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1. Introduction. At the 1912 International Congress of Mathemati-
cians, Rabinowitsch showed that n2 + n+A is prime for n = 0, 1, . . . , A− 2
if and only if −d := 4A − 1 is squarefree and h(d) = 1 (where h(d) is the
class number of the quadratic field Q(

√
d)). Recent research (see [Mo]) has

focussed on giving similar criteria for real quadratic fields, which tend to be
complicated by the existence of infinitely many units in the field. The proto-
type is the following result of Mollin and Williams (see [Mo, pp. 352–354]):
A− n− n2 is prime for all positive n <

√
A− 1 if and only if d := 4A+ 1 is

squarefree, h(d) = 1, and either d = 17, or d ≥ 21 with d ≡ 5 mod 8, where
d is of the form 4m2 + 1 or m2 ± 4, for some integer m.

Subsequently there have been many investigations of prime producing
polynomials and their connection to the structure of real quadratic fields,
as discussed in Mollin’s delightful book [Mo]. Included there is the following
conjecture of Mollin and Williams (see page 140, Conjecture 4.2.1 in [Mo]):

The Mollin–Williams Conjecture. Let d = pq ≡ 5 mod 8, where
p < q are primes congruent to 3 mod 4. Then the following are equivalent.

(i) |pk2 + pk + (p − q)/4| is prime or equal to 1 whenever 0 ≤ k ≤√
d/4− 1/2.

(ii) The class number h(d) is 1 and d = p2s2 ± 4p or d = 4p2s2 − p.

The main result in this paper is

Theorem 1. Suppose that d = pq ≡ 5 mod 8, where p < q are primes
congruent to 3 mod 4, and that |pk2 + pk+ (p− q)/4| is prime or equal to 1
whenever 0 ≤ k ≤

√
d/4 − 1/2. Then the class number h(d) is 1 and the

length l(d) of the principal cycle does not exceed 10.
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As we will now explain, this implies

Corollary. The Mollin–Williams conjecture holds for all , except per-
haps one, integer d of the form d = pq ≡ 5 mod 8, where p < q are primes
congruent to 3 mod 4. If this exceptional d exists then (ii) would hold but
not (i), and it would mean that L(s, (d/·)) has a zero far to the right of the
half-line—that is, the Riemann Hypothesis would be false for this L-function.

To deduce the Corollary from Theorem 1, we use computational results of
Mollin and Williams [MW]. They found, with at most one possible exception,
the complete (finite) list of all positive discriminants of class number 1,
which have less than 25 forms in their principal class. Putting aside the
possible exception, their list thus contains all the d that arise from Theorem
1. Moreover discriminants d of the form d = p2s2 ± 4p or d = 4p2s2 − p
have either 2 or 4 forms in the principal class, and so Mollin and Williams’s
list contains all the d that satisfy statement (ii), with that one possible
exception. Examining their data one can compile the list of discriminants
therein and verify the conjecture for these d:

Proposition. All d ∈ {21, 69, 77, 93, 141, 213, 237, 413, 437, 453, 573,
717, 1077, 1133, 1253, 1293, 1757} satisfy h(d) = 1, can be written in the
form d = pq ≡ 5 mod 8, where p < q are primes congruent to 3 mod 4,
and can be written in the form d = p2s2 ± 4p or d = 4p2s2 − p for some
integer s. Moreover |pk2 + pk + (p − q)/4| is prime or equal to 1 whenever
0 ≤ k ≤

√
d/4− 1/2.

The one possible exceptional d would have to have a particularly small
value for L(1, (d/·))—Mollin and Williams’s proof uses the lower bound for
L(1, (d/·)) given by Tatuzawa as a modification of an argument of Siegel—
and thus L(s, (d/·)) would contradict the Generalized Riemann Hypothesis.

