbertian fields are hilbertian (see
e.g. [FrJa, Section 11.2]). On the other hand it is unclear whether the same is
true for R-hilbertian [resp. RG-hilbertian, mordellian, G-mordellian] fields.
However, that is the case for PAC RG-hilbertian fields. This easily follows
from the criterion of Proposition 3.7(b), since if the IGP holds over a field,
then it holds over every finite extension (an easy exercise), and every finite
extension of a PAC field is also PAC [FrJa, Corollary 10.7].

The similar question for transcendental extensions of finite type is
not interesting: such extensions are automatically hilbertian [FrJa, Theo-
rem 12.10].

Multi-polynomial variants. Other variants of the specialization property
can be defined: allow the data to consist of any finite set of polynomials
P1(T, Y ), . . . , Pn(T, Y ) satisfying the assumptions (instead of a single poly-
nomial P (T, Y )) and require that the conclusion be satisfied for each of
the specialized polynomials P1(t, Y ), . . . , Pn(t, Y ). We add the extra prefix
“m” to the name of the property in question when we consider its “multi-
polynomial” variant.

In fact, several polynomials are involved in the usual definition of “hilber-
tian”. So according to our terminology, “hilbertian” is really “m-hilbertian”.
But as [FrJa, Lemma 11.12] shows, the two notions actually coincide. Also,
the classical Lemma 3.1 shows that “mR-mordellian” implies “hilbertian”.
It immediately follows that “m-mordellian” and “mR-hilbertian” are equiv-
alent to “hilbertian”. On the other hand, “mRG-hilbertian” does not imply
“hilbertian” (and does not even imply “mordellian”). Indeed the proof of
Theorem 1.3 shows that each real p-radical extension of a hilbertian field
contained in R is mRG-hilbertian. In particular, the fields Kp,∞, Fp (p 6= 2)
are examples of mRG-hilbertian but non-mordellian (and so non-hilbertian)
fields. Finally, using similar techniques to those in Sections 2 and 3, one
can show that the RG-hilbertian non-hilbertian fields produced in [FrVo]
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are not mRG-hilbertian. Thus “mRG-hilbertian” is strictly stronger than
“RG-hilbertian”.
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