Therefore the Corollary follows from the computations of Mollin and
Williams, once one has shown that (i) implies (ii) (or something slightly
weaker). Previous work on this subject by Louboutin works only when we
extend the range of the hypothesis in (i): Louboutin [L1, Theorem 9] proved
that (i) implies (ii), with no exceptions, when the range for k is allowed
to go up to

√
d/2 − 1/2. In [L1, L2] he proved that if the range for k is

allowed to go up to
√
d/3 − 1/2 then either (ii) in the conjecture holds

or d = p((3b+ 4)2 + 4)/9 with p ≡ −1 mod 12 (and, in the latter case,
there is at most one such d with h(d) = 1, according to the aforementioned
Siegel–Tatuzawa bound).

Our proof begins by showing that if Q is a prime <
√
d/2, then Q is

non-inert if and only if Q divides |pk2 + pk + (p − q)/4| for some k in
[0,
√
d/4 − 1/2]. Since none of these numbers are composite by hypothesis,

every non-inert prime less than
√
d/2 is of the form |pk2 + pk + (p − q)/4|
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for k in [0,
√
d/4 − 1/2]. However there can be at most two values of k in

this range with |pk2 + pk+ (p− q)/4| <
√
d/2, and so there are at most two

primes Q <
√
d/2 with (Q/d) = 1. This immediately restricts the number of

reduced forms of discriminant d, as for every reduced form (a, b, c) at least
one of |a| or |c| is less than

√
d/2. From this we deduce that the length of the

principal class is less than or equal to 10 and that the class number is one.

2. Binary quadratic forms: notation and theory. The proof of
Theorem 1 uses the elementary theory of binary quadratic forms, for which
we refer the reader to [Bu]. We do however note a few definitions which are
used frequently in our proofs:

We denote by (a, b, c) a binary quadratic form of discriminant d. A form
(a, b, c) of discriminant d > 0 is said to be reduced if

0 < b <
√
d,
√
d− b < 2|a| <

√
d+ b.

Note that these conditions imply that b > 0 and ac < 0. Moreover b2 ≡
d mod 4|a| and

√
d − 2|a| < b <

√
d, so that if |a| is a given odd prime

then there are just two possibilities for b. If |a| = 1 then there is a unique
possibility for b, the largest integer <

√
d which is of the same parity as d.

The form (a′, b′, c′) is said to be right adjacent to (a, b, c) if a′ = c and
b+ b′ ≡ 0 mod 2c. Also then (a, b, c) is said to be left adjacent to (a′, b′, c′).
We write

(a, b, c) ∼ (a′, b′, c′).

The above inequalities imply that there are finitely many reduced binary
quadratic forms of discriminant d, and thus they form cycles. Since the
signs of the a-coefficient in adjacent forms are opposite, any cycle is of even
length.

Henceforth we assume the hypothesis of Theorem 1 holds. Evidently b
is always odd since b2 ≡ d ≡ 1 mod 4. Note that we know that h(d) is odd,
since d = pq with p ≡ q ≡ 3 mod 4 ([C2]).

Now, observe that
∣∣∣∣pk2 + pk +

p− q
4

∣∣∣∣ =
∣∣∣∣
(2k + 1)2p− q

4

∣∣∣∣;

and when 0 ≤ k ≤
√
d/4 − 1/2, we have 1 ≤ 2k + 1 ≤

√
d/2. Hence the

assumption in Theorem 1 is equivalent to the following:
fp(x) is prime or equal to 1 for all odd integers x with 1 ≤ x ≤

√
d/2,

where

fp(x) :=
∣∣∣∣
px2 − q

4

∣∣∣∣.
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We denote by M and m the largest odd integers less than
√
d and

√
q/p

respectively. Note that, by definition, there is a unique reduced form (a, b, c)
with a = 1, namely (1,M,−(d − M2)/4). We also let p1 = fp(m) and
p2 = fp(m+ 2).

It should be noted that the class number h(d) here is the number of
ordinary equivalence classes associated with 2 × 2 integer transformation
matrices of determinant ±1 as opposed to the narrow class number which
is the number of strict equivalence classes obtained by transformation ma-
trices of determinant 1. For the relation between the two class numbers see
Theorem 3, page 198 in [C1]. In the case when d = pq with p and q congru-
ent to 3 mod 4 the forms (a, b, c) and (−a, b,−c) while strictly inequivalent
are equivalent in the ordinary sense.

3. Preparatory lemmas. Throughout this section we assume that the
hypothesis of Theorem 1 holds and that we are working only with binary
quadratic forms of discriminant d. In fact we shall assume d > 4616 as we
can check computationally up to there.

Lemma 1. The only reduced form (a, b′,−c) with a, c > 0 where p divides
a is (p, pm,−p1).

P r o o f. As p divides d, the form (a, b′,−c) is of the form (pn, pb,−c). By
definition of reduced form we have pb <

√
d or b <

√
q/p <

√
d/2. Hence

by assumption |(pb2 − q)/4| = |(p2b2 − d)/(4p)| = nc is prime or equal to 1.
This gives either n = 1 and so a = p, or a = pn where n is prime and c = 1.

If a = p then by definition of reduced form we have
√
pq − pb < 2p or√

q/p− 2 < b and bp <
√
pq, which gives b <

√
q/p. Hence

√
q/p− 2 < b <√

q/p and thus b = m.
Next if a = pn we have the reduced form (pn, pb,−1). Consider the form

(A,B, pn) left adjacent to (pn, pb,−1). Then pn divides B + pb so that p
divides B. We write B = pk; since B is odd and 0 < B <

√
d, it follows

that k is odd and k <
√
d/p =

√
q/p. Thus fp(k) = |(B2 − d)/(4p)| = |An|

is prime or equal to 1 by hypothesis, and so A = ±1 since n is prime; in fact
A = −1 since A(pn) < 0. There is a unique reduced form of discriminant d
with first coefficient −1 and so k = b; therefore (−1, pb, pn) ∼ (pn, pb,−1),
so that n divides b (by the definition of adjacency), and thus n divides
(pb)2 + 4pn = d, which is untrue.

Lemma 2. There are no more than two odd positive integers x for which
fp(x) ≤

√
d/2. The only possibilities are x = m or x = m+ 2.

P r o o f. We prove that fp(x) >
√
d/2 for x < m and for x >

√
q/p+ 1;

the lemma then follows from the definition of m. If x >
√
q/p + 1 then

(px2 − q)/4 > p/4 +
√
d/2 >

√
d/2. When x < m we need only consider
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when m ≥ 3. Then 1 ≤ x ≤ m−2 <
√
q/p−2, so that (q−px2)/4 >

√
d−p.

As
√
q/p > m ≥ 3, we have p <

√
d/3, so that (q − px2)/4 >

√
d − p >

(2
√
d)/3 >

√
d/2.

Lemma 3. If Q is prime with (d/Q) = 1 and Q ≤
√
d/2, then Q = fp(x)

for some odd positive integer x ≤
√
d/2.

P r o o f. We can find a solution px to the congruence y2 ≡ d mod 2pQ
with 0 ≤ px ≤ pQ (since p divides d). Since 0 < x ≤ Q <

√
d/2 is

odd, we know that fp(x) is prime or 1 by assumption. Moreover fp(x) =
|((px)2 − d)/(4p)| is divisible by Q since Q is odd, and thus fp(x) = Q.

Lemma 4. If 2fp(x) < max{x − 1,
√
d/2 − x} for some odd positive

x ≤
√
d/2, then fp(x) = 1.

P r o o f. Write l = fp(x) = |(q − px2)/4|.
If 2l ≤

√
d/2− x then fp(x+ 2l) = l(p(x+ l)± 1) and 1 ≤ x ≤ x+ 2l ≤√

d/2. By assumption fp(x + 2l) is prime or equal to 1, which gives l = 1
since p(x+ l)± 1 ≥ 3(1 + 0)− 1 = 2.

If 2l ≤ x − 1 then fp(x − 2l) = l(p(x − l) ± 1) and 1 ≤ x − 2l ≤ x.
By assumption fp(x − 2l) is prime or equal to 1, which gives l = 1 since
p(x− l)± 1 ≥ 3(l + 1)− 1 ≥ 2.

Lemma 5. There are no primes Q with Q ≤
√
d/8 − 1/4 such that

(d/Q) = 1.

P r o o f. By Lemma 3, if such a Q exists, then Q = fp(x) for some odd
positive integer x ≤

√
d/2. Then 2fp(x) = 2Q ≤

√
d/4− 1/2 ≤ max{x− 1,√

d/2− x}, and so Q = 1 by Lemma 4, giving a contradiction.

Lemma 6. There are no more than two primes Q ≤
√
d/2 for which

(d/Q) = 1. The only possibilities are p1 = fp(m) and p2 = fp(m+ 2).

P r o o f. By Lemma 3, Q = fp(x) for some x. By Lemma 2, x = m or
x = m+ 2.

Lemma 7. All reduced forms are of the form (a, b, c) where |a| and |c| are
each either primes or 1, provided d ≥ 4616.

P r o o f. If p divides a or c then the form is given by Lemma 1; so hence-
forth assume p does not divide ac. As (a, b, c) is reduced, |a|, |c| <

√
d < q,

so q does not divide ac.
Let Q be the smallest prime that divides ac; from the above, Q can be

assumed to be neither p nor q. Now b2 ≡ d mod Q so that (d/Q) = 0 or
1, and thus (d/Q) = 1. If one of |a| or |c| is composite then Q < d1/4 ≤√
d/8− 1/4, which is impossible, by Lemma 5.
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4. The proof of Theorem 1. We first prove that the number of reduced
forms is less than or equal to 10.

By Lemma 7 if (a, b, c) is a reduced form, then |a| and |c| are either
primes or 1. One of |a| and |c| is less than

√
d/2, and so, by Lemma 6,

the only possible values for this number are 1, p, p1 or p2. Note that if
(a, b, c) is reduced then (c, b, a) is also reduced; also, for every prime Q
with (d/Q) = 1, there are at most two reduced forms (Q, b, c). Since one
of our forms is (p, pm,−p1), we deduce that the total number of reduced
forms is less than or equal to 10. (Note here that (a, b, c) and (−a, b,−c) are
considered to be identical.)

In Section 2 we noted that the class number is odd and that every equiv-
alence class of forms contains an even number of forms.

Assume that there is an equivalence class of forms with exactly two
forms, namely (a, b, c) ∼ (c, b′, a), since these forms are both left and right
adjacent to each other. We note that, to have the same discriminant, and
since b, b′ > 0, we must have b = b′. Thus both a and c divide b, and
so ac divides b2 − 4ac = d. Since q > |a|, |c| we see that ac = −1 or
−p. We cannot have ac = −1 since then d = b2 + 4 so that (−1/p) = 1,
contradicting p ≡ 3 mod 4. Thus we may assume a = p and c = −1, which
gives d = p2m2 + 4p by Lemma 1. Thus p1 = 1 and p2 >

√
d/2 and we have

accounted for all of the forms. In other words, d is of the form d = p2m2+4p,
with h(d) = 1 and the principal cycle is (1, pm,−p) ∼ (−p, pm, 1).

Otherwise each equivalence class of forms has ≥ 4 forms. Given that
there are ≤ 10 reduced forms this means that h(d) ≤ 2. However h(d) is odd
so h(d) = 1.

Remark. For those d in (ii) one can write down their principal cycles:
If d = p2s2 + 4p then p1 = 1, p2 >

√
d/2 and the principal cycle is

(1, ps,−p) ∼ (−p, ps, 1).

If d = p2s2 − 4p then p2 = 1, p1 = ps− p− 1 and the principal cycle is

(1, ps− 2,−p1) ∼ (−p1, p(s− 2), p) ∼ (p, p(s− 2),−p1)

∼ (−p1, ps− 2, 1).

If d = 4p2s2− p then p1 = ps− (p+ 1)/4 <
√
d/2 < p2 and the principal

cycle is

(1, 2ps− 1,−p1) ∼ (−p1, p(2s− 1), p) ∼ (p, p(2s− 1),−p1)

∼ (−p1, 2ps− 1, 1).

If we wished to extend our proof above to directly show that (i) implies
(ii), then note that the case p1 = 1 leads to d of the form p2s2 + 4p, and
p2 = 1 leads to d of the form p2s2 − 4p. One might try to extend this
case-by-case analysis to complete such a proof.
